首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorylation of the major autophosphorylation site (Tyr-1073) within Fujinami sarcoma virus P130gag-fps activates both the intrinsic protein-tyrosine kinase activity and transforming potential of the protein. In this report, a second site of autophosphorylation Tyr-836 was identified. This tyrosine residue is found within a noncatalytic domain (SH2) of P130gag-fps that is required for full protein-kinase activity in both rat and chicken cells. Autophosphorylation of this tyrosine residue implies that the SH2 region lies near the active site in the catalytic domain in the native protein and thus possibly regulates its enzymatic activity. Four mutations have occurred within the SH2 domain between the c-fps and v-fps proteins. Tyr-836 is one of these changes, being a Cys in c-fps. Site-directed mutagenesis was used to investigate the function of this autophosphorylation site. Substitution of Tyr-836 with a Phe had no apparent effect on the transforming ability or protein-tyrosine kinase activity of P130gag-fps in rat-2 cells. Mutagenesis of both autophosphorylation sites (Tyr-1073 and Tyr-836) did not reveal any cooperation between these two phosphorylation sites. The implications of the changes within the SH2 region for v-fps function and activation of the c-fps oncogenic potential are discussed.  相似文献   

2.
Fujinami sarcoma virus (FSV) and PRCII are avian sarcoma viruses which share cellularly derived v-fps transforming sequences. The FSV P140gag-fps gene product is phosphorylated on three distinct tyrosine residues in transformed cells or in an in vitro kinase reaction. Three variants of FSV, and the related virus PRCII which lacks about half of the v-fps sequence found in FSV, encode gene products which are all phosphorylated at tyrosine residues contained within identical tryptic peptides. This indicates a stringent conservation of amino acid sequence at the tyrosine phosphorylation sites which presumably reflects the importance of these sites for the biologic activity of the transforming proteins. Under suitable conditions the proteolytic enzymes p15 and V8 protease each introduce one cut into FSV P140, p15 in the N-terminal gag-encoded region and V8 protease in the middle of the fps-encoded region. Using these enzymes we have mapped the major site of tyrosine phosphorylation to the C-terminal end of the fps region of FSV P140gag-fps. A second tyrosine phosphorylation site is found in the fps region of FSV P140 isolated from transformed cells, and a minor tyrosine phosphorylation site is found in the N-terminal gag-encoded region. Our results suggest that the C-terminal fps-encoded region is required for expression of the tyrosine-specific protein kinase activity.  相似文献   

3.
A conserved noncatalytic domain SH2 (for src homology region 2) is located immediately N terminal to the kinase domains of all cytoplasmic protein-tyrosine kinases. We found that the wild-type v-fps SH2 domain stimulated the enzymatic activity of the adjacent kinase domain 10-fold and functioned as a powerful positive effector of catalytic and transforming activities within the v-fps oncoprotein (P130gag-fps). Partial proteolysis of P130gag-fps and supporting genetic data indicated that the v-fps SH2 domain exerts its effect on catalytic activity through an intramolecular interaction with the kinase domain. Amino acid alterations in the SH2 domain that impaired kinase function interfered with association of the SH2 domain with the kinase domain. Deletion of a conserved octapeptide motif converted the v-fps SH2 domain from an activator to an inhibitor of tyrosine kinase activity. This latent inhibitory activity of v-fps SH2 has functional implications for phospholipase C-gamma and p21ras GTPase-activating protein, both of which have two distinct SH2 domains suggestive of complex regulation. In addition to regulating the specific activity of the kinase domain, the SH2 domain of P130gag-fps was also found to be required for the tyrosine phosphorylation of specific cellular proteins, notably polypeptides of 124 and 62 kilodaltons. The SH2 domain therefore appears to play a dual role in regulation of kinase activity and recognition of cellular substrates.  相似文献   

4.
The phosphorylation sites of the P140gag-fps gene product of Fujinami avian sarcoma virus have been identified and localized to different regions of this transforming protein. FSV P140gag-fps isolated from transformed cells is phosphorylated on at least three distinct tyrosine residues and one serine residue, in addition to minor phosphorylation sites shared with Pr76gag. Partial proteolysis with virion protease p15 or with Staphylococcus aureus V8 protease has been used to generate defined peptide fragments of P140gag-fps and thus to map its phosphorylation sites. The amino-terminal gag-encoded region of P140gag-fps contains a phosphotyrosine residue in addition to normal gag phosphorylation sites. The two major phosphotyrosine residues and the major phosphorserine residue are located in the carboxy-terminal portion of the fps-encoded region of P140gag-fps. P140gag-fps radiolabeled in vitro in an immune complex kinase reaction is phosphorylated at only one of the two C-terminal tyrosine residues phosphorylated in vivo and weakly phosphorylated at the gag-encoded tyrosine and at a tyrosine site not detectably phosphorylated in vivo. Thus, the in vitro tyrosine phosphorylation of P140gag-fps is distinct from that seen in the transformed cell. A comparative tryptic phosphopeptide analysis of the gag-fps proteins of three Fujinami avian sarcoma virus variants showed that the phosphotyrosine-containing peptides are invariant, and this high degree of sequence conservation suggests that these sites are functionally important or lie within important regions. The P105gag-fps transforming protein of PRCII avian sarcoma virus lacks one of the C-terminal phosphotyrosine sites found in Fujinami avian sarcoma virus P140gag-fps. Partial trypsin cleavage of FSV P140gag-fps immunoprecipitated with anti-gag serum releases C-terminal fragments of 45K and 29K from the immune complex that retain an associated tyrosine-specific protein kinase activity. This observation, and the localization of the major P140gag-fps phosphorylation sites to the C-terminal fps region, indicate that the kinase domain of P140gag-fps is located at its C terminus. The phosphorylation of P140gag-fps itself is complex, suggesting that it may itself interact with several protein kinases in the transformed cell.  相似文献   

5.
Site-directed mutagenesis of the Fujinami sarcoma virus (FSV) genome has suggested that Tyr 1073 of the P130gag--fps protein-tyrosine kinase is a regulatory site. To investigate directly the ability of tyrosine phosphorylation to affect P130gag--fps kinase activity, the phosphotyrosyl phosphatase inhibitor orthovanadate and partially purified phosphotyrosyl phosphatases were used to manipulate the stoichiometry of P130gag--fps phosphorylation. Phosphorylation of P130gag--fps at Tyr 1073 correlated with enhanced kinase activity. The thermolabile phosphorylation, kinase activity and transforming ability of P140gag--fps encoded by a temperature-sensitive (ts)FSV variant were restored at the non-permissive temperature for transformation by incubation of infected cells with orthovanadate. In this case tyrosine phosphorylation can apparently functionally reactivate a conditionally defective v-fps kinase activity. These data suggest that reversible autophosphorylation at a conserved tyrosine within the v-fps kinase domain is a positive regulator of enzymatic activity and biological function. Phenotypic suppression of the tsFSV genetic defect by orthovanadate emphasizes the potential importance of phosphotyrosyl phosphatases in antagonizing tyrosine kinase action. It is suggested that autophosphorylation may constitute a molecular switch by which some protein-tyrosine kinases are activated.  相似文献   

6.
PRCII is an avian retrovirus whose oncogene (v-fps) induces fibrosarcomas in birds. The viral gene v-fps arose by transduction of an undetermined portion of a cellular gene known as c-fps. PRCII is weakly oncogenic when compared with Fujinami sarcoma virus, another transforming virus containing v-fps. As a first step in the elucidation of the molecular basis for the decreased virulence of PRCII, we have determined the entire nucleotide sequence of v-fps in the PRCII genome. The v-fps domain in PRCII encodes a polypeptide with a molecular weight of ca. 60,500 fused to a portion of the polyprotein encoded by the viral structural gene gag. The hybrid gag-fps polyprotein of PRCII would have a molecular weight of ca. 98,100, in accord with results of previous studies of the protein encoded by the PRCII genome. The leftward junctions between fps and gag in Fujinami sarcoma virus and PRCII are located at the same position in fps, but at different positions in gag. A sequence of 1,020 nucleotides, bounded by direct repeats of 6 nucleotides, is present in v-fps of Fujinami sarcoma virus but absent from PRCII. Our data should permit further explorations of the relationship between structure and function in the transforming protein encoded by v-fps.  相似文献   

7.
We analyzed linker insertion mutations throughout the 3' region of the v-fps gene of Fujinami sarcoma virus to identify tyrosine kinase transforming protein (P130gag-fps) determinants that are important for catalysis and transforming activity and, in particular, to define residues that participate in substrate selection. Mutations that encode kinase-active, transformation-defective v-fps alleles were recovered, defining sites in the transforming protein that may normally facilitate kinase-substrate interaction. Additionally, one region within the catalytic domain of the transforming protein (amino acid residues 1012 to 1020) that tolerates peptide insertions without loss of transforming activity was discovered, although the insertion mutations in this region of v-fps exhibited qualitatively abnormal transforming function. Transformed rat cell lines that express these mutations displayed unusual phenotypes, including giant cells and cells with an extremely fusiform shape. Furthermore, the insertion mutations in this region were temperature sensitive, transformed cells assumed a flat morphology, cellular protein phosphotyrosine was reduced, and the kinase activity of the transforming protein was decreased when cells were incubated at 40.5 degrees C. Point mutations that specify the ancestral chicken c-fps sequence in the insertion-tolerant region were also introduced into v-fps. These back mutations led to a modest decrease in kinase activity, decreased tumorigenic potential in chickens, and an unexpected increase in transforming activity in rat cells. These results indicate that the insertion-tolerant region of P130gag-fps influences the biologic activity and thermostability of the kinase.  相似文献   

8.
The P130gag-fps protein-tyrosine kinase of Fujinami sarcoma virus contains an N-terminal fps-specific domain (Nfps) that is important for oncogenicity. The N-terminal 14 amino acids of p60v-src, which direct myristylation and membrane association, can replace the gag-Nfps sequences of P130gag-fps (residues 1 to 635), producing a highly transforming src-fps polypeptide. Conversely, gag-Nfps can restore modest transforming activity to a nonmyristylated v-src polypeptide. These results emphasize the modular construction of protein-tyrosine kinases and indicate that Nfps, possibly in conjunction with gag, functions in the subcellular localization of P130gag-fps.  相似文献   

9.
A number of oncogenic viruses encode transforming proteins with protein kinase activities apparently specific for tyrosine residues. Recent evidence has raised questions as to the substrate specificity of these kinases in general and the physiological relevance of tyrosine phosphorylation in particular. The P130gag-fps transforming protein of Fujinami sarcoma virus (FSV) is strongly phosphorylated at 2 tyrosine residues in FSV-transformed cells of which 1 (Tyr-1073) is also the major site of P130gag-fps intermolecular autophosphorylation in vitro. We have investigated the specificity of the protein kinase activity intrinsic to FSV P130gag-fps by using site-directed mutagenesis to change the codon for Tyr-1073 to those for the other commonly phosphorylated hydroxyamino acids, serine and threonine. This approach has some advantages over the use of synthetic peptides to define protein kinase recognition sites in that the protein containing the altered target site can be expressed in intact cells. In addition it allows higher order as well as primary structure of the enzyme recognition site to be considered. Neither serine nor threonine were phosphorylated when substituted for tyrosine at position 1073 of P130gag-fps indicating a stringent specificity for tyrosine as a substrate of the P130gag-fps protein kinase autophosphorylating activity. Consistent with the suggestion that tyrosine phosphorylation is of functional significance we find that these and other FSV Tyr-1073 mutants have depressed enzymatic and oncogenic capacities.  相似文献   

10.
Two monoclonal antibodies have been obtained that recognize antigenic determinants within the C-terminal fps-encoded region of P140gag-fps, the transforming protein of Fujinami avian sarcoma virus (FSV). The hybridomas which secrete these antibodies (termed 88AG and p26C) were isolated after the fusion of NS-1 mouse myeloma cells with B lymphocytes from Fischer rats that had been immunized with FSV-transformed rat-1 cells. FSV P140gag-fps immunoprecipitated by either antibody is active as a tyrosine-specific kinase and is able to autophosphorylate and to phosphorylate enolase in vitro. The fps-encoded proteins of all FSV variants, including the gag- p91fps protein of F36 virus, are recognized by both monoclonal antibodies. However, the product of the avian cellular c-fps gene. NCP98, and the transforming proteins of the recently isolated fps-containing avian sarcoma viruses 16L and UR1 are recognized only by the p26C antibody. The 88AG antibody therefore defines an epitope specific for FSV fps, whereas the epitope for p26C is conserved between cellular and viral fps proteins. The P105gag-fps protein of the PRCII virus is not precipitated by p26C (nor by 88AG), presumably as a consequence of the deletion of N-terminal fps sequences. These data indicate that the fps-encoded peptide sequences of 16L P142gag-fps and UR1 P150gag-fps are more closely related to NCP98 than that of FSV P140gag-fps. This supports the view that 16L and UR1 viruses represent recent retroviral acquisitions of the c-fps oncogene. The P85gag-fes transforming protein of Snyder-Theilen feline sarcoma virus is not precipitated by either monoclonal antibody but is recognized by some antisera from FSV tumor-bearing rats, demonstrating that fps-specific antigenic determinants are conserved in fes-encoded proteins.  相似文献   

11.
UR2 is a newly characterized avian sarcoma virus whose genome contains a unique sequence that is not related to the sequences of other avian sarcoma virus transforming genes thus far identified. This unique sequence, termed ros, is fused to part of the viral gag gene. The product of the fused gag-ros gene of UR2 is a protein of 68,000 daltons (P68) immunoprecipitable by antiserum against viral gag proteins. In vitro translation of viral RNA and in vivo pulse-chase experiments showed that P68 is not synthesized as a large precursor and that it is the only protein product encoded in the UR2 genome, suggesting that it is involved in cell transformation by UR2. In vivo, P68 was phosphorylated at both serine and tyrosine residues. Immunoprecipitates of P68 with anti-gag antisera had a cyclic nucleotide-independent protein kinase activity that phosphorylated P68, rabbit immunoglobulin G in the immune complex, and alpha-casein. The phosphorylation by P68 was specific to tyrosine of the substrate proteins. P68 was phosphorylated in vitro at only one tyrosine site, and the tryptic phosphopeptide of in vitro-labeled P68 was different from those of Fujinami sarcoma virus P140 and avian sarcoma virus Y73-P90. A comparison of the protein kinases encoded by UR2, Rous sarcoma virus, Fujinami sarcoma virus, and avian sarcoma virus Y73 revealed that UR2-P68 protein kinase is distinct from the protein kinases encoded by those viruses by several criteria. Our results suggest that several different protein kinases encoded by viral transforming genes have the same functional specificity and cause essentially the same cellular alterations.  相似文献   

12.
The P130gag-fps transforming protein of Fujinami sarcoma virus (FSV) possesses tyrosine-specific protein kinase activity and autophosphorylates at Tyr-1073. Within the kinase domain of P130gag-fps is a putative ATP-binding site containing a lysine (Lys-950) homologous to lysine residues in cAMP-dependent protein kinase and p60v-src which bind the ATP analogue p-fluorosulfonylbenzoyl-5' adenosine. FSV mutants in which the codon for Lys-950 has been changed to codons for arginine or glycine encode metabolically stable but enzymatically defective proteins which are unable to effect neoplastic transformation. Kinase-defective P130gag-fps containing arginine at residue 950 was normally phosphorylated at serine residues in vivo suggesting that this amino acid substitution has a minimal effect on protein folding and processing. The inability of arginine to substitute for lysine at residue 950 suggests that the side chain of Lys-950 is essential for P130gag-fps catalytic activity, probably by virtue of a specific interaction with ATP at the phosphotransfer active site. Tyr-1073 of the Arg-950 P130gag-fps mutant protein was not significantly autophosphorylated either in vitro or in vivo, but could be phosphorylated in trans by enzymatically active P140gag-fps. These data indicate that Tyr-1073 can be modified by intermolecular autophosphorylation.  相似文献   

13.
G Weinmaster  M J Zoller  M Smith  E Hinze  T Pawson 《Cell》1984,37(2):559-568
The 130 kd transforming protein of Fujinami sarcoma virus (FSV P130gag -fps) possesses a tyrosine-specific protein kinase activity and is itself phosphorylated at several tyrosine and serine residues in FSV-transformed cells. We have used oligonucleotide-directed mutagenesis of the FSV genome to change the TAT codon for tyrosine (1073), the major site of P130gag -fps phosphorylation, to a TTT codon for phenylalanine that cannot be phosphorylated. This mutant FSV induces the transformation of rat-2 cells but with a long latent period as compared with wild-type FSV. The P130gag -fps protein encoded by the mutant retains the ability to phosphorylate tyrosine, but is five times less active as a kinase in vitro than wild-type FSV P130gag -fps. These data indicate that tyrosine phosphorylation stimulates the biochemical and biological activities of FSV P130gag -fps, and they set a precedent for the ability of this amino acid modification to modulate protein function.  相似文献   

14.
15.
A library of chicken genomic DNA was screened for sequences that could hybridize to a cloned DNA fragment containing the transforming gene (v-fps) of Fujinami sarcoma virus. In addition to c-fps, two unique chicken cellular DNA sequences were isolated that hybridized weakly to v-fps. These sequences hybridized with many other viral oncogenes encoding tyrosine kinases. Sequence analysis of the region where homology was detected revealed a region that is highly conserved among the tyrosine kinases both at the nucleotide and amino acid levels. Although we were unable to detect expression of either chicken cellular DNA sequence in a variety of avian tissues, the data suggest the existence of additional members of the tyrosine kinase gene family. Screening genomic libraries for sequences that hybridize weakly to functional regions of other genes may prove useful for the isolation and characterization of additional members of other gene families.  相似文献   

16.
We assayed phosphatidylinositol (PI) kinase (EC 2.7.1.67) activity in detergent extracts of nontransformed or virus-transformed cells. Nontransformed chicken embryo fibroblasts (CEF) contain PI kinase activity with an apparent specific activity of 20 pmol/min per mg of protein. This activity sedimented as a single peak with a molecular weight of approximately 60,000 in a glycerol gradient, although immunoprecipitation with anti-p60src sera showed that the PI kinase activity is distinct from p60c-src. Extracts from CEF transformed by Rous sarcoma virus, Fujinami sarcoma virus, or avian sarcoma virus UR2 showed no elevation of PI kinase activity over nontransformed CEF. Removal of the oncogene products from extracts by immunoprecipitation did not change the level of PI kinase activity in extracts, suggesting that putative virus-coded PI kinases do not make a significant contribution to overall levels of PI kinase activity in transformed cells. Additionally, P140gag-fps was separated from cellular PI kinase by phosphocellulose chromatography. This partially purified fraction contained low PI kinase activity distinct from P140gag-fps, indicating that P140gag-fps has no detectable PI kinase activity.  相似文献   

17.
Changing Glu-1025 to Asp in Fujinami sarcoma virus P130gag-fps made the protein temperature sensitive for transformation and protein-tyrosine kinase activity. Another mutant, Phe-1073 P130gag-fps, lacking the major autophosphorylation site, has an extended latent period for transformation (G. A. Weinmaster, M. J. Zoller, M. Smith, E. Hinze, and T. Pawson, Cell 37:559-568, 1984). By introducing the Asp-1025 lesion into Phe-1073 P130gag-fps, we showed that this mutant protein is required for the maintenance of the transformed phenotype of Phe-1073 P130gag-fps-expressing cells.  相似文献   

18.
Fujinami sarcoma virus (FSV) genome codes for the gag-fps fusion protein FSV-P130. The amino acid sequence of the 3' one-third portion in v-fps is partially homologous to the 3' half of pp60src, or the kinase domain, but the sequence of the 5' portion is unique to v-fps. To identify a possible domain structure in the v-fps sequence responsible for cell transformation, we constructed various deletion mutants of FSV with molecularly cloned viral DNA. Their transforming activities were assayed by measuring focus formation on chicken embryo fibroblasts and rat 3Y1 cells and tumor formation in chickens. The mutants carrying a deletion at the 3' portion in v-fps, the kinase domain, lost transforming activity. The mutants carrying an approximately 1-kilobase deletion within the 5' portion of the v-fps sequence retained focus-forming activity and tumorigenicity in the chicken system, but the efficiency of focus formation was about 10 times lower than that of the wild type. The morphology of these transformed cells was distinct from that observed in cells infected with wild-type FSV. Furthermore, these mutants could not transform rat 3Y1 cells, although wild-type FSV DNA transformed rat 3Y1 cells at a high frequency. The mutants carrying a larger deletion in the 5' portion of fps completely lacked the transforming activity. These results suggest that the 3' portion of the v-fps sequence is necessary but not sufficient for cell transformation and that the 5' portion of v-fps has a role in the transforming activity.  相似文献   

19.
Antibodies present in two peritoneal exudates of rats bearing abdominal tumors induced by UR2-transformed rat cells were characterized. The ability to immunoprecipitate p68gag-ros and to inhibit the protein and phospholipid kinase activities of this protein was investigated. One of the exudates specifically inhibited tyrosyl phosphorylation by p68gag-ros but not the activity of other known tyrosyl kinases, such as p150gag-fps of UR1 avian sarcoma virus, p60src, and the insulin receptor. It precipitated p68gag-ros but not Pr76 or other gag-related proteins from UR2-infected cells. Phosphorylation of phosphatidylinositol was not affected by this exudate, suggesting that this activity is not intrinsic to p68gag-ros. Another exudate precipitated p68gag-ros but not gag-related proteins from UR2-infected cells or p140gag-fps from Fujinami sarcoma virus-infected cells. These results demonstrated that the antibodies in these exudates recognized epitopes present in the ros portion of the fused protein p68gag-ros, but only one of the two exudates inhibited the intrinsic tyrosyl kinase of p68gag-ros.  相似文献   

20.
The biological and biochemical properties of the transformation-specific proteins of three avian oncornaviruses with different oncogenic potentials were compared, namely the gag-myc protein of the avian myelocytomatosis virus MC29, the gag-erb A protein of the avian erythroblastosis virus AEV, and the gag-fps protein of Fujinami sarcoma virus FSV. These oncogenes were analyzed in transformed fibroblasts that expressed only the transforming proteins but showed no virus replication. Monoclonal antibodies against the viral structural protein p19, which is the N-terminus of the proteins, were used for indirect immunofluorescence, for immunoprecipitation of the proteins from subcellular fractions, and for immunoaffinity column chromatography. With this last method a 3000-fold purification of the proteins was obtained. By indirect immunofluorescence it was shown that the gag-myc protein was located in the nucleus, and bound to DNA after purification. The gag-erb A protein was not nuclear but probably located in the cytoplasm and did not bind to DNA after purification. Neither of the two proteins exhibited protein kinase activity. In contrast, the gag-fps protein did not bind to DNA but showed protein kinase activity after purification. It was not located in the nucleus either.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号