首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein phosphokinase activity from a 0.5 M NaCl extract of purified porcine ovary nuclei has been resolved by Sephadex G-200 gel filtration into three forms of kinase, protein kinase I and III, both independent of adenosine 3':5'-monophosphate (cyclic AMP), and cyclic-AMP-dependent protein kinase II. Cyclic AMP-binding activity was associated with protein kinase II but not with protein kinases I and III. Protein kinases I, II, and III exhibited different cyclic nucleotide dependency and substrate specificity. Protein kinase II was inhibited by a heat-stable protein from rabbit skeletal muscle, whereas protein kinases I and III were not inhibited. According to previously established criteria [Traugh, J.A., Ashby, C.D. and Walsh, D.A. (1974) nuclear protein kinase II can be classified as cyclic-AMP-dependent protein kinase consisting of regulatory and catalytic subunits. Nuclear protein kinases I and III are cyclic-AMP-independent enzymes. Evidence for the identity of nuclear cyclic-AMP-dependent protein kinase II with cytosol (105 000 X g supernatant fraction) cyclic-AMP-dependent protein kinase was obtained in several ways. Nuclear and cytosol cyclic-AMP-dependent protein kinases exhibited identical elution characteristics on DEAE-cellulose and Sephadex G-200 indicating that both kinases are of similar molecular size and possess similar ionic charge. Both kinases exhibited an identical Km for ATP of 8 muM, showed similar substrate specificity, and revealed similar antigenic properties. Cyclic-AMP-dependent protein kinase II was also identified in nuclei isolated in nonaqueous media, eliminating the possibility that the cyclic-AMP-dependent protein kinase activity identified in nuclei isolated in aqueous media may have arisen as the result of cytoplasmic contamination. After incubation of neonatal porcine ovaries which lack nuclear cyclic-AMP-dependent protein kinase with 0.1 muM 8-p-chlorophenylthio cyclic AMP, considerable cyclic-AMP-dependent protein kinase II activity was identified in nuclei isolated in nonaqueous media. From these data it is concluded that the nuclear cyclic-AMP-dependent protein kinase II is related to or identical with the ovary cytoplasmic cyclic-AMP-dependent protein kinase, supporting the concept that nuclear cyclic-AMP-dependent protein kinase is of cytoplasmic origin.  相似文献   

2.
Whether or not various cytosolic protein kinases (and especially the type I cAMP-dependent protein kinase) of rat ventral prostate are specifically regulated with respect to total activity or specific activity by androgen has been investigated. Following androgen deprivation, the total activity per prostate of cAMP-dependent protein kinase (with histone as substrate) changed little at 24 h, declining by about 20% at 96 h. Under these conditions, its specific activity remained unaltered at 24 h, but was markedly enhanced at 96 h postorchiectomy. Type II cAMP-dependent protein kinase in rat ventral prostate cytosol was the only form of cAMP-dependent protein kinases present as determined by measurement of catalytic activity as well as [32P]-8-N3-cAMP binding to the regulatory subunits. There was no alteration in the distribution of the isoenzymes of cAMP-dependent protein kinases or the response of these kinase activities to cAMP owing to castration of animals. The prostatic cytosol also contains free regulatory subunit (with molecular weight similar to that of regulatory subunit R1) which coelutes with type II cAMP-dependent protein kinase. This finding was confirmed by using [32P]-8-N3-cAMP photoaffinity labeling of cAMP-binding proteins. With respect to cAMP-independent protein kinase (measured with dephosphophosvitin as substrate), a decline of 31% in its specific activity was observed in cytosol of prostates from rats castrated for a period of 24 h without significant further change at later periods following castration. However, there was a marked progressive reduction in total activity of this enzyme per prostate (loss of 72% at 96 h postorchiectomy). The increase in specific activity of cAMP-dependent, but not cAMP-independent, protein kinase in the face of decreasing total activity in the cytosol at later periods of castration (e.g., at 96 h) may reflect a slower loss of the former enzyme protein than the bulk of the cytosolic proteins. Administration of testosterone to castrated animals prevented these changes. These data do not indicate a specific regulation by steroid of the type I cAMP-dependent protein kinase in the prostate. Rather, the cAMP-independent protein kinase (with dephosphophosvitin as substrate) appears to be modulated by the androgenic status of the animal.  相似文献   

3.
We have measured nuclear protein kinase activity during the prereplicative phase of rat liver regeneration. Total nuclear protein kinase activity increased significantly 15-18 h after partial hepatectomy, with the peak of activity occurring at 16 h. DEAE-Sephacel chromatography resolved nuclear protein kinase activity into two cAMP-independent (Ib and II) and two cAMP-dependent (Ia and III) protein kinases. Sixteen h after partial hepatectomy, there was a marked increase in the activities of the nuclear cAMP-dependent protein kinases and a decrease in the activity of nuclear cAMP-independent protein kinase II. Characterization of the two nuclear cAMP-dependent protein kinases revealed them to be identical with the cytosolic type I and II isozymes. Immunotitration of nuclear catalytic subunit and densitometric analysis of autoradiographs from 8-azido-[32P]cAMP-labeled nuclear RI revealed increases in both subunits 16 h afer partial hepatectomy. Concomitantly with the observed increase in nuclear protein kinase activity, we have observed an increase in the phosphorylation of histone H1 subspecies. Administration of the beta-adrenergic antagonist DL-propranolol, which has been shown to cause delays of equal duration in both the second phase of increased intracellular cAMP levels and the initiation of DNA synthesis (MacManus, J. P., Braceland, B. M., Youdale, T., and Whitfield, J. F. (1973) J. Cell. Physiol. 82, 157-164), results in an equivalent delay of increased nuclear protein kinase activity. Colchicine, which has previously been shown to prevent the onset of DNA synthesis (Walker, P. R., and Whitfield, J. F. (1978) Proc. Natl. Acad. Sci. U. S. A. 75, 1394-1398), also prevents the increased protein kinase activity normally observed 16 h after partial hepatectomy. We conclude that the onset of DNA synthesis in the regenerating rat liver is preceded by a cAMP-mediated translocation of type I and type II cAMP-dependent protein kinase to the nucleus and phosphorylative modification of histone H1 subspecies. The inhibitory effects of propranolol and colchicine suggest a common cAMP-mediated, colchicine-sensitive link between protein kinase translocation and the initiation of DNA synthesis.  相似文献   

4.
Types I and II cyclic adenosine 3':5'-monophosphate (cAMP)-dependent protein kinases have been studied during the cell cycle of Chinese hamster ovary cells. Chinese hamster ovary cells were synchronized by selective detachment of mitotic cells from monolayer cultures. Protein kinases were separated by DEAE-cellulose chromatography and were similar to the types of cAMP-dependent protein kinases studied in skeletal muscle and in heart extracts. The total amount of protein kinases activity per cell was substantial, both in mitosis and at the G1/S boundary. During mitosis, the relatively high activity of protein kinase was due to a predominance of type I protein kinase. During early G1, the activity of type I protein kinase decreased and there was little detectable type II activity. A rapid increase in the activity of type II was evident at the G1/S boundary. The administration of puromycin (50 mug/ml) from 1 to 5 hours after selective detachment of mitotic cells abolished the activity of type II cAMP-dependent protein kinase seen at the G1/S border, but had no observable effect on the activity of type I protein kinase. The data presented demonstrate cell cycle-specific activity patterns of type I and type II protein kinase Type I protein kinase activity is high in mitosis and is constant throughout the cell cycle. Increased type II protein kinase activity seems to be related to the initiation of DNA synthesis in S phase. The data suggest a translational control of type II cAMP-dependent protein kinase activity.  相似文献   

5.
cAMP-dependent (designated as enzyme I, about 68,000 daltons) and cAMP-independent protein kinase (designated as enzyme II, about 45,000 daltons) have been partially purified from the nuclei of mouse spleen cells. Both kinases phosphorylated calf thymus histones as well as non-histone proteins (NHP) and required Mg2+ (8 mM) or Mn2+ (2 mM) for maximal activity. NEM (0.5 mM), which is an inhibitor of SH-enzymes, inhibited the histone phosphorylating activity of enzyme II by more than 90%, whereas it inhibited the activity of enzyme I by less than 10%. Moreover, the activity of enzyme II was more sensitive to high temperature than that of enzyme I. Non-histone protein (CM-III protein) served as a more effective substrate for enzyme II than histones; the Km value for CM-III protein was 34.4 micrograms/ml whereas that for histone H2a (14,300 daltons) was 155 micrograms/ml (1.08 x 10(-5) M). CM-III protein phosphorylation by enzyme II in vitro was greatly stimulated by the addition of dsDNA, but not by single-stranded DNA or bacterial ribosomal RNA. However, the phosphorylation of CM-III protein by enzyme I was less than 50% of that of histones, and there was no stimulatory effect. SDS-gel electrophoresis showed that two distinct NHPs (about 13,000 and 19,000 daltons) prepared from calf thymus chromatin were preferentially phosphorylated by enzyme II in vitro in the presence of dsDNA. This finding suggests that these two NHPs may be specific phosphate acceptors of cAMP-independent protein kinase (enzyme II) in the nuclei of mouse spleen cells.  相似文献   

6.
A thermostable inhibition of ATP-protein phosphotransferase (EC 2.7.1.37) (protein kinase) which is present in crude tissue extracts has been resolved by gel chromatography (Sephadex G-100) into two molecular forms. These two forms will be referred to as type I and type II inhibitor. The type I inhibitor (Mr approximately or equal to 24,000) is specific for cAMP-dependent protein kinase and corresponds to the inhibitor described earlier (Walsh, D. A., Ashby, C. D., Gonzalez, C., Calkins, D., Fisher, E. H., and Krebs, E. G. (1971) J. Biol. Chem. 246, 1977-1985). The type II inhibitor (Mr approximately or equal to 15,000) competes for the enzyme with various substrate proteins (histone, alpha-casein, and Leu-Arg-Arg-Ala-Ser-Leu-Gly (kemptide). The type II inhibitor blocks protein phosphorylation catalyzed by several types of protein kinases (cAMP- and cGMP-dependent or cyclic nucleotide-independent protein kinases). The type II inhibitor from rat brain has been purified 1500-fold; this protein is thermostable, has acidic characteristics, and does not require Ca2+ ions for its activity. Different ratios and concentrations of type I and type II inhibitors of protein kinase are found in rat skeletal muscle, pancreas, cerebellum and corpus striatum, and in lobster tail muscle.  相似文献   

7.
Rat liver soluble proteins were phosphorylated by endogenous protein kinase with [gamma-32P]ATP. Proteins were separated in dodecyl sulphate slab gels and detected with the aid of autoradiography. The relative role of cAMP-dependent, cAMP-independent and Ca2+-activated protein kinases in the phosphorylation of soluble proteins was investigated. Heat-stable inhibitor of cAMP-dependent protein kinase inhibits nearly completed the phosphorylation of seven proteins, including L-type pyruvate kinase. The phosphorylation of eight proteins is not influenced by protein kinase inhibitor. The phosphorylation of six proteins, including phosphorylase, is partially inhibited by protein kinase inhibitor. These results indicate that phosphoproteins of rat liver can be subdivided into three groups: phosphoproteins that are phosphorylated by (a) cAMP-dependent protein kinase or (b) cAMP-independent protein kinase; (c) phosphoproteins in which both cAMP-dependent and cAMP-independent protein kinase play a role in the phosphorylation. The relative phosphorylation rate of substrates for cAMP-dependent protein kinase is about 15-fold the phosphorylation rate of substrates for cAMP-independent protein kinase. The Km for ATP of cAMP-dependent protein kinase and phosphorylase kinase is 8 microM and 38 microM, respectively. Ca2+ in the micromolare range stimulates the phosphorylation of (a) phosphorylase, (b) a protein with molecular weight of 130 000 and (c) a protein with molecular weight of 15 000. The phosphate incorporation into a protein with molecular weight of 115 000 is inhibited by Ca2+. Phosphorylation of phosphorylase and the 15 000-Mr protein in the presence of 100 microM Ca2+ could be completely inhibited by trifluoperazine. It can be concluded that calmodulin is involved in the phosphorylation of at least two soluble proteins. No evidence for Ca2+-stimulated phosphorylation of subunits of glycolytic or gluconeogenic enzymes, including pyruvate kinase, was found. This indicates that it is unlikely that direct phosphorylation by Ca2+-dependent protein kinases is involved in the stimulation of gluconeogenesis by hormones that act through a cAMP-independent, Ca2+-dependent mechanism.  相似文献   

8.
Total protein kinase activity and the expression of the type I and type II cyclic adenosine 3′:5′-monophosphate-dependent protein kinases were studied in subcellular fractions of rat thymocytes and the effect of concanavalin A treatment on protein kinase activity was assessed. At a concentration of 100 μ/ml of concanavalin A a marked decline of total nuclear protein kinase activity occurred which lasted approximately 20 to 90 min. Concomitantly, a twofold increase of total protein kinase activity in the 900g supernatant fraction was observed which lasted from 5 to 30 min. Studies using the heat-stable protein kinase inhibitor revealed that the concanavalin A-mediated activity changes were primarily due to changes of cAMP-dependent protein kinase activity, whereas cAMP-independent protein kinase activity remained unchanged. Analysis of the type I and type II cAMP-dependent protein kinase isozyme pattern before and after concanavalin A treatment revealed a selective change of the relative expression of isozyme activities. Whereas type I protein kinase was the major nuclear isozyme before concanavalin A treatment, nuclear type II cAMP-dependent protein kinase increased markedly with a concomitant loss of type I isozyme expression. In the 900g supernatant fraction, containing primarily the type II isozyme in unstimulated cells, concanavalin A treatment caused an increase of the expression of the type I isozyme. The concanavalin A-mediated relative changes of cAMP-dependent protein kinase isozyme expression were confirmed by photoaffinity labeling of the regulatory subunits RI and RII before and after concanavalin A stimulation. The intracellular concanavalin A-mediated isozyme changes were time dependent, exhibiting maximal effects about 20 min after concanavalin A addition. These results indicate that selective regulation of intracellular cAMP-dependent protein kinase isozyme expression may be a mechanism related to isozyme-specific phosphorylation of specific intracellular substrates in concanavalin A-activated thymocytes.  相似文献   

9.
Three protein kinases (EC 2.7.1.37) were detected in Blepharisma and partially purified. The enzymes were most active with histone as substrate protein. The stability of the bond between phosphate and protein acceptor showed the characteristics of seryl- or threonylphosphate. Protein kinase I was solubilized by ultrasonication or freezing and thawing, while the enzymes II and III were readily solubilized by mild homogenization. Protein II and III were noticeably activated by cAMP and cGMP, while protein kinase I was inhibited by cAMP. Associated with protein kinase II and III activity was the ability to bind labeled cAMP. The following molecular weights were determined: 90000 for enzyme I, 280000 for enzyme II, and 95000 for enzyme III. Various apparent Michaelis constants were estimated.  相似文献   

10.
The hormonal regulation of adenylate cyclase, cAMP-dependent protein kinase activation, and adrenocorticotropic hormone (ACTH) secretion was studied in AtT20 mouse pituitary tumor cells. Corticotropin releasing factor (CRF) stimulated cAMP accumulation and ACTH release in these cells. Maximal ACTH release was seen with 30 nM CRF and was accompanied by a 2-fold rise in intracellular cAMP. When cells were incubated with both 30 nM CRF and 0.5 mM 3-methylisobutylxanthine (MIX) cAMP levels were increased 20-fold, however, ACTH release was not substantially increased beyond release seen with CRF alone. The activation profiles of cAMP-dependent protein kinases I and II were studied by measuring residual cAMP-dependent phosphotransferase activity associated with immunoprecipitated regulatory subunits of the kinases. Cells incubated with CRF in the absence of MIX showed concentration-dependent activation of protein kinase I which paralleled stimulation of ACTH release. Protein kinase II was minimally activated. When cells were exposed to CRF in the presence of 0.5 mM MIX there was still a preferential activation of protein kinase I, although 50% of the cytosolic protein kinase II was activated. Complete activation of both protein kinases I and II was seen when cells were incubated with 0.5 mM MIX and 10 microM forskolin. Under these conditions cAMP levels were elevated 80-fold. CRF, isoproterenol, and forskolin stimulated adenylate cyclase activity in isolated membranes prepared from AtT20 cells. CRF and isoproterenol stimulated cyclase activity up to 5-fold while forskolin stimulated cyclase activity up to 15-fold. Our data demonstrate that ACTH secretion from AtT20 cells is mediated by small changes in intracellular levels of cAMP and activation of only a small fraction of the total cytosolic cAMP-dependent protein kinase in these cells is required for maximal ACTH secretion.  相似文献   

11.
The human X chromosome-encoded protein kinase X (PrKX) belongs to the family of cAMP-dependent protein kinases. The catalytically active recombinant enzyme expressed in COS cells phosphorylates the heptapeptide Kemptide (LRRASLG) with a specific activity of 1.5 micromol/(min.mg). Using surface plasmon resonance, high affinity interactions were demonstrated with the regulatory subunit type I (RIalpha) of cAMP-dependent protein kinase (KD = 10 nM) and the heat-stable protein kinase inhibitor (KD = 15 nM), but not with the type II regulatory subunit (RIIalpha, KD = 2.3 microM) under physiological conditions. Kemptide and autophosphorylation activities of PrKX are strongly inhibited by the RIalpha subunit and by protein kinase inhibitor in vitro, but only weakly by the RIIalpha subunit. The inhibition by the RIalpha subunit is reversed by addition of nanomolar concentrations of cAMP (Ka = 40 nM), thus demonstrating that PrKX is a novel, type I cAMP-dependent protein kinase that is activated at lower cAMP concentrations than the holoenzyme with the Calpha subunit of cAMP-dependent protein kinase. Microinjection data clearly indicate that the type I R subunit but not type II binds to PrKX in vivo, preventing the translocation of PrKX to the nucleus in the absence of cAMP. The RIIalpha subunit is an excellent substrate for PrKX and is phosphorylated in vitro in a cAMP-independent manner. We discuss how PrKX can modulate the cAMP-mediated signal transduction pathway by preferential binding to the RIalpha subunit and by phosphorylating the RIIalpha subunit in the absence of cAMP.  相似文献   

12.
cAMP-dependent protein kinases have been characterized in parietal cells isolated from rabbit gastric mucosa. Both Type I and Type II cAMP-dependent protein kinase isozymes are present in these cells. Type II isozymes were detected in 900, 14,000, and 100,000 X g particulate fractions as well as 100,000 X g cytosolic fractions; Type I isozymes were found predominately in the cytosolic fraction. When parietal cells were stimulated with histamine, an agent that elevates intracellular cAMP content and initiates parietal cell HCl secretion, cAMP-dependent protein kinase activity was increased in homogenates of these cells as measured by an increase in the cAMP-dependent protein kinase activity ratio. Histamine activation of cAMP-dependent protein kinase was correlated with parietal cell acid secretory responses which were measured indirectly as increased cellular uptake of the weak base, [14C]aminopyrine. These results suggest that cAMP-dependent protein kinase(s) is involved in the control of parietal cell HCl secretion. The parietal cell response to histamine may be compartmentalized because histamine appears to activate only a cytosolic Type I cAMP-dependent protein kinase isozyme, as determined by three different techniques including 1) ion exchange chromatography; 2) Sephadex G-25 to remove cAMP and allow rapid reassociation of the Type II but not the Type I isozyme; and 3) 8-azido-[32P]cAMP photoaffinity labeling. Forskolin, an agent that directly stimulates adenylate cyclases, was found to activate both the Type I and Type II isozymes. Several cAMP-dependent protein kinases were also detected in parietal cell homogenates, including a Ca2+-phospholipid-sensitive or C kinase and two casein kinases which were tentatively identified as casein kinase I and II. At least two additional protein kinases with a preference for serine or lysine-rich histones, respectively, were also detected. The function of these enzymes in parietal cells remains to be shown.  相似文献   

13.
Protein kinase and cyclic adenosine 3′,5′-monophosphate (cAMP) binding activities have been detected in cell extracts of the dimorphic fungus Mucor rouxii. The subcellular distribution of both activities indicates that most of the binding protein is in the high-speed supernatant (S100), while about 70% of the total protein kinase activity remains in particulate fractions. S100 preparations have been analyzed by diethylaminoethyl cellulose column chromatography. Binding activity can be resolved in two peaks (A and B) and protein kinase in three peaks (I, II, and III). Peaks I and II are casein dependent and insensitive to cAMP. Peak III utilizes histone as substrate and is activated (two- to fourfold) by cAMP. Theophylline strongly inhibits cAMP binding activity and mimics the effect of cAMP on cAMP-dependent protein kinase. The possible relationship between cAMP binding activity and cAMP-dependent protein kinase is suggested.  相似文献   

14.
Two protein kinases have been partially purified from rabbit reticulocytes and shown to be activated by limited proteolysis with trypsin [S.M. Tahara and J.A. Traugh (1981) J. Biol. Chem. 256, 11558-11564; P.T. Tuazon, W.C. Merrick, and J.A. Traugh (1980) J. Biol. Chem. 255, 10954-10958]. Reticulocyte lysate was examined for protease activities which might be involved in activation of the protein kinases in vivo. Two neutral proteases, differentially activated by Fe2+ and Ca2+, were identified and partially purified. The Ca2+-stimulated protease specifically activated protease-activated kinase II; no effect was observed on protease-activated kinase I. The Fe2+-stimulated protease was not active on either protein kinase. The protease-activated kinases were examined using initiation factors (eIF) and 40-S ribosomal subunits as substrate. Protease-activated kinase I phosphorylated one subunit of eIF-3 (Mr 130000), eIF-4B and 40-S ribosomal protein S10. Protease-activated kinase II modified the beta subunit of eIF-2 (Mr 53000) and 40-S ribosomal protein S6. The substrate specificities are unique when compared with other cAMP-dependent and cAMP-independent protein kinases from reticulocytes.  相似文献   

15.
Two soluble cAMP-dependent protein kinases were purified from the cytoplasm of Paramecium tetraurelia. Both kinases consisted of a 40-kDa catalytic subunit and a 44-kDa regulatory subunit. The two forms of the enzyme were separated by anion-exchange chromatography. Affinity chromatography on cAMP-Sepharose separated the regulatory subunit (retained by the column) from the cAMP-independent catalytic subunit (not retained). Four classes of monoclonal antibodies were generated. One class was specific for the catalytic subunit of both cAMP-dependent protein kinases, and three classes recognized the regulatory subunit of both forms of the enzyme. Subunits of 40 and 44 kDa were detected on immunoblots of purified cilia and of crude cell extracts. In addition, one class of antibodies specific for the regulatory subunit detected a ciliary protein with a molecular mass of 48 kDa. The monoclonal antibodies did not recognize type I or type II cAMP-dependent protein kinase from rabbit muscle nor did they cross-react with proteins from several unicellular eucaryotes, with one exception: antibodies specific for the catalytic subunit recognized a 40-kDa protein of Tetrahymena pyriformis.  相似文献   

16.
Inhibition of casein kinase II by heparin   总被引:24,自引:0,他引:24  
Casein kinase II, a cyclic nucleotide-independent protein kinase from rabbit reticulocytes, was shown to be inhibited by heparin. Heparin specifically inhibited the enzyme and had no effect on other protein kinases, including casein kinase I, the type I and II cAMP-dependent protein kinases, protease-activated kinase I, and the hemin-controlled repressor. Heparan sulfate was found to be 40-fold less effective than heparin towards casein kinase II; other acid mucopolysaccharides had little or no effect on the enzymatic activity. Steady state studies revealed that heparin acted as a competitive inhibitor with respect to the substrate, casein. A value of 20 ng/ml or about 1.4 nM was obtained for the apparent Ki. The inhibition was not reversed by ATP and varying the ATP and heparin concentrations in the assay only altered the maximum velocity.  相似文献   

17.
The Leydig I-10 tumor cell line was synchronized by the double thymidine block method using 1.0 mM thymidine. Protein phosphokinase activity of subcellular fractions was determined at various times throughout the cell cycle. Microsomal cAMP-independent kinase activity increased in G2 and decreased during the S and G1 phases. Except for relatively small increases during the G1 and late S phases, microsomal cAMP-dependent kinase activity remained unchanged throughout most of the cycle. In the lysosomal-mitochondrial fraction, cAMP-dependent and cAMP-independent protein kinase activity increased during the S phase. Independent kinase activity peaked again during G1, while the dependent kinase became depressed. Phosphokinase activity increased in the nuclear fraction in late G2 and during mitosis, and was due to increases in both cAMP-independent and cAMP-dependent kinase activity. Cytosol cAMP-dependent kinase activity increased in G2 and during mitosis; cAMP-independent kinase activity showed some increased activity during late G2 and mitosis. These temporal variations in the subcellular kinase activities throughout the cell cycle may act to phosphorylate subcellular protein substrates in a cell cycle-specific fashion.  相似文献   

18.
Addition of calcium to calcium-deprived cultures of T51B rat liver cells caused brief bursts of cAMP production and cAMP-dependent protein kinase activity which were followed almost immediately by a stimulation of DNA synthesis. PKInh, a specific polypeptide inhibitor of the catalytic subunits of cAMP-dependent protein kinases, inhibited the DNA-synthetic response to calcium addition without stopping the preceding cAMP surge. Addition of cAMP to the calciumdeprived cultures increased protein kinase activity and stimulated DNA synthesis, both of which were inhibited by PKInh. DNA synthesis in these cultures was not stimulated by adding type I cAMP-dependent protein kinase holoenzyme to the calcium-deficient medium, but it was stimulated by type II cAMP-dependent protein kinase holoenzyme or the catalytic subunit from either type I or type II holoenzyme. The stimulatory actions of the type II holoenzyme or the catalytic subunits were inhibited by PKInh. Thus, a burst of cAMP-dependent protein kinase activity was ultimately responsible for the stimulation of DNA synthesis in calcium-deprived T51B cells by calcium or cAMP and it might also be involved in the events leading to initiation of DNA synthesis in many, if not all, normally cycling cells.  相似文献   

19.
The interaction between antibodies directed against RNA polymerase I purified from Morris hepatoma 3924A and homologous RNA polymerase II was investigated. The activity of partially purified polymerase II was inhibited by the antibodies. In contrast, the reaction catalyzed by the purified enzyme was not affected. Partially purified polymerase II preparations contained a protein kinase activity. Sucrose gradient centrifugation in the presence of 0.3 M KCl resulted in complete separation of RNA polymerase II from protein kinase as well as in complete loss of sensitivity to the anti-RNA polymerase I antibodies. The protein kinase possessed reaction characteristics similar to those of the NII protein kinase (Rose, K.M., Bell, L.E., Siefken, D.A. and Jacob, S.T. (1981) J. Biol. Chem. 256, 7468–7477) which is associated with hepatoma RNA polymerase I (Rose, K.M., Stetler, D.A. and Jacob, S.T. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2833–2837). The activities of both kinases were inhibited to the same extent by anti-RNA polymerase I antibodies and polypeptides of Mr 42000 and 25000, present in both kinase preparations, formed immune complexes with the antisera. Readdition of protein kinase NII to purified polymerase II resulted in phosphorylation of the polymerase and a concomitant enhancement of RNA synthesis. After addition of the kinase, RNA polymerase II activity was again sensitive to anti-RNA polymerase I antibodies. Upon reacting with protein kinase NII, RNA polymerase II polypeptides could be detected in immune complexes with anti-RNA polymerase I antibodies. These data indicate that protein kinase NII is associated with RNA polymerase II during early stages of purification and is at least partially responsible for the immunological cross-reactivity of RNA polymerases I and II.  相似文献   

20.
The phosphorylation of the intermediate filament protein vimentin was examined under in vitro conditions. Cell cytosol and Triton-insoluble cytoskeleton preparations from nonmitotic and mitotically selected mouse L-929 cells exhibited vimentin kinase activity that is apparently cAMP and Ca2+ independent. The level of vimentin kinase activity was greater in preparations from mitotically selected cells than nonmitotic cells. Addition of Ca2+ to mitotic cytosol decreased net vimentin phosphorylation. Dephosphorylation experiments indicated that there is phosphatase activity in these preparations which is stimulated by addition of Ca2+. Fractionation of cytosol from nonmitotic cells on DEAE-Sephacel and phosphocellulose revealed a single major vimentin kinase activity (peak I). Fractionation of cytosol from mitotically selected cells yielded a similar activity (peak I) and an additional vimentin kinase activity (peak II) that was not found in nonmitotic preparations. Based on substrate specificity and lack of inhibition to characteristic inhibitors, the semipurified peak I and II vimentin kinase activities appear to be cAMP-independent enzymes that are distinct from casein kinases I and II. Phosphopeptide mapping studies indicated that both peak I and peak II vimentin kinases phosphorylate tryptic peptides in the NH2-terminal region of vimentin that are phosphorylated in intact cells. Electron microscopic examination of reconstituted vimentin filaments phosphorylated with both semipurified kinases indicated that phosphorylation induced filament disassembly. These experiments indicate that the increased phosphorylation of vimentin during mitosis may be catalyzed by a discrete cAMP-independent protein kinase. In addition, preparations from mitotic cells exhibited a Ca2+-stimulated phosphatase activity, suggesting that Ca2+ may play a regulatory role in vimentin dephosphorylation during mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号