首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic periodontitis has a polymicrobial biofilm aetiology and interactions between key bacterial species are strongly implicated as contributing to disease progression. Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia have all been implicated as playing roles in disease progression. P. gingivalis cell-surface-located protease/adhesins, the gingipains, have been suggested to be involved in its interactions with several other bacterial species. The aims of this study were to determine polymicrobial biofilm formation by P. gingivalis, T. denticola and T. forsythia, as well as the role of P. gingivalis gingipains in biofilm formation by using a gingipain null triple mutant. To determine homotypic and polymicrobial biofilm formation a flow cell system was employed and the biofilms imaged and quantified by fluorescent in situ hybridization using DNA species-specific probes and confocal scanning laser microscopy imaging. Of the three species, only P. gingivalis and T. denticola formed mature, homotypic biofilms, and a strong synergy was observed between P. gingivalis and T. denticola in polymicrobial biofilm formation. This synergy was demonstrated by significant increases in biovolume, average biofilm thickness and maximum biofilm thickness of both species. In addition there was a morphological change of T. denticola in polymicrobial biofilms when compared with homotypic biofilms, suggesting reduced motility in homotypic biofilms. P. gingivalis gingipains were shown to play an essential role in synergistic polymicrobial biofilm formation with T. denticola.  相似文献   

2.
The anaerobic Gram-negative bacterium Porphyromonas gingivalis is considered the keystone of periodontitis diseases, a set of inflammatory conditions that affects the tissues surrounding the teeth. In the recent years, the major virulence factors exploited by P. gingivalis have been identified and characterized, including a cocktail of toxins, mainly proteases called gingipains, which promote gingival tissue invasion. These effectors use the Sec pathway to cross the inner membrane and are then recruited and transported across the outer membrane by the type IX secretion system (T9SS). In P. gingivalis, most secreted effectors are attached to anionic lipopolysaccharides (A-LPS), and hence form a virulence coat at the cell surface. P. gingivalis produces additional virulence factors to evade host immune responses, such as capsular polysaccharide, fimbriae and outer membrane vesicles. In addition to periodontitis, it is proposed that this broad repertoire of virulence factors enable P. gingivalis to be involved in diverse human diseases such as rheumatoid arthritis, and neurodegenerative, Alzheimer, and cardiovascular disorders. Here, we review the major virulence determinants of P. gingivalis and discuss future directions to better understand their mechanisms of action.  相似文献   

3.
Tannerella forsythia is considered a pathogen of periodontitis and forms a biofilm with multi-species bacteria in oral cavity. Lipopolysaccharide is a powerful immunostimulator and induces inflammation and shock. The purpose of this study was to investigate the characteristics of T. forsythia LPS in its co-cultivation with Fusobacterium nucleatum or Porphyromonas gingivalis. T. forsythia was co-cultured in the presence and absence of F. nucleatum and P. gingivalis and then T. forsythia LPS was extracted. The extracts were analyzed by SDS-PAGE and NF-κB reporter CHO cell lines. THP-1 cells were treated with the LPS and evaluated induction of cytokine expression by real-time RT-PCR and ELISA. For analysis of the bioactivity of T. forsythia LPS, the binding assay on LPS-binding protein (LBP) and CD14 was processed. The extracts did not contaminate other molecules except LPS and showed TLR4 agonists. Co-cultured T. forsythia LPS with P. gingivalis exhibited a lower level of induction of TNF-α, IL-1β, and IL-6 expression than singleor co-cultured T. forsythia LPS with F. nucleatum in the conditions of human serum. However, the three T. forsythia LPS did not show difference of cytokine induction in the serum free conditions. Co-cultured T. forsythia LPS with P. gingivalis exhibited a lower affinity to LBP and CD14 as binding site of O-antigen and attached at a lower level to THP-1 cells compared to single- or co-cultured T. forsythia LPS with F. nucleatum. The virulence of T. forsythia LPS was decreased by co-culturing with P. gingivalis and their affinity to LBP and CD14 was reduced, which may due to modification of O-antigen chain by P. gingivalis.  相似文献   

4.
Periodontal disease (PD) and atherosclerosis are both polymicrobial and multifactorial and although observational studies supported the association, the causative relationship between these two diseases is not yet established. Polymicrobial infection-induced periodontal disease is postulated to accelerate atherosclerotic plaque growth by enhancing atherosclerotic risk factors of orally infected Apolipoprotein E deficient (ApoEnull) mice. At 16 weeks of infection, samples of blood, mandible, maxilla, aorta, heart, spleen, and liver were collected, analyzed for bacterial genomic DNA, immune response, inflammation, alveolar bone loss, serum inflammatory marker, atherosclerosis risk factors, and aortic atherosclerosis. PCR analysis of polymicrobial-infected (Porphyromonas gingivalis [P. gingivalis], Treponema denticola [T. denticola], and Tannerella forsythia [T. forsythia]) mice resulted in detection of bacterial genomic DNA in oral plaque samples indicating colonization of the oral cavity by all three species. Fluorescent in situ hybridization detected P. gingivalis and T. denticola within gingival tissues of infected mice and morphometric analysis showed an increase in palatal alveolar bone loss (p<0.0001) and intrabony defects suggesting development of periodontal disease in this model. Polymicrobial-infected mice also showed an increase in aortic plaque area (p<0.05) with macrophage accumulation, enhanced serum amyloid A, and increased serum cholesterol and triglycerides. A systemic infection was indicated by the detection of bacterial genomic DNA in the aorta and liver of infected mice and elevated levels of bacterial specific IgG antibodies (p<0.0001). This study was a unique effort to understand the effects of a polymicrobial infection with P. gingivalis, T. denticola and T. forsythia on periodontal disease and associated atherosclerosis in ApoEnull mice.  相似文献   

5.
The oral microbiome plays a key role for caries, periodontitis, and systemic diseases. A method for rapid, high-resolution, robust taxonomic profiling of subgingival bacterial communities for early detection of periodontitis biomarkers would therefore be a useful tool for individualized medicine. Here, we used Illumina sequencing of the V1-V2 and V5-V6 hypervariable regions of the 16S rRNA gene. A sample stratification pipeline was developed in a pilot study of 19 individuals, 9 of whom had been diagnosed with chronic periodontitis. Five hundred twenty-three operational taxonomic units (OTUs) were obtained from the V1-V2 region and 432 from the V5-V6 region. Key periodontal pathogens like Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia could be identified at the species level with both primer sets. Principal coordinate analysis identified two outliers that were consistently independent of the hypervariable region and method of DNA extraction used. The linear discriminant analysis (LDA) effect size algorithm (LEfSe) identified 80 OTU-level biomarkers of periodontitis and 17 of health. Health- and periodontitis-related clusters of OTUs were identified using a connectivity analysis, and the results confirmed previous studies with several thousands of samples. A machine learning algorithm was developed which was trained on all but one sample and then predicted the diagnosis of the left-out sample (jackknife method). Using a combination of the 10 best biomarkers, 15 of 17 samples were correctly diagnosed. Training the algorithm on time-resolved community profiles might provide a highly sensitive tool to detect the onset of periodontitis.  相似文献   

6.
Periodontitis that affects the underlying structures of the periodontium, including the alveolar bone, is a multifactorial disease, whose etiology involves interactions between specific bacterial species of the subgingival biofilm and the host immune components. In the present study, we investigated the effects of myricetin, a flavonol largely distributed in fruits and vegetables, on growth and virulence properties of Porphyromonas gingivalis as well as on the P. gingivalis-induced inflammatory response in host cells. Minimal inhibitory concentration values of myricetin against P. gingivalis were in the range of 62.5 to 125 μg/ml. The iron-chelating activity of myricetin may contribute to the antibacterial activity of this flavonol. Myricetin was found to attenuate the virulence of P. gingivalis by reducing the expression of genes coding for important virulence factors, including proteinases (rgpA, rgpB, and kgp) and adhesins (fimA, hagA, and hagB). Myricetin dose-dependently prevented NF-κB activation in a monocyte model. Moreover, it inhibited the secretion of IL-6, IL-8 and MMP-3 by P. gingivalis-stimulated gingival fibroblasts. In conclusion, our study brought clear evidence that the flavonol myricetin exhibits a dual action on the periodontopathogenic bacterium P. gingivalis and the inflammatory response of host cells. Therefore, myricetin holds promise as a therapeutic agent for the treatment/prevention of periodontitis.  相似文献   

7.
Periodontitis is a polymicrobial infection of tooth-supporting tissues. This cross-sectional study aimed to examine the associations between five target species and severe periodontitis in a Thai population. Using the CDC/AAP case definition, individuals diagnosed with no/mild and severe periodontitis were included. Quantitative analyses of Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Tannerella forsythia (Tf), Treponema denticola (Td), and Prevotella intermedia (Pi) in subgingival plaque were performed using real-time polymerase chain reaction. The association between target species and severe periodontitis was examined using logistic regression analysis. The study subjects comprised 479 individuals with no/mild periodontitis and 883 with severe periodontitis. Bacterial prevalence and quantity were higher in subjects with severe periodontitis than in those with no/mild disease. In the fully adjusted model, all species except Tf showed a dose-dependent relationship with periodontitis. The mere presence of Pg, even in low amount, was significantly associated with severe periodontitis, while the amount of Aa, Td, and Pi had to reach the critical thresholds to be significantly associated with disease. Compared to individuals with low levels of both Td and Pi, high colonization by either Td or Pi alone significantly increased the odds of having severe periodontitis by 2.5 (95%CI 1.7–3.5) folds. The odds ratio was further increased to 14.8 (95%CI 9.2–23.8) in individuals who were highly colonized by both species. Moreover, the presence of Pg and high colonization by Aa were independently associated with severe periodontitis with odds ratios of 5.6 (95%CI 3.4–9.1) and 2.2 (95%CI 1.5–3.3), respectively. Our findings suggest that the presence of Pg and high colonization by Aa, Td, and Pi play an important role in severe periodontitis in this study population. We also demonstrate for the first time that individuals co-infected with Td and Pi were more likely to have periodontitis than were those infected with a single pathogen.  相似文献   

8.
Chronic periodontitis is a highly prevalent endogenous polymicrobial disease. To better understand the etiology of the disease a quantitative approach is mandatory and real-time PCR is the molecular technique currently preferred to achieve this purpose. Taking into account that such a kind of study is still scarce, we aimed to evaluate the association between periodontal microbiota and chronic periodontitis. A total of 60 low-income age-matched female adults, 30 with chronic periodontitis and 30 without periodontal disease, were enrolled. DNA obtained from subgingival specimens was used for quantification of Aggregatibacter actinomycetemcomitans, Eikenella corrodens, Fusobacterium nucleatum, Porphyromonas gingivalis, and Prevotella intermedia by real-time PCR. A. actinomycetemcomitans, E. corrodens, and F. nucleatum were detected in all subjects, P. gingivalis was observed in 70.0% and 46.6% and P. intermedia in 90.0% and 80.0% of chronic periodontitis patients and periodontally healthy subjects, respectively. P. gingivalis mean count was significantly higher in patients with chronic periodontitis than in periodontally healthy individuals. Accurate detection and quantification of five putative periodontal pathogens was feasible using a simple and fast real-time PCR protocol. Although P. gingivalis and P. intermedia have been found more commonly in chronic periodontitis patients, no statistical difference was observed between periodontally diseased and healthy groups. Quantitative data indicated association between P. gingivalis and chronic periodontitis. However, because of its uneven distribution, it should not be solely taken as a marker of periodontal status.  相似文献   

9.
Given the emerging evidence of an association between periodontal infections and systemic conditions, the search for specific methods to detect the presence of P. gingivalis, a principal etiologic agent in chronic periodontitis, is of high importance. The aim of this study was to characterize antibodies raised against purified P. gingivalis HmuY protein and selected epitopes of the HmuY molecule. Since other periodontopathogens produce homologs of HmuY, we also aimed to characterize responses of antibodies raised against the HmuY protein or its epitopes to the closest homologous proteins from Prevotella intermedia and Tannerella forsythia. Rabbits were immunized with purified HmuY protein or three synthetic, KLH-conjugated peptides, derived from the P. gingivalis HmuY protein. The reactivity of anti-HmuY antibodies with purified proteins or bacteria was determined using Western blotting and ELISA assay. First, we found homologs of P. gingivalis HmuY in P. intermedia (PinO and PinA proteins) and T. forsythia (Tfo protein) and identified corrected nucleotide and amino acid sequences of Tfo. All proteins were overexpressed in E. coli and purified using ion-exchange chromatography, hydrophobic chromatography and gel filtration. We demonstrated that antibodies raised against P. gingivalis HmuY are highly specific to purified HmuY protein and HmuY attached to P. gingivalis cells. No reactivity between P. intermedia and T. forsythia or between purified HmuY homologs from these bacteria and anti-HmuY antibodies was detected. The results obtained in this study demonstrate that P. gingivalis HmuY protein may serve as an antigen for specific determination of serum antibodies raised against this bacterium.  相似文献   

10.
Porphyromonas gingivalis is considered as a major etiological agent in periodontal diseases and implied to result in gingival inflammation under orthodontic appliance. rag locus is a pathogenicity island found in Porphyromonas gingivalis. Four rag locus variants are different in pathogenicity of Porphyromonas gingivalis. Moreover, there are different racial and geographic differences in distribution of rag locus genotypes. In this study, we assessed the prevalence of Porphyromonas gingivalis and rag locus genotypes in 102 gingival crevicular fluid samples from 57 cases of gingivitis patients with orthodontic appliances, 25 cases of periodontitis patients and 20 cases of periodontally healthy people through a 16S rRNA-based PCR and a multiplex PCR. The correlations between Porphyromona.gingivalis/rag locus and clinical indices were analyzed. The prevalence of Porphyromonas gingivalis and rag locus genes in periodontitis group was the highest among three groups and higher in orthodontic gingivitis than healthy people (p<0.01). An obviously positive correlation was observed between the prevalence of Porphyromonas gingivalis/rag locus and gingival index. rag-3 and rag-4 were the predominant genotypes in the patients of orthodontic gingivitis and mild-to-moderate periodontitis in Shandong. Porphyromonas.gingivalis carrying rag-1 has the strong virulence and could be associated with severe periodontitis.  相似文献   

11.
Alveolar bone (tooth-supporting bone) erosion is a hallmark of periodontitis, an inflammatory disease that often leads to tooth loss. Periodontitis is caused by a select group of pathogens that form biofilms in subgingival crevices between the gums and teeth. It is well-recognized that the periodontal pathogen Porphyromonas gingivalis in these biofilms is responsible for modeling a microbial dysbiotic state, which then initiates an inflammatory response destructive to the periodontal tissues and bone. Eradication of this pathogen is thus critical for the treatment of periodontitis. Previous studies have shown that oral inoculation in mice with an attenuated strain of the periodontal pathogen Tannerella forsythia altered in O-glycan surface composition induces a Th17-linked mobilization of neutrophils to the gingival tissues. In this study, we sought to determine if immune priming with such a Th17-biasing strain would elicit a productive neutrophil response against P. gingivalis. Our data show that inoculation with a Th17-biasing T. forsythia strain is effective in blocking P. gingivalis-persistence and associated alveolar bone loss in mice. This work demonstrates the potential of O-glycan modified Tannerella strains or their O-glycan components for harnessing Th17-mediated immunity against periodontal and other mucosal pathogens.  相似文献   

12.
13.
《Anaerobe》2009,15(3):87-90
BackgroundChronic periodontitis is caused by mixed bacterial infection. Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola are frequently detected in deep periodontal pockets. We demonstrate that these bacteria induce proinflammatory cytokine production by the mouse macrophage-like cell line J774.1.Materials and methodsJ774.1 cells were incubated with and without bacteria for 24 h in 96-well flat-bottomed plates. The culture supernatants were analyzed by enzyme-linked immunosorbent assay for secreted mouse interleukin (IL)-6, monocyte chemoattractant protein-1, IL-23, IL-1β and tumor necrosis factor-α. The cytokine concentrations were determined using a standard curve prepared for each assay.ResultsMixed infection with P. gingivalis and either T. forsythia or T. denticola at 105 CFU/ml acted synergistically to increase IL-6 production, but not monocyte chemoattractant protein-1, IL-23, IL-1β or tumor necrosis factor-α production. Gingipain inhibitors KYT-1 and KYT-36 inhibited IL-6 production by J774.1 cells incubated with 105 CFU/ml of mixed bacteria.ConclusionThese results suggest that P. gingivalis with either T. forsythia or T. denticola directly induces synergistic IL-6 protein production and that gingipains play a role in this synergistic effect.  相似文献   

14.
Periodontitis is an inflammatory condition that affects the supporting tissues surrounding teeth. The occurrence of periodontitis is associated with shifts in the structure of the communities that inhabit the gingival sulcus. Although great inter-subject variability in the subgingival microbiome has been observed in subjects with periodontitis, it is unclear whether distinct community types exist and if differences in microbial signatures correlate with host characteristics or with the variable clinical presentations of periodontitis. Therefore, in this study we explored the existence of different community types in periodontitis and their relationship with host demographic, medical and disease-related clinical characteristics. Clustering analyses of microbial abundance profiles suggested two types of communities (A and B) existed in the 34 subjects with periodontitis evaluated. Type B communities harbored greater proportions of certain periodontitis-associated taxa, including species historically associated with the disease, such as Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola, and taxa recently linked to periodontitis. In contrast, subjects with type A communities had increased proportions of different periodontitis-associated species, and were also enriched for health-associated species and core taxa (those equally prevalent in health and periodontitis). Periodontitis subgingival clusters were not associated with demographic, medical or disease-specific clinical parameters other than periodontitis extent (proportion of sites affected), which positively correlated with the total proportion of cluster B signature taxa. In conclusion, two types of microbial communities were detected in subjects with periodontitis. Host demographics and underlying medical conditions did not correlate with these profiles, which instead appeared to be related to periodontitis extent, with type B communities present in more widespread disease cases. The two identified periodontitis profiles may represent distinct dysbiotic processes potentially requiring community-tailored therapeutic interventions.  相似文献   

15.
Porphyromonas gingivalis, one of the major pathogen associated with periodontitis, is a highly proteolytic bacterial species. Production of proteases is a common microbial virulence factor that enables the destruction of host tissues and evasion from host defense mechanisms. Antimicrobial peptides are important effector molecules of the innate immune system with a broad range of antimicrobial and immunoregulatory activities. We and others have previously demonstrated that P. gingivalis is relatively resistant to the bactericidal activity of the human β-defensin 3 (hBD3). In this study, ability of proteases released by the pathogenic strain of P. gingivalis ATCC 49417 to degrade hBD3 and to affect the antibacterial properties of the peptide was assessed. P. gingivalis culture supernatants (CS) were found to degrade hBD3 in a concentration- and time-dependent manner. Such degradation was mainly due to the activity of Arg and Lys-gingipains, as pretreatment of CS with inhibitors selective for this class of proteases abolished CS ability to degrade hBD3. Importantly, preincubation of hBD3 with CS reduced peptide's antibacterial activity against a susceptible strain of Staphylococcus aureus, while the presence of gingipain inhibitors in the bactericidal assay increased P. gingivalis susceptibility to hBD3. Altogether these results suggest that gingipains may have a role in the resistance of P. gingivalis ATCC 49417 to hBD3.  相似文献   

16.
IntroductionThe purpose of this study was to investigate the adhesion and invasion of periodontopathogenic bacteria in varied mixed infections and the release of interleukins from an epithelial cell line (KB cells).MethodsKB cells were co-cultured with Porphyromonas gingivalis ATCC 33277 and M5-1-2, Tannerella forsythia ATCC 43037, Treponema denticola ATCC 35405 and Fusobacterium nucleatum ATCC 25586 in single and mixed infections. The numbers of adherent and internalized bacteria were determined up to 18 h after bacterial exposure. Additionally, the mRNA expression and concentrations of released interleukin (IL)-6 and IL-8 were measured.ResultsAll periodontopathogenic bacteria adhered and internalized in different numbers to KB cells, but individually without any evidence of co-aggregation also to F. nucleatum. High levels of epithelial mRNA of IL-6 and IL-8 were detectable after all bacterial challenges. After the mixed infection of P. gingivalis ATCC 33277 and F. nucleatum ATCC 25586 the highest levels of released interleukins were found. No IL-6 and IL-8 were detectable after the mixed infection of P. gingivalis M5-1-2 and F. nucleatum ATCC 25586 and the fourfold infection of P. gingivalis ATCC 33277, T. denticola ATCC 35405, T. forsythia ATCC 43037 and F. nucleatum ATCC 25586.ConclusionAnaerobic periodontopathogenic bacteria promote the release of IL-6 and IL-8 by epithelial cells. Despite a continuous epithelial expression of IL-8 mRNA by all bacterial infections these effects are temporary because of the time-dependent degradation of cytokines by bacterial proteases. Mixed infections have a stronger virulence potential than single bacteria. Further research is necessary to evaluate the role of mixed infections and biofilms in the pathogenesis of periodontitis.  相似文献   

17.
Bacterial biofilms have been found to develop on root surfaces outside the apical foramen and be associated with refractory periapical periodontitis. However, it is unknown which bacterial species form extraradicular biofilms. The present study aimed to investigate the identity and localization of bacteria in human extraradicular biofilms. Twenty extraradicular biofilms, used to identify bacteria using a PCR-based 16S rRNA gene assay, and seven root-tips, used to observe immunohistochemical localization of three selected bacterial species, were taken from 27 patients with refractory periapical periodontitis. Bacterial DNA was detected from 14 of the 20 samples, and 113 bacterial species were isolated. Fusobacterium nucleatum (14 of 14), Porphyromonas gingivalis (12 of 14), and Tannellera forsythensis (8 of 14) were frequently detected. Unidentified and uncultured bacterial DNA was also detected in 11 of the 14 samples in which DNA was detected. In the biofilms, P. gingivalis was immunohistochemically detected in all parts of the extraradicular biofilms. Positive reactions to anti-F. nucleatum and anti-T. forsythensis sera were found at specific portions of the biofilm. These findings suggested that P. gingivalis, T. forsythensis, and F. nucleatum were associated with extraradicular biofilm formation and refractory periapical periodontitis.  相似文献   

18.
《Anaerobe》1999,5(3-4):221-227
The anaerobic infections most frequently found in the oral cavity are gingivoperiodontal diseases and pulpal and periapical infections. Gingivitis and adult periodontitis are the most frequent forms. In adult periodontitis the subgingival microbiota are complex and there is a prevalence of Porphyromonas gingivalis, Prevotella intermedia,Prevotella nigrescens , Actinobacillus actinomycetemcomitans, Bacteroides forsythus,Peptostreptococcus micros , Campylobacter rectus, and species of Fusobacterium, Eikenella andTreponema .The microflora associated with peri-implant infections are similar to the microflora found in periodontal diseases, particularly in partially edentulous patients. Implant placement is therefore not recommended in patients presenting with uncontrolled periodontal disease.Likewise, there is a similarity between the genera identified in periodontal pockets and infected root canals, and in periapical infections. However, some species are more prevalent than others in both infections. The following were predominantly observed inside the root canals: Prevotella intermedia, Prevotella nigrescens,Peptostreptococcus anaerobius , Peptostreptococcus micros, Eubacterium lentum, Eubacterium alactolyticum and Porphyromonas endodontalis, with strong associations among some species.Pericoronaritis is another infection associated with anaerobic Gram-negative bacilli and treponeme. There are a great number of methods for microbiological diagnosis, and treatment of some oral infections depends on close interaction between the microbiologist and the dentist.  相似文献   

19.
Evasion of killing by the complement system, a crucial part of innate immunity, is a key evolutionary strategy of many human pathogens. A major etiological agent of chronic periodontitis, the Gram-negative bacterium Porphyromonas gingivalis, produces a vast arsenal of virulence factors that compromise human defense mechanisms. One of these is peptidylarginine deiminase (PPAD), an enzyme unique to P. gingivalis among bacteria, which converts Arg residues in polypeptide chains into citrulline. Here, we report that PPAD citrullination of a critical C-terminal arginine of the anaphylatoxin C5a disabled the protein function. Treatment of C5a with PPAD in vitro resulted in decreased chemotaxis of human neutrophils and diminished calcium signaling in monocytic cell line U937 transfected with the C5a receptor (C5aR) and loaded with a fluorescent intracellular calcium probe: Fura-2 AM. Moreover, a low degree of citrullination of internal arginine residues by PPAD was also detected using mass spectrometry. Further, after treatment of C5 with outer membrane vesicles naturally shed by P. gingivalis, we observed generation of C5a totally citrullinated at the C-terminal Arg-74 residue (Arg74Cit). In stark contrast, only native C5a was detected after treatment with PPAD-null outer membrane vesicles. Our study suggests reduced antibacterial and proinflammatory capacity of citrullinated C5a, achieved via lower level of chemotactic potential of the modified molecule, and weaker cell activation. In the context of previous studies, which showed crosstalk between C5aR and Toll-like receptors, as well as enhanced arthritis development in mice infected with PPAD-expressing P. gingivalis, our findings support a crucial role of PPAD in the virulence of P. gingivalis.  相似文献   

20.
Porphyromonas gingivalis is a major bacterial species implicated in chornic periodontitis, a disease characterized by inflammatory destruction of the tooth supporting tissues. Its main virulence factors are lipopolysaccharide (LPS) and gingipains, a group of cysteine proteinases. Interleukin (IL)-18 is a potent pro-inflammatory cytokine with structural similarities to IL-1β. This study aimed to investigate if P .gingivalis regulates IL-1β and IL-18 in monocytic cells. Monomac-6 cells were challenged with P. gingivalis culture supernatants. Quantitative real-time PCR and ELISA were used to investigate IL-1β and IL-18 mRNA expression and protein secretion, respectively. P. gingivalis enhanced IL-1β and IL-18 mRNA expression, the former being induced earlier, but transiently. IL-18 up-regulation was not affected by P. gingivalis heat-inactivation or chemical inhibition of its gingipains, whereas both treatments resulted in 50% reduction of IL-1β expression. Purified P. gingivalis LPS enhanced both IL-1β and IL-18 expression. However, only IL-1β, but not IL-18, secretion was detected, and was up-regulated by P. gingivalis. In conclusion, although IL-1β and IL-18 belong to the same cytokine family, their gene expression and secretion are differentially regulated in human monocytic cells in response to P. gingivalis. Therefore, cytokines of the IL-1 family may participate via different pathways in the complex pathogenesis of periodontitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号