首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fujinami sarcoma virus (FSV) and PRCII are avian sarcoma viruses which share cellularly derived v-fps transforming sequences. The FSV P140gag-fps gene product is phosphorylated on three distinct tyrosine residues in transformed cells or in an in vitro kinase reaction. Three variants of FSV, and the related virus PRCII which lacks about half of the v-fps sequence found in FSV, encode gene products which are all phosphorylated at tyrosine residues contained within identical tryptic peptides. This indicates a stringent conservation of amino acid sequence at the tyrosine phosphorylation sites which presumably reflects the importance of these sites for the biologic activity of the transforming proteins. Under suitable conditions the proteolytic enzymes p15 and V8 protease each introduce one cut into FSV P140, p15 in the N-terminal gag-encoded region and V8 protease in the middle of the fps-encoded region. Using these enzymes we have mapped the major site of tyrosine phosphorylation to the C-terminal end of the fps region of FSV P140gag-fps. A second tyrosine phosphorylation site is found in the fps region of FSV P140 isolated from transformed cells, and a minor tyrosine phosphorylation site is found in the N-terminal gag-encoded region. Our results suggest that the C-terminal fps-encoded region is required for expression of the tyrosine-specific protein kinase activity.  相似文献   

2.
T Pawson  J Guyden  T H Kung  K Radke  T Gilmore  G S Martin 《Cell》1980,22(3):767-775
Cells infected by one strain of Fujinami sarcoma virus (FSV) are transformed at 38 degrees C but are phenotypically normal at 41.5 degrees C. FSV encodes a 140,000 molecular weight protein (P140) with gag gene-related and FSV-specific peptide sequences. At 41.5 degrees C, P140 is weakly phosphorylated at serine residues, and is inactive in the immune complex protein kinase assay. At 38 degrees C, P140 is highly phosphorylated, contains phosphotyrosine in addition to phosphoserine, and in the immune complex kinase assay becomes phosphorylated at three tyrosine residues. Phosphorylation of cellular polypeptides at tyrosine residues in FSV-infected cells is also temperature-sensitive. These observations indicate that P140 is the transforming protein of FSV and that protein phosphorylation at tyrosine residues is involved in transformation by this virus.  相似文献   

3.
A number of oncogenic viruses encode transforming proteins with protein kinase activities apparently specific for tyrosine residues. Recent evidence has raised questions as to the substrate specificity of these kinases in general and the physiological relevance of tyrosine phosphorylation in particular. The P130gag-fps transforming protein of Fujinami sarcoma virus (FSV) is strongly phosphorylated at 2 tyrosine residues in FSV-transformed cells of which 1 (Tyr-1073) is also the major site of P130gag-fps intermolecular autophosphorylation in vitro. We have investigated the specificity of the protein kinase activity intrinsic to FSV P130gag-fps by using site-directed mutagenesis to change the codon for Tyr-1073 to those for the other commonly phosphorylated hydroxyamino acids, serine and threonine. This approach has some advantages over the use of synthetic peptides to define protein kinase recognition sites in that the protein containing the altered target site can be expressed in intact cells. In addition it allows higher order as well as primary structure of the enzyme recognition site to be considered. Neither serine nor threonine were phosphorylated when substituted for tyrosine at position 1073 of P130gag-fps indicating a stringent specificity for tyrosine as a substrate of the P130gag-fps protein kinase autophosphorylating activity. Consistent with the suggestion that tyrosine phosphorylation is of functional significance we find that these and other FSV Tyr-1073 mutants have depressed enzymatic and oncogenic capacities.  相似文献   

4.
R A Feldman  T Hanafusa  H Hanafusa 《Cell》1980,22(3):757-765
Fujinami sarcoma virus (FSV), a newly characterized avian sarcoma virus, produces a protein of 140,000 daltons (p140) in infected cells. p140 is the product of a fused gene consisting of a part of the gag gene of avian retrovirus and FSV-unique sequences which are not related to the src sequences of Rous sarcoma virus. In vivo, p140 was found to be phosphorylated at both serine and tyrosine residues. Immunoprecipitates of p140 with antiserum against gag gene-coded proteins had a cyclic nucleotide-independent protein kinase activity which phosphorylated p140 itself, rabbit IgG of the immune complex and alpha-casein, an externally added soluble protein substrate. The phosphorylation was specific to tyrosine of the substrate proteins. p140 was phosphorylated in vitro at the same two tyrosine residues that were phosphorylated in vivo. The phosphate transferred to tyrosine residues of p140 forms a stable bond: it does not turn over during the kinase reaction, and the 32P-phosphate of p140 labeled in vitro or in vivo is not transferred to alpha-casein. FSV-p140 differs from p60src, the transforming protein of Rous sarcoma virus, in its marked preference of Mn2+ to Mg2+ ions, and in its inability to use GTP instead of ATP as the donor of gamma-phosphate.  相似文献   

5.
The Fujinami avian sarcoma virus (FSV) transforming gene product, P140, is a fusion protein which contains both gag-related and FSV-specific methionine-containing tryptic peptides. The virion protease p15 cleaved p140 into two fragments: an N-terminal 33K fragment which contained all but one of the gag-related tryptic peptides and a C-terminal 120K fragment which contained all of the FSV-specific tryptic peptides. The 33K gag-related fragment from P140 phosphorylated in FSV-transformed cells contained only phosphoserine, whereas the 120K C-terminal FSV-specific fragments contained both phosphoserine and phosphotyrosine. P140 isolated from cells infected at the nonpermissive temperature with an isolate of FSV which is temperature sensitive for transformation had a normally phosphorylated 33K fragment, but a hypophosphorylated 120K fragment deficient in both phosphotyrosine and phosphoserine. When P140 was immunoprecipitated from cells and phosphorylated in vitro at tyrosine residues in the immune complex kinase reaction, only the FSV-specific fragment was labeled. These data define the structure of FSV P140 and locate the phosphorylated amino acids within the two regions of the polypeptide.  相似文献   

6.
Two monoclonal antibodies have been obtained that recognize antigenic determinants within the C-terminal fps-encoded region of P140gag-fps, the transforming protein of Fujinami avian sarcoma virus (FSV). The hybridomas which secrete these antibodies (termed 88AG and p26C) were isolated after the fusion of NS-1 mouse myeloma cells with B lymphocytes from Fischer rats that had been immunized with FSV-transformed rat-1 cells. FSV P140gag-fps immunoprecipitated by either antibody is active as a tyrosine-specific kinase and is able to autophosphorylate and to phosphorylate enolase in vitro. The fps-encoded proteins of all FSV variants, including the gag- p91fps protein of F36 virus, are recognized by both monoclonal antibodies. However, the product of the avian cellular c-fps gene. NCP98, and the transforming proteins of the recently isolated fps-containing avian sarcoma viruses 16L and UR1 are recognized only by the p26C antibody. The 88AG antibody therefore defines an epitope specific for FSV fps, whereas the epitope for p26C is conserved between cellular and viral fps proteins. The P105gag-fps protein of the PRCII virus is not precipitated by p26C (nor by 88AG), presumably as a consequence of the deletion of N-terminal fps sequences. These data indicate that the fps-encoded peptide sequences of 16L P142gag-fps and UR1 P150gag-fps are more closely related to NCP98 than that of FSV P140gag-fps. This supports the view that 16L and UR1 viruses represent recent retroviral acquisitions of the c-fps oncogene. The P85gag-fes transforming protein of Snyder-Theilen feline sarcoma virus is not precipitated by either monoclonal antibody but is recognized by some antisera from FSV tumor-bearing rats, demonstrating that fps-specific antigenic determinants are conserved in fes-encoded proteins.  相似文献   

7.
G Weinmaster  M J Zoller  M Smith  E Hinze  T Pawson 《Cell》1984,37(2):559-568
The 130 kd transforming protein of Fujinami sarcoma virus (FSV P130gag -fps) possesses a tyrosine-specific protein kinase activity and is itself phosphorylated at several tyrosine and serine residues in FSV-transformed cells. We have used oligonucleotide-directed mutagenesis of the FSV genome to change the TAT codon for tyrosine (1073), the major site of P130gag -fps phosphorylation, to a TTT codon for phenylalanine that cannot be phosphorylated. This mutant FSV induces the transformation of rat-2 cells but with a long latent period as compared with wild-type FSV. The P130gag -fps protein encoded by the mutant retains the ability to phosphorylate tyrosine, but is five times less active as a kinase in vitro than wild-type FSV P130gag -fps. These data indicate that tyrosine phosphorylation stimulates the biochemical and biological activities of FSV P130gag -fps, and they set a precedent for the ability of this amino acid modification to modulate protein function.  相似文献   

8.
The P130gag-fps transforming protein of Fujinami sarcoma virus (FSV) possesses tyrosine-specific protein kinase activity and autophosphorylates at Tyr-1073. Within the kinase domain of P130gag-fps is a putative ATP-binding site containing a lysine (Lys-950) homologous to lysine residues in cAMP-dependent protein kinase and p60v-src which bind the ATP analogue p-fluorosulfonylbenzoyl-5' adenosine. FSV mutants in which the codon for Lys-950 has been changed to codons for arginine or glycine encode metabolically stable but enzymatically defective proteins which are unable to effect neoplastic transformation. Kinase-defective P130gag-fps containing arginine at residue 950 was normally phosphorylated at serine residues in vivo suggesting that this amino acid substitution has a minimal effect on protein folding and processing. The inability of arginine to substitute for lysine at residue 950 suggests that the side chain of Lys-950 is essential for P130gag-fps catalytic activity, probably by virtue of a specific interaction with ATP at the phosphotransfer active site. Tyr-1073 of the Arg-950 P130gag-fps mutant protein was not significantly autophosphorylated either in vitro or in vivo, but could be phosphorylated in trans by enzymatically active P140gag-fps. These data indicate that Tyr-1073 can be modified by intermolecular autophosphorylation.  相似文献   

9.
UR2 is a newly characterized avian sarcoma virus whose genome contains a unique sequence that is not related to the sequences of other avian sarcoma virus transforming genes thus far identified. This unique sequence, termed ros, is fused to part of the viral gag gene. The product of the fused gag-ros gene of UR2 is a protein of 68,000 daltons (P68) immunoprecipitable by antiserum against viral gag proteins. In vitro translation of viral RNA and in vivo pulse-chase experiments showed that P68 is not synthesized as a large precursor and that it is the only protein product encoded in the UR2 genome, suggesting that it is involved in cell transformation by UR2. In vivo, P68 was phosphorylated at both serine and tyrosine residues. Immunoprecipitates of P68 with anti-gag antisera had a cyclic nucleotide-independent protein kinase activity that phosphorylated P68, rabbit immunoglobulin G in the immune complex, and alpha-casein. The phosphorylation by P68 was specific to tyrosine of the substrate proteins. P68 was phosphorylated in vitro at only one tyrosine site, and the tryptic phosphopeptide of in vitro-labeled P68 was different from those of Fujinami sarcoma virus P140 and avian sarcoma virus Y73-P90. A comparison of the protein kinases encoded by UR2, Rous sarcoma virus, Fujinami sarcoma virus, and avian sarcoma virus Y73 revealed that UR2-P68 protein kinase is distinct from the protein kinases encoded by those viruses by several criteria. Our results suggest that several different protein kinases encoded by viral transforming genes have the same functional specificity and cause essentially the same cellular alterations.  相似文献   

10.
Proteins encoded by oncogenes such as v-fps/fes, v-src, v-yes, v-abl, and v-fgr are cytoplasmic protein tyrosine kinases which, unlike transmembrane receptors, are localized to the inside of the cell. These proteins possess two contiguous regions of sequence identity: a C-terminal catalytic domain of 260 residues with homology to other tyrosine-specific and serine-threonine-specific protein kinases, and a unique domain of approximately 100 residues which is located N terminal to the kinase region and is absent from kinases that span the plasma membrane. In-frame linker insertion mutations in Fujinami avian sarcoma virus which introduced dipeptide insertions into the most stringently conserved segment of this N-terminal domain in P130gag-fps impaired the ability of Fujinami avian sarcoma virus to transform rat-2 cells. The P130gag-fps proteins encoded by these transformation-defective mutants were deficient in protein-tyrosine kinase activity in rat cells. However v-fps polypeptides derived from the mutant Fujinami avian sarcoma virus genomes and expressed in Escherichia coli as trpE-v-fps fusion proteins displayed essentially wild-type enzymatic activity, even though they contained the mutated sites. Deletion of the N-terminal domain from wild-type and mutant v-fps bacterial proteins had little effect on autophosphorylating activity. The conserved N-terminal domain of P130gag-fps is therefore not required for catalytic activity, but can profoundly influence the adjacent kinase region. The presence of this noncatalytic domain in all known cytoplasmic tyrosine kinases of higher and lower eucaryotes argues for an important biological function. The relative inactivity of the mutant proteins in rat-2 cells compared with bacteria suggests that the noncatalytic domain may direct specific interactions of the enzymatic region with cellular components that regulate or mediate tyrosine kinase function.  相似文献   

11.
From molecularly cloned DNAs of Fujinami sarcoma virus (FSV) and the Schmidt-Ruppin-A strain of Rous sarcoma virus (SRA), viral DNA was constructed in which fps-specific sequences encoded in FSV replaced the src gene of SRA. A 3' fragment of FSV DNA, from an ATG methionine coding sequence 148 base pairs downstream from the gag-fps junction through the long terminal repeat, was joined to cloned SRA DNA at the translation start site for the src gene. The resultant DNA clone contained the splice acceptor site for src mRNA processing in SRA, but contained no src coding sequences from SRA nor any gag sequences from FSV. All genes for the replication of SRA were retained. Transfection of this cloned viral DNA genome into chicken embryo fibroblasts induced morphological transformation of the cells in culture. However, the morphology of the transformed cells was distinct from that observed in cells infected with wild-type FSV. The transformed cells produced a nondefective transforming virus called F36 which contained a hybrid FSV-SRA long terminal repeat. F36-infected cells produced a protein with the expected molecular weight of 91,000, which had an associated protein kinase activity and was immunoprecipitated by antibodies raised against fps gene determinants but not by antibodies raised against gag or src proteins. Injection of F36 virus into 8-day-old chicks produced tumors at the site of inoculation, detectable within 7 days. These results demonstrated that the gag portion of the gag-fps fusion protein of FSV is not required for transformation or tumorigenesis.  相似文献   

12.
The gag gene-related, nonstructural proteins of three avian acute leukemia viruses (namely, myelocytomatosis viruses MC29 and CMII and avian erythroblastosis virus) and of avian Fujinami sarcoma virus (FSV) isolated by immunoprecipitation from cellular lysates with anti-gag serum were shown to be phosphoproteins in vivo. The specific 32P radioactivity of the nonstructural proteins of MC29, CMII, and FSV was significantly higher than that of helper viral, intracellular gag proteins. Two of these proteins, i.e., the 140,000-dalton FSV and the 110,000-dalton MC29 proteins, were also phosphorylated in vitro by a kinase activity associated with immunocomplexes. This kinase activity is either separated from these proteins or inactivated by incubation of cellular lysates with normal serum followed by adsorption to staphylococcal protein A or sedimentation at 100,000 x g or both. It remains to be resolved whether the 110,000-dalton MC29 and 140,000-dalton FV proteins, in addition to being substrates for phosphorylation, also have intrinsic kinase activity.  相似文献   

13.
We assayed phosphatidylinositol (PI) kinase (EC 2.7.1.67) activity in detergent extracts of nontransformed or virus-transformed cells. Nontransformed chicken embryo fibroblasts (CEF) contain PI kinase activity with an apparent specific activity of 20 pmol/min per mg of protein. This activity sedimented as a single peak with a molecular weight of approximately 60,000 in a glycerol gradient, although immunoprecipitation with anti-p60src sera showed that the PI kinase activity is distinct from p60c-src. Extracts from CEF transformed by Rous sarcoma virus, Fujinami sarcoma virus, or avian sarcoma virus UR2 showed no elevation of PI kinase activity over nontransformed CEF. Removal of the oncogene products from extracts by immunoprecipitation did not change the level of PI kinase activity in extracts, suggesting that putative virus-coded PI kinases do not make a significant contribution to overall levels of PI kinase activity in transformed cells. Additionally, P140gag-fps was separated from cellular PI kinase by phosphocellulose chromatography. This partially purified fraction contained low PI kinase activity distinct from P140gag-fps, indicating that P140gag-fps has no detectable PI kinase activity.  相似文献   

14.
The level of phosphotyrosine in vinculin was determined in chicken embryo fibroblasts transformed by various strains of avian sarcoma virus. As previously reported (Sefton et al., Cell 24:165-174, 1981), vinculin was phosphorylated at tyrosine residues in most cultures examined, but the level varied greatly and no detectable change was found in cultures infected with Fujinami sarcoma virus or UR2 sarcoma virus. Regardless of the level of vinculin phosphorylation, the number of organized microfilament bundles was found to be decreased in all transformed cells. These results strongly suggest that tyrosine phosphorylation of vinculin is not an obligatory step in cell transformation by this class of oncogenes, nor is it correlated with the associated cytoskeletal disarray.  相似文献   

15.
The cytoskeletal protein talin was found to undergo enhanced phosphorylation at tyrosine residues in chicken embryo fibroblasts following transformation by Rous sarcoma virus. An increase in the tyrosine phosphorylation of talin was also observed within 6 h in cells infected by the temperature-sensitive mutant tsNY68 after a shift from the nonpermissive to the permissive temperature. The overall extent of phosphorylation was 0.07 mol of phosphate per mol of talin and was not appreciably altered by transformation. In uninfected cells talin was shown to be phosphorylated at multiple sites by tryptic peptide mapping. Following transformation most of these sites remained phosphorylated, to the same or to a lesser extent, while novel, phosphotyrosine-containing phosphopeptides appeared. Talin was phosphorylated at tyrosine in cells infected by Rous sarcoma virus mutants which induce altered or partial transformation morphologies; thus the increased phosphorylation of talin at tyrosine occurred irrespective of the morphology induced. Transformation by Y73 also induced elevated levels of phosphotyrosine in talin, whereas transformation by the avian erythroblastosis and Fujinami sarcoma viruses did not.  相似文献   

16.
The biological and biochemical properties of the transformation-specific proteins of three avian oncornaviruses with different oncogenic potentials were compared, namely the gag-myc protein of the avian myelocytomatosis virus MC29, the gag-erb A protein of the avian erythroblastosis virus AEV, and the gag-fps protein of Fujinami sarcoma virus FSV. These oncogenes were analyzed in transformed fibroblasts that expressed only the transforming proteins but showed no virus replication. Monoclonal antibodies against the viral structural protein p19, which is the N-terminus of the proteins, were used for indirect immunofluorescence, for immunoprecipitation of the proteins from subcellular fractions, and for immunoaffinity column chromatography. With this last method a 3000-fold purification of the proteins was obtained. By indirect immunofluorescence it was shown that the gag-myc protein was located in the nucleus, and bound to DNA after purification. The gag-erb A protein was not nuclear but probably located in the cytoplasm and did not bind to DNA after purification. Neither of the two proteins exhibited protein kinase activity. In contrast, the gag-fps protein did not bind to DNA but showed protein kinase activity after purification. It was not located in the nucleus either.  相似文献   

17.
We analyzed linker insertion mutations throughout the 3' region of the v-fps gene of Fujinami sarcoma virus to identify tyrosine kinase transforming protein (P130gag-fps) determinants that are important for catalysis and transforming activity and, in particular, to define residues that participate in substrate selection. Mutations that encode kinase-active, transformation-defective v-fps alleles were recovered, defining sites in the transforming protein that may normally facilitate kinase-substrate interaction. Additionally, one region within the catalytic domain of the transforming protein (amino acid residues 1012 to 1020) that tolerates peptide insertions without loss of transforming activity was discovered, although the insertion mutations in this region of v-fps exhibited qualitatively abnormal transforming function. Transformed rat cell lines that express these mutations displayed unusual phenotypes, including giant cells and cells with an extremely fusiform shape. Furthermore, the insertion mutations in this region were temperature sensitive, transformed cells assumed a flat morphology, cellular protein phosphotyrosine was reduced, and the kinase activity of the transforming protein was decreased when cells were incubated at 40.5 degrees C. Point mutations that specify the ancestral chicken c-fps sequence in the insertion-tolerant region were also introduced into v-fps. These back mutations led to a modest decrease in kinase activity, decreased tumorigenic potential in chickens, and an unexpected increase in transforming activity in rat cells. These results indicate that the insertion-tolerant region of P130gag-fps influences the biologic activity and thermostability of the kinase.  相似文献   

18.
Cells transformed by the McDonough strain of feline sarcoma virus express at their surface a v-fms-specific transmembrane glycoprotein designated gp140v-fms. By labeling with 32Pi, gp140v-fms was shown to be phosphorylated 30-fold more in serine residues than were the cytosolic v-fms polypeptides gp180gag-fms and gp120v-fms. By using the phosphotyrosine phosphatase-specific inhibitor sodium orthovanadate, an additional tyrosine phosphorylation was observed in vivo, again involving predominantly gp140v-fms. In vitro studies showed that the v-fms proteins were phosphorylated by protein kinase C in a calcium- and phosphatidylserine-dependent manner.  相似文献   

19.
The P130gag-fps protein-tyrosine kinase of Fujinami sarcoma virus contains an N-terminal fps-specific domain (Nfps) that is important for oncogenicity. The N-terminal 14 amino acids of p60v-src, which direct myristylation and membrane association, can replace the gag-Nfps sequences of P130gag-fps (residues 1 to 635), producing a highly transforming src-fps polypeptide. Conversely, gag-Nfps can restore modest transforming activity to a nonmyristylated v-src polypeptide. These results emphasize the modular construction of protein-tyrosine kinases and indicate that Nfps, possibly in conjunction with gag, functions in the subcellular localization of P130gag-fps.  相似文献   

20.
Phosphorylation of the major autophosphorylation site (Tyr-1073) within Fujinami sarcoma virus P130gag-fps activates both the intrinsic protein-tyrosine kinase activity and transforming potential of the protein. In this report, a second site of autophosphorylation Tyr-836 was identified. This tyrosine residue is found within a noncatalytic domain (SH2) of P130gag-fps that is required for full protein-kinase activity in both rat and chicken cells. Autophosphorylation of this tyrosine residue implies that the SH2 region lies near the active site in the catalytic domain in the native protein and thus possibly regulates its enzymatic activity. Four mutations have occurred within the SH2 domain between the c-fps and v-fps proteins. Tyr-836 is one of these changes, being a Cys in c-fps. Site-directed mutagenesis was used to investigate the function of this autophosphorylation site. Substitution of Tyr-836 with a Phe had no apparent effect on the transforming ability or protein-tyrosine kinase activity of P130gag-fps in rat-2 cells. Mutagenesis of both autophosphorylation sites (Tyr-1073 and Tyr-836) did not reveal any cooperation between these two phosphorylation sites. The implications of the changes within the SH2 region for v-fps function and activation of the c-fps oncogenic potential are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号