首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, sensitive and rapid spectrofluorimetric method was developed for the determination of esomeprazole (EMZ) and pantoprazole (PRZ) in their pharmaceutical formulations and human plasma. The proposed method is based on the fluorescence spectral behavior of EMZ in methanol in the presence of 0.1 m NaOH containing 0.5% methyl cellulose (MC) at 306/345 nm. The fluorescence intensity of EMZ was enhanced about 1.3‐fold and good linearity in the range 0.4–4.0 µg/mL with a lower detection limit of 0.04 µg/mL and lower quantification limit of 0.14 µg/mL. For PRZ, its methanolic solution exhibited marked native fluorescence at 290/325 nm after enhancement (about 2.1‐ or 1.4‐fold) using either 0.025% sodium dodecyl sulfate (SDS) or 0.05% MC in the presence of 0.2 m borate buffer of pH 9.5. The fluorescence–concentration plots of PRZ were rectilinear over the ranges 0.2–2.0 and 0.3–3.0 µg/mL with lower detection limits of 0.02 and 0.03 µg/mL and lower quantification limits of 0.07 and 0.09 µg/mL using sodium dodecyl sulfate and MC, respectively. The method was successfully applied to the analysis of EMZ and PRZ in their commercial dosage forms and the results were in good agreement with those obtained with the comparison method. Furthermore, in a preliminary investigation, the proposed method was extended to the in vitro determination of the two drugs in spiked human plasma and the results were satisfactory. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A rapid, simple, accurate and highly sensitive spectrofluorimetric method was developed for the simultaneous analysis of nebivolol hydrochloride (NEB) and amlodipine besylate (AML). The method was based on measuring the synchronous fluorescence intensity of the drugs at Δλ = 40 nm in methanol. Various experimental parameters affecting the synchronous fluorescence of the studied drugs were carefully studied and optimized. The calibration plots were rectilinear over concentration ranges of 0.05–1.5 µg/mL and 0.5–10 µg/mL for NEB and AML with limits of detection (LOD) of 0.010 and 0.051 µg/mL and limits of quantitation (LOQ) of 0.031 and 0.156, respectively. The peak amplitudes (2D) of the second derivative synchronous fluorimetry (SDSF) were estimated at 282 nm for NEB and at 393 nm for AML. Good linearity was obtained over the concentration ranges. The proposed method was successfully applied to the determination of the studied compounds in laboratory‐prepared mixtures, commercial single and laboratory‐prepared tablets. The results were in good agreement with those obtained using the comparison method. The mean percent recoveries were found to be 100.12 ± 0.77 and 99.91 ± 0.77 for NEB and AML, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A highly sensitive, simple and rapid spectrofluorimetric method was developed for the determination of Amlexanox (AMX) in its bioadhesive buccal tablets. The proposed method is based on measuring the native fluorescence of the methanolic solution of AMX at 400 nm after excitation at 242 nm in 0.2 M borate buffer (pH 10) and 0.5% w/v sodium dodecyl sulfate (SDS) solution. The interaction of AMX with SDS was studied, and the enhanced fluorescence intensity was exploited to develop an assay method for the determination of AMX. The relative fluorescence intensity–concentration plot was rectilinear over the range 5.0–80.0 ng/mL, with a lower detection limit of 0.57 ng/mL and a lower quantification limit of 1.74 ng/mL. The proposed method was successfully applied to the analysis of AMX in its commercial tablets. Moreover, content uniformity testing was conducted by applying official USP guidelines. Statistical evaluation and comparison of the data obtained using the proposed and comparison methods revealed good accuracy and precision for the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A highly sensitive and simple spectrofluorimetric method was developed for the determination of loratadine (LRT) and desloratadine (DSL) in their pharmaceutical formulations. The proposed method is based on investigation of the fluorescence spectral behaviour of LRT and DSL in a sodium dodecyl sulphate (SDS) micellar system. In aqueous solution of acetate buffer of pH 4.5, the fluorescence intensities of both LRT and DSL were greatly enhanced (240%) in the presence of SDS. The fluorescence intensity was measured at 438 nm after excitation at 290 nm for both drugs. The fluorescence–concentration plots were rectilinear over the range 0.05–2.0 µg/mL for both LRT and DSL, with lower detection limits of 5.13 × 10?3 and 6.35 × 10?3 µg/mL for LRT and DSL, respectively. The method was successfully applied to the analysis of the two drugs in their commercial tablets, capsules and syrups, and the results were in good agreement with those obtained with the official or comparison methods. The proposed method is specific for the determination of LRT in the presence of other co‐formulated drugs, such as pseudoephedrine. The application of the proposed method was extended to stability studies of LRT and DSL after exposure to different forced degradation conditions, such as acidic, alkaline and oxidative conditions, according to ICH guidelines. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A new, specific and sensitive reversed‐phase high‐performance liquid chromatography method was developed for the simultaneous determination of metolazone (MET) and losartan potassium (LOS). Good chromatographic separation was achieved within 6.0 min on a 150 × 4.6 mm i.d., 5 µm Waters, Ireland and ProDIGY 5 ODS 3 100 A column. A mobile phase containing a mixture of methanol and 0.02 M phosphate buffer (65:35, v/v) at pH 3.0 was used. The analysis was performed at a flow rate of 1 mL/min with fluorescence detection at 410 nm after excitation at 230 nm. Aspirin (ASP) was used as an internal standard. The proposed method was rectilinear over 2.0–40.0 (MET) and 40.0–800.0 ng/mL (LOS), with limits of detection of 0.22 and 4.52 ng/mL and limits of quantification of 0.68 and 13.70 ng/mL for MET and LOS, respectively. The method was successfully applied for the simultaneous analysis of the studied drugs in their laboratory‐prepared mixtures, single tablets and co‐formulated tablets. Moreover, the method was applied to an in vitro drug release (dissolution) test. The method was further extended to the determination of LOS in spiked human plasma. Statistical evaluation and comparison of data obtained using the proposed and comparison methods revealed no significant difference between the two methods in addition to good accuracy and precision for the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A rapid, simple, and sensitive second‐derivative synchronous fluorimetric method has been developed and validated for the simultaneous analysis of a binary mixture of desloratadine (DSL) and montelukast sodium (MKT) in their co‐formulated tablets. The method is based on measurement of the synchronous fluorescence intensities of the two drugs in McIlvaine's buffer, pH 2.3, in the presence of carboxy methyl cellulose sodium (CMC) as a fluorescence enhancer at a constant wavelength difference (Δλ) of 160 nm. The presence of CMC enhanced the synchronous fluorescence intensity of DSL by 216% and that of MKT by 28%. A linear dependence of the concentration on the amplitude of the second derivative synchronous fluorescence spectra was achieved over the ranges of 0.10–2.00 and 0.20–2.00 µg/mL with limits of detection of 0.02 and 0.03, and limits of quantification of 0.05 and 0.10 µg/mL for DSL and MKT, respectively. The proposed method was successfully applied for the determination of the studied compounds in laboratory‐prepared mixtures and tablets. The results were in good agreement with those obtained with the comparison method. The high sensitivity attained by the proposed method allowed the determination of MKT in spiked human plasma with average % recovery of 100.11 ± 2.44 (n = 3). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A new combination of ibuprofen (NSAID) and famotidine (H2 receptor antagonist) was recently approved by the FDA. It was formulated to relief pain while decreasing the risk of ulceration, which is a common problem for patients receiving NSAID. A rapid and simple derivative emission spectrofluorimetric method is proposed for the simultaneous analysis of this combination in their pharmaceutical preparation. The method is based upon measurement of the native fluorescence intensity of the two drugs at λex = 233 nm in acetonitrile. The emission data were differentiated using the first (D1) derivative technique. The plots of derivative fluorescence intensity versus concentration were rectilinear over a range of 2–35 and 0.4–8 µg/mL for both ibuprofen (IBU) and famotidine (FAM), respectively. The method was sensitive as the limits of detection were 0.51 and 0.12 µg/mL and limits of quantitation were 1.70 and 0.39 µg/mL, for IBU and FAM respectively. The proposed derivative emission spectrofluorimetric method was successfully applied for the determination of the two drugs in their synthetic mixtures and tablets with good accuracy and precision. The proposed method was validated as per ICH guidelines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A highly sensitive, simple and rapid spectrofluorimetric method was developed for the determination of lacidipine (LCP) in tablets. The proposed method is based on the investigation of the fluorescence spectral behavior of LCP in both sodium dodecyl sulphate (SDS) and the tween‐80 micellar system. In aqueous solutions of acetate buffer (pH 4.5), the fluorescence intensities of LCP were greatly enhanced (ca. 2.4 and 4.3 folds) in the presence of either SDS or tween‐80, respectively. The fluorescence intensity was measured at 444 nm after excitation at 277 nm using either SDS or tween‐80 as a surfactant. The fluorescence–concentration plots were rectilinear over the ranges of 50.0–500.0 ng/ml and 5.0–200.0 ng/ml with lower detection limits of 5.11 and 2.06 ng/ml and lower quantification limits of 17 and 6.87 ng/ml using SDS and tween‐80, respectively. The method was successfully applied to the analysis of LCP in commercial tablets and the results were in good agreement with those obtained with the comparison method. Furthermore, content uniformity testing of pharmaceutical tablets was also conducted. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
M. M. Tolba 《Luminescence》2014,29(7):738-748
A simple and sensitive high‐performance liquid chromatography method was developed and validated for the determination of calcium dobesilate (DOB) or ethamsylate (ETM) in the presence of their degradation product, hydroquinone (HQ). The analyses were carried out on Promosil C18 column (4.6 mm × 250 mm, 5 µm particle size) using an ion‐pair mobile phase consisting of methanol–1.5 mm tetra‐butyl ammonium bromide in 0.06 m phosphate buffer (25 : 75, v/v) at pH 6.0 with fluorescence detection at 286/333 nm. Pindolol was used as an internal standard. The proposed method was found to be rectilinear over the concentration ranges of 0.05–0.5 µg/mL for DOB, 0.1–0.8 µg/mL for ETM and 0.005–0.1 µg/mL for HQ. The method was applied for the determination of the studied drugs in different dosage forms and biological fluids. The results of the proposed method were statistically compared with those obtained by the comparison methods revealing no significance differences in the performance of the methods regarding accuracy and precision. Moreover, applying a time‐programmed fluorescence technique was valuable for the detection of trace amounts of HQ as an impurity and allowed purity testing of ETM or DOB within the BP pharmacopeial limit (0.1%). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Water‐soluble thioglycolic acid (TGA)‐capped core/shell CdTe/CdS quantum dots (QDs) were synthesized. The interactions of rhein and emodin with TGA‐CdTe/CdS QDs were evaluated by fluorescence and ultraviolet‐visible absorption spectroscopy. Experimental results showed that the high fluorescence intensity of TGA‐CdTe/CdS QDs could be effectively quenched in the presence of rhein (or emodin) at 570 nm, which may have resulted from an electron transfer process from excited TGA‐CdTe/CdS QDs to rhein (or emodin). The quenching intensity was in proportion to the concentration of both rhein and emodin in a certain range. Under optimized conditions, the linear ranges of TGA‐CdTe/CdS QDs fluorescence intensity versus the concentration of rhein and emodin were 0.09650–60 µg/mL and 0.1175–70 µg/mL with a correlation coefficient of 0.9984 and 0.9965, respectively. The corresponding detection limits (3σ/S) of rhein and emodin were 28.9 and 35.2 ng/mL, respectively. This proposed method was applied to determine rhein and emodin in human urine samples successfully with remarkable advantages such as high sensitivity, short analysis time, low cost and easy operation. Based on this, a simple, rapid and highly sensitive method to determine rhein (or emodin) was proposed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Two simple, selective and accurate methods were developed and validated for the determination of brimonidine tartrate (BT) in pure state and pharmaceutical formulations. Both methods are based on the coupling of the drug with 4‐chloro‐7‐nitro‐2,1,3‐benzoxadiazole in borate buffer (pH 8.5) at 70 °C and measurement of the reaction product spectrophotometrically at 407 nm (method I) or spectrofluorimetrically at 528 nm upon excitation at 460 nm (method II). The calibration graphs were rectilinear over the concentration ranges of 1.0–16.0 and 0.1–4.0 µg/mL with lower detection limits of 0.21 and 0.03, and lower quantification limits of 0.65 and 0.09 µg/mL for methods I and II, respectively. Both methods were successfully applied to the analysis of commercial ophthalmic solution with mean recovery of 99.50 ± 1.00 and 100.13 ± 0.71%, respectively. Statistical analysis of the results obtained by the proposed methods revealed good agreement with those obtained using a comparison method. The proposed spectrofluorimetric method was extended to a stability study of BT under different ICH‐outlined conditions such as alkaline, acidic, oxidative and photolytic degradation. Furthermore, the kinetics of oxidative degradation of the drug was investigated and the apparent first‐order reaction rate constants, half‐life times and Arrhenius equation were estimated. The proposed methods are practical and valuable for routine applications in quality control laboratories for the analysis of BT. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A novel method for the determination of proteins was developed, based on the enhancement of fluorescence with 4‐chloro‐(2′‐hydroxylophenylazo)rhodanine–Ti(IV) [ClHARP–Ti(IV)] complex as a fluorescence probe. The excitation and emission wavelengths of the system were 335 nm and 376 nm, respectively. The presence of bis(2‐ethylhexyl)sulphosuccinate sodium salt (AOT) microemulsion greatly increased the sensitivity of the system. Under optimal conditions, four kinds of proteins, including bovine serum albumin (BSA), human serum albumin (HSA), egg albumin (Ova), and γ‐globin (γ‐G) were studied. The detection limits were 0.182 µg/mL for BSA, 0.0788 µg/mL for HSA, 0.216 µg/mL for Ova and 0.484 µg/mL for γ‐G. The linear ranges of the calibration were 0–12.0, 0–10.0, 0–18.0 and 0–18.0 µg/mL, respectively. The method possessed high sensitivity, good selectivity and was applied to the analysis of protein in milk powder and cornmeal with satisfactory results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A simple and sensitive spectrofluorimetric method has been developed and validated for the determination of oseltamivir phosphate (OST) in pharmaceutical preparations. The method is based on the reaction between oseltamivir phosphate and o‐phthalaldehyde in presence of 2‐mercapto‐ethanol in borate buffer, pH 10.8, to give a highly fluorescent product measured at 450 nm after excitation at 336 nm. The different experimental parameters affecting the development and stability of the reaction product were studied and optimized. The fluorescence intensity–concentration plot is rectilinear over the range 0.05–1.0 µg/mL, with a lower detection limit of 5 ng/mL and limit of quantitation of 16 ng/mL. The developed method was successfully applied to the analysis of the drug in its commercial capsules and suspension, mean recoveries of OST were 99.97 ± 1.67% and 100.17 ± 1.18%, respectively (n = 3). Statistical comparison of the results obtained by the proposed and comparison method revealed no significant difference in the performance of the two methods regarding accuracy and precision. The proposed method was further extended to in vitro determination of the studied drug in spiked human plasma as a preliminary investigation; the mean recovery (n = 3) was 98.68 ± 5.8%. A reaction pathway was postulated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In pH 5.0–5.4 HAc–NaAc buffer solution, lincomycin (Linco) reacted with Pd(II) to form 1:1 cationic chelate, which could further react with erythrosine (Ery) to form 1:1 ion‐association complexes (Pd–Linco)Ery. As a result, not only were the absorption and fluorescence spectra changed, but also the resonance Rayleigh scattering (RRS) intensity was greatly enhanced. These phenomena offered useful means for the determination of Linco by spectrophotometry, fluorescence and RRS methods. The linear range and detection limit of Linco were 0.20–3.00 µg/mL and 0.057 µg/mL, 0.20–4.80 µg/mL and 0.061 µg/mL, 0.05–2.70 µg/mL and 0.015 µg/mL for the spectrophotometric, fluorescence quenching and RRS methods, respectively. Among these, the RRS method obtained the highest sensitivity. Therefore, the optimum reaction conditions and the influences of coexisting substances were investigated using the RRS method. A simple, sensitive and rapid method has been developed for the determination of Linco in either the pharmaceutical form or human body fluids, and the reasons for RRS enhancement are discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Rapid, simple and sensitive derivative emission spectrofluorimetric methods have been developed for the simultaneous analysis of binary mixtures of guaifenesin (GUA) and phenylephrine hydrochloride (PHE). The methods are based upon measurement of the native fluorescence intensity of the two drugs at λex = 275 nm in methanolic solutions, followed by differentiation using first (D1) and second (D2) derivative techniques. The derivative fluorescence intensity–concentration plots were rectilinear over a range of 0.1–2 µg/mL for both GUA and PHE. The limits of detection were 0.027 (D1, GUA), 0.025 (D2, GUA), 0.031 (D1, PHE) and 0.033 (D2, PHE) µg/mL and limits of quantitation were 0.089 (D1, GUA), 0.083 (D2, GUA), 0.095 (D1, PHE) and 0.097 (D2, PHE) µg/mL. The proposed derivative emission spectrofluorimetric methods (D1 and D2) were successfully applied for the determination of the two compounds in binary mixtures and tablets with high precision and accuracy. The proposed methods were fully validated as per ICH guidelines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A simple, rapid and highly sensitive spectrofluorimetric method was developed for determination of gemifloxacin mesylate (GFX) in tablets. The method is based on measuring the native fluorescence of GFX in isopropanol at 400 nm after excitation at 272 nm. The fluorescence–concentration plot was rectilinear over the range of 0.01–0.50 µg/mL with a lower detection limit of 1.19 ng/mL and quantification limit of 3.6 ng/mL. The method was fully validated and successfully applied to the determination of GFX tablets with an average percentage recovery of 99.65 ± 0.532. The method was extended to the stability study of GFX. The drug was exposed to acidic, alkaline, oxidative and photolytic degradation according to International Conference on Harmonization guidelines. The rate of GFX degradation was found at its highest in acidic conditions, and in its lowest in the neutral one. However, it was stable under dry heat and photolytic degradation conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Amlodipine besylate (AML) is available in fixed‐dose combination tablets with either candesartan cilexetil (CAN) or telmisartan (TEL). This work describes a simple, selective and sensitive spectrofluorimetric method for analysis of AML/CAN and AML/TEL binary mixtures without prior separation. The method involves measurement of the native fluorescence of AML at excitation and emission wavelengths of 367 and 454 nm, respectively, in water without interference from either of the two drugs. By contrast, the intrinsic fluorescence of CAN was measured at excitation and emission wavelengths of 265 and 392 nm, respectively, in ethanol, while TEL was measured at 366 nm in 0.05 M sodium hydroxide solution using 294 nm as the excitation wavelength. The proposed spectrofluorimetric procedure was validated with respect to linearity, ranges, precision, accuracy, selectivity, robustness, detection and quantification limits. Regression analysis showed a good correlation between fluorescence intensity and concentration over the ranges 0.1–1.4, 0.025–0.25 and 0.0025–0.05 µg/mL for AML, CAN and TEL, respectively. Limits of detection were 0.034, 0.0063 and 0.0007 µg/mL for AML, CAN and TEL, respectively. The proposed method was successfully applied for the analysis of several synthetic binary mixtures of different ratios and laboratory‐prepared tablets with good recoveries, and no interference from common pharmaceutical additives was observed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A simple and rapid liquid chromatographic method was developed and validated for the determination of triclabendazole with high accuracy and precision within 6 min. Good chromatographic separation was achieved using a CLC Shim‐pack C8 (250 × 4.6 mm, 5 µm particle size) using the mobile phase containing a mixture of 0.02 m phosphate buffer and methanol with a ratio of (20 : 80 v/v) at pH 4.0 was pumped at a flow rate of 1.2 mL/min with fluorescence detection for the first time at 338 nm after excitation at 298 nm. Losartan potassium was used as an internal standard. The method showed good linearity in the ranges of 0.05–2.0 µg/mL with limits of detection and quantification of 14.1 and 42.6 ng/mL, respectively. The suggested method was successfully applied for the analysis of triclabendazole in tablets. The high sensitivity of the method enabled the determination of the studied drug in spiked human plasma with mean percentage of recoveries of 99.79 ± 5.09. Statistical evaluation of the data was performed according to ICH Guidelines. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A novel, quick, simple and highly sensitive spectrofluorimetric method was developed and validated for the determination of sitagliptin (SG) in its pharmaceutical formulations. The proposed method is based on investigation of the fluorescence spectral behavior of sitagliptin in an SDS micellar system. In an aqueous solution of phosphate buffer pH 4.0, the fluorescence intensity of SG in the presence of SDS was greatly enhanced, by 200%, i.e. twofold enhancement. The fluorescence intensity of SG was measured at 300 nm after excitation at 270 nm. The method showed good linearity in the range 0.03–10.0 µg/mL with a good correlation coefficient (r = 0.9998). The limits of detection and quantitation values were 5.31 and 16.1 ng/mL, respectively. The proposed method was successfully applied to the analysis of SG in its single and co‐formulated commercial tablets; the results were in good agreement with those obtained using a reference method. Application of the proposed method was extended to stability studies of SG after exposure to different forced degradation conditions according to the ICH guidelines, such as acidic, alkaline, thermal, photo‐ and oxidative stress. The chemical structure of certain potential degradation products (DPs) were investigated using LC‐MS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A new simple, rapid and sensitive reversed‐phase liquid chromatographic method was developed and validated for the simultaneous determination of methocarbamol (MET) and aspirin (ASP) in their combined dosage form. The separation of these compounds was achieved within 6.0 min on a CLC Shim‐pack C8 column (250 × 4.6 mm, 5 µm particle size) using isocratic mobile phase consisting of acetonitrile and 0.02 M dihydrogenphosphate buffer (30:70, v/v) at pH = 5.0. The analysis was performed at a flow rate of 1.0 mL/min with fluorescence detection at 277/313 nm for MET and 298/410 nm for ASP using real‐time programming. The selectivity, linearity of calibration, accuracy, inter‐ and intra‐day precision and recovery were examined as parts of the method validation. The concentration–response relationship was linear over concentration ranges of 0.02‐0.20 and 0.02‐0.40 µg/mL for MET and ASP, respectively, with a limit of detection of 6 and 32 ng/mL for MET and ASP, respectively. The proposed method was successfully applied for the analysis of both MET and ASP in prepared tablets with average recoveries of 99.88 ± 0.65% for MET and 100.44 ± 0.78% for ASP. The results were favourably compared to those obtained by a reference method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号