首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Periodontitis has been associated with rheumatoid arthritis. In experimental arthritis, concomitant periodontitis caused by oral infection with Porphyromonas gingivalis enhances articular bone loss. The aim of this study was to investigate how lipopolysaccharide (LPS) from P. gingivalis stimulates bone resorption. The effects by LPS P. gingivalis and four other TLR2 ligands on bone resorption, osteoclast formation, and gene expression in wild type and Tlr2-deficient mice were assessed in ex vivo cultures of mouse parietal bones and in an in vivo model in which TLR2 agonists were injected subcutaneously over the skull bones. LPS P. gingivalis stimulated mineral release and matrix degradation in the parietal bone organ cultures by increasing differentiation and formation of mature osteoclasts, a response dependent on increased RANKL (receptor activator of NF-κB ligand). LPS P. gingivalis stimulated RANKL in parietal osteoblasts dependent on the presence of TLR2 and through a MyD88 and NF-κB-mediated mechanism. Similarly, the TLR2 agonists HKLM, FSL1, Pam2, and Pam3 stimulated RANKL in osteoblasts and parietal bone resorption. LPS P. gingivalis and Pam2 robustly enhanced osteoclast formation in periosteal/endosteal cell cultures by increasing RANKL. LPS P. gingivalis and Pam2 also up-regulated RANKL and osteoclastic genes in vivo, resulting in an increased number of periosteal osteoclasts and immense bone loss in wild type mice but not in Tlr2-deficient mice. These data demonstrate that LPS P. gingivalis stimulates periosteal osteoclast formation and bone resorption by stimulating RANKL in osteoblasts via TLR2. This effect might be important for periodontal bone loss and for the enhanced bone loss seen in rheumatoid arthritis patients with concomitant periodontal disease.  相似文献   

2.
Osteoporosis is one of the most common diseases and can be treated by either anti-resorption drugs, anabolic drugs, or both. To search for anabolic drug targets for osteoporosis therapy, it is crucial to understand the biology of bone forming cells, osteoblasts, in terms of their proliferation, differentiation, and function. Here we found that protein palmitoylation participates in signaling pathways that control osterix expression and osteoblast differentiation. Mouse calvarial osteoblasts express most of the 24 palmitoyl transferases, with some being up-regulated during differentiation. Inhibition of protein palmitoylation, with a substrate-analog inhibitor, diminished osteoblast differentiation and mineralization, but not proliferation or survival. The decrease in differentiation capacity is associated with a reduction in osterix, but not Runx2 or Atf4. Inhibition of palmitoyl transferases had little effect in p53−/− osteoblasts that show accelerated differentiation due to overexpression of osterix, suggesting that osterix, at least partially, mediated the effect of inhibition of palmitoyl transferases on osteoblast differentiation. BMPs are the major driving force of osteoblast differentiation in the differentiation assays. We found that inhibition of palmitoyl transferases also compromised BMP2-induced osteoblast differentiation through down-regulating osterix induction. However, palmitoyl transferases inhibitor did not inhibit Smad1/5/8 activation. Instead, it compromised the activation of p38 MAPK, which are known positive regulators of osterix expression and differentiation. These results indicate that protein palmitoylation plays an important role in BMP-induced MAPK activation, osterix expression, and osteoblast differentiation.  相似文献   

3.
The balance between bone resorption and bone formation involves the coordinated activities of osteoblasts and osteoclasts. Communication between these two cell types is essential for maintenance of normal bone homeostasis; however, the mechanisms regulating this cross talk are not completely understood. Many factors that mediate differentiation and function of both osteoblasts and osteoclasts have been identified. The LIM protein Limd1 has been implicated in the regulation of stress osteoclastogenesis through an interaction with the p62/sequestosome protein. Here we show that Limd1 also influences osteoblast progenitor numbers, differentiation, and function. Limd1−/− calvarial osteoblasts display increased mineralization and accelerated differentiation. While no significant differences in osteoblast number or function were detected in vivo, bone marrow stromal cells isolated from Limd1−/− mice contain significantly more osteoblast progenitors compared to wild type controls when cultured ex vivo. Furthermore, we observed a significant increase in nuclear β-catenin staining in differentiating Limd1−/− calvarial osteoblasts suggesting that Limd1 is a negative regulator of canonical Wnt signaling in osteoblasts. These results demonstrate that Limd1 influences not only stress osteoclastogenesis but also osteoblast function and osteoblast progenitor commitment. Together, these data identify Limd1 as a novel regulator of both bone osetoclast and bone osteoblast development and function.  相似文献   

4.
Bone mass is controlled through a delicate balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. We show here that RNA editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) is critical for proper control of bone mass. Postnatal conditional knockout of Adar1 (the gene encoding ADAR1) resulted in a severe osteopenic phenotype. Ablation of the Adar1 gene significantly suppressed osteoblast differentiation without affecting osteoclast differentiation in bone. In vitro deletion of the Adar1 gene decreased expression of osteoblast-specific osteocalcin and bone sialoprotein genes, alkaline phosphatase activity, and mineralization, suggesting a direct intrinsic role of ADAR1 in osteoblasts. ADAR1 regulates osteoblast differentiation by, at least in part, modulation of osterix expression, which is essential for bone formation. Further, ablation of the Adar1 gene decreased the proliferation and survival of bone marrow stromal cells and inhibited the differentiation of mesenchymal stem cells towards osteoblast lineage. Finally, shRNA knockdown of the Adar1 gene in MC-4 pre-osteoblasts reduced cyclin D1 and cyclin A1 expression and cell growth. Our results identify ADAR1 as a new key regulator of bone mass and suggest that ADAR1 functions in this process mainly through modulation of the intrinsic properties of osteoblasts (i.e., proliferation, survival and differentiation).  相似文献   

5.
Generation of a floxed Bmp2/4 osteoblast cell line is a valuable tool for studying the modulatory effects of Bmp2 and Bmp4 on osteoblast differentiation as well as relevant molecular events. In this study, primary floxed Bmp2/4 mouse osteoblasts were cultured and transfected with simian virus 40 large T-antigen. Transfection was verified by polymerase chain reaction (PCR) and immunohistochemistry. To examine the characteristics of the transfected cells, morphology, proliferation and mineralization were analyzed, expression of cell-specific genes including Runx2, ATF4, Dlx3, Osx, dentin matrix protein 1, bone sialoprotein, osteopontin, osteocalcin, osteonectin and collagen type I was detected. These results show that transfected floxed Bmp2/4 osteoblasts bypassed senescence with a higher proliferation rate, but retain the genotypic and phenotypic characteristics similar to the primary cells. Thus, we for the first time demonstrate the establishment of an immortalized mouse floxed Bmp2/4 osteoblast cell line.  相似文献   

6.
7.
The complex pathogenesis of mineralization defects seen in inherited and/or acquired hypophosphatemic disorders suggests that local inorganic phosphate (P(i)) regulation by osteoblasts may be a rate-limiting step in physiological bone mineralization. To test whether an osteoblast autonomous phosphate regulatory system regulates mineralization, we manipulated well-established in vivo and in vitro models to study mineralization stages separately from cellular proliferation/differentiation stages of osteogenesis. Foscarnet, an inhibitor of NaP(i) transport, blocked mineralization of osteoid formation in osteoblast cultures and local mineralization after injection over the calvariae of newborn rats. Mineralization was also down- and upregulated, respectively, with under- and overexpression of the type III NaP(i) transporter Pit1 in osteoblast cultures. Among molecules expressed in osteoblasts and known to be related to P(i) handling, stanniocalcin 1 was identified as an early response gene after foscarnet treatment; it was also regulated by extracellular P(i), and itself increased Pit1 accumulation in both osteoblast cultures and in vivo. These results provide new insights into the functional role of osteoblast autonomous P(i) handling in normal bone mineralization and the abnormalities seen in skeletal tissue in hypophosphatemic disorders.  相似文献   

8.
Bone morphogenetic protein 2 (Bmp2) is essential for osteoblast differentiation and osteogenesis. Generation of floxed Bmp2 osteoblast cell lines is a valuable tool for studying the effects of Bmp2 on osteoblast differentiation and its signaling pathways during skeletal metabolism. Due to relatively limited sources of primary osteoblasts, we have developed cell lines that serve as good surrogate models for the study of osteoblast cell differentiation and bone mineralization. In this study, we established and characterized immortalized mouse floxed Bmp2 osteoblast cell lines. Primary mouse floxed Bmp2 osteoblasts were transfected with pSV3-neo and clonally selected. These transfected cells were verified by PCR and immunohistochemistry. To determine the genotype and phenotype of the immortalized cells, cell morphology, proliferation, differentiation and mineralization were analyzed. Also, expression of osteoblast-related gene markers including Runx2, Osx, ATF4, Dlx3, bone sialoprotein, dentin matrix protein 1, osteonectin, osteocalcin and osteopontin were examined by quantitative RT-PCR and immunohistochemistry. These results showed that immortalized floxed Bmp2 osteoblasts had a higher proliferation rate but preserved their genotypic and phenotypic characteristics similar to the primary cells. Thus, we, for the first time, describe the development of immortalized mouse floxed Bmp2 osteoblast cell lines and present a useful model to study osteoblast biology mediated by BMP2 and its downstream signaling transduction pathways.  相似文献   

9.
MicroRNA attenuation of protein translation has emerged as an important regulator of mesenchymal cell differentiation into the osteoblast lineage. A compelling question is the extent to which miR biogenesis is obligatory for bone formation. Here we show conditional deletion of the Dicer enzyme in osteoprogenitors by Col1a1-Cre compromised fetal survival after E14.5. A mechanism was associated with the post-commitment stage of osteoblastogenesis, demonstrated by impaired ECM mineralization and reduced expression of mature osteoblast markers during differentiation of mesenchymal cells of ex vivo deleted Dicerc/c. In contrast, in vivo excision of Dicer by Osteocalcin-Cre in mature osteoblasts generated a viable mouse with a perinatal phenotype of delayed bone mineralization which was resolved by 1 month. However, a second phenotype of significantly increased bone mass developed by 2 months, which continued up to 8 months in long bones and vertebrae, but not calvariae. Cortical bone width and trabecular thickness in DicerΔoc/Δoc was twice that of Dicerc/c controls. Normal cell and tissue organization was observed. Expression of osteoblast and osteoclast markers demonstrated increased coupled activity of both cell types. We propose that Dicer generated miRs are essential for two periods of bone formation, to promote osteoblast differentiation before birth, and control bone accrual in the adult.  相似文献   

10.
Estrogen increases bone formation by promoting mineralization and prolonging the lifespan of osteoblasts. To understand the underlying molecular mechanism/s, we identified estrogen-regulated proteins at different stages of human osteoblast differentiation using differential proteomics approach. Among the identified proteins, we observed that estrogen upregulated RAB3GAP1 on day 1 and 5 of differentiation. RAB3GAP1 is critically involved in the process of autophagy, a eukaryotic degradative pathway essential for cell survival. We, therefore, investigated the effect of estrogen on autophagy in differentiating human osteoblasts and their precursors, the mesenchymal stem cells (MSCs). MSCs exhibited high autophagic flux which declined during osteoblast differentiation, resulting in high basal apoptosis in osteoblasts. Estrogen reduced apoptosis in differentiating osteoblasts by promoting autophagy, thus contributing towards their longer lifespan. Further, MSCs were resistant against starvation-induced apoptosis, whereas, differentiating osteoblasts showed significant susceptibility towards it. Estrogen, in addition to promoting mineralization, protected differentiating osteoblasts from starvation-induced apoptosis by increasing autophagic flux. Autophagic flux in RAB3GAP1 knockdown osteoblasts appeared diminished, and showed increased apoptosis even in nutrient-rich conditions, and exhibited significantly impaired mineralization. However, irrespective of the presence of estrogen, starvation further enhanced apoptosis in these cells. Furthermore, estrogen failed to promote mineralization in these osteoblasts. Our study illustrates that autophagy is essential for human osteoblast survival and mineralization, and osteoblasts are susceptible to apoptosis due to reduced autophagy during differentiation. Estrogen, via upregulation of RAB3GAP1, promotes autophagy in osteoblasts during differentiation thereby increasing their survival and mineralization capacity. Our study demonstrates the positive role of autophagy in bone homeostasis.  相似文献   

11.
12.
Calcitonin gene-related peptide (CGRP) promotes osteoblast recruitment and osteogenic activity. However, no evidence suggests that CGRP could affect the differentiation of stem cells toward osteoblasts. In this study, we genetically modified adipose-derived stem cells (ADSCs) by introducing the CGRP gene through adenoviral vector transduction and investigated on cellular proliferation and osteoblast differentiation in vitro and osteogenesis in vivo as well. For the in vitro analyses, rat ADSCs were transducted with adenoviral vectors containing the CGRP gene (Ad-CGRP) and were cultured in complete osteoblastic medium. The morphology, proliferative capacity, and formation of localized regions of mineralization in the cells were evaluated. The expression of alkaline phosphatase (ALP) and special markers of osteoblasts, such as Collagen I, Osteocalcin (BPG) and Osteopontin (OPN), were measured by cytochemistry, MMT, RT-PCR, and Western blot. For the in vivo analyses, the Ad-CGRP-ADSCs/Beta-tricalcium phosphate (β-TCP) constructs were implanted in rat radial bone defects for 12 weeks. Radiography and histomorphology evaluations were carried out on 4 weeks and 12 weeks. Our analyses indicated that heterogeneous spindle-shaped cells and localized regions of mineralization were formed in the CGRP-transduced ADSCs (the transduced group). A higher level of cellular proliferation, a high expression level of ALP on days 7 and 14 (p<0.05), and increased expression levels of Collagen I, BPG and OPN presented in transduced group (p<0.05). The efficiency of new bone formation was dramatically enhanced in vivo in Ad-CGRP-ADSCs/β-TCP group but not in β-TCP group and ADSCs/β-TCP group. Our results reveal that ADSCs transduced with an Ad-CGRP vector have stronger potential to differentiate into osteoblasts in vitro and are able to regenerate a promising new tissue engineering bone in vivo. Our findings suggest that CGRP-transduced ADSCs may serve as seed cells for bone tissue engineering and provide a potential way for treating bone defects.  相似文献   

13.
Pseudomonas aeruginosa (P. aeruginosa) is associated with periapical periodontitis. The lesions are characterized by a disorder in osteoblast metabolism. Quorum sensing molecular N-(3-oxododecanoyl)-homoserine lactone (AHL) is secreted by P. aeruginosa and governs the expression of numerous virulence factors. AHL can trigger intracellular calcium ([Ca2+]i) fluctuations in many host cells. However, it is unclear whether AHL can regulate osteoblast metabolism by affecting [Ca2+]i changes or its spatial correlation. We explored AHL-induced apoptosis and differentiation in pre-osteoblastic MC3T3-E1 cells and evaluated [Ca2+]i mobilization using several extraction methods. The spatial distribution pattern of [Ca2+]i among cells was investigated by Moran's I, an index of spatial autocorrelation. We found that 30 μM and 50 μM AHL triggered opposing osteoblast fates. At 50 μM, AHL inhibited osteoblast differentiation by promoting mitochondrial-dependent apoptosis and negatively regulating osteogenic marker genes, including Runx2, Osterix, bone sialoprotein (Bsp), and osteocalcin (OCN). In contrast, prolonged treatment with 30 μM AHL promoted osteoblast differentiation concomitantly with cell apoptosis. The elevation of [Ca2+]i levels in osteoblasts treated with 50 μM AHL was spatially autocorrelated, while no such phenomenon was observed in 30 μM AHL-treated osteoblasts. The blocking of cell-to-cell spatial autocorrelation in the osteoblasts provoked by 50 μM AHL significantly inhibited apoptosis and partially restored differentiation. Our observations suggest that AHL affects the fate of osteoblasts (apoptosis and differentiation) by affecting the spatial correlation of [Ca2+]i changes. Thus, AHL acts as a double-edged sword for osteoblast function.  相似文献   

14.
15.
Mutations in fibroblast growth factor receptors (Fgfrs) 1-3 cause skeletal disease syndromes in humans. Although these Fgfrs are expressed at various stages of chondrocyte and osteoblast development, their function in specific skeletal cell types is poorly understood. Using conditional inactivation of Fgfr1 in osteo-chondrocyte progenitor cells and in differentiated osteoblasts, we provide evidence that FGFR1 signaling is important for different stages of osteoblast maturation. Examination of osteogenic markers showed that inactivation of FGFR1 in osteo-chondro-progenitor cells delayed osteoblast differentiation, but that inactivation of FGFR1 in differentiated osteoblasts accelerated differentiation. In vitro osteoblast cultures recapitulated the in vivo effect of FGFR1 on stage-specific osteoblast maturation. In immature osteoblasts, FGFR1 deficiency increased proliferation and delayed differentiation and matrix mineralization, whereas in differentiated osteoblasts, FGFR1 deficiency enhanced mineralization. Furthermore, FGFR1 deficiency in differentiated osteoblasts resulted in increased expression of Fgfr3, a molecule that regulates the activity of differentiated osteoblasts. Mice lacking Fgfr1, either in progenitor cells or in differentiated osteoblasts, showed increased bone mass as adults. These data demonstrate that signaling through FGFR1 in osteoblasts is necessary to maintain the balance between bone formation and remodeling through a direct effect on osteoblast maturation.  相似文献   

16.
Alizarin Red S staining is the standard method to indicate and quantify matrix mineralization during differentiation of osteoblast cultures. KS483 cells are multipotent mouse mesenchymal progenitor cells that can differentiate into chondrocytes, adipocytes and osteoblasts and are a well-characterized model for the study of bone formation. Matrix mineralization is the last step of differentiation of bone cells and is therefore a very important outcome measure in bone research. Fluorescently labelled calcium chelating agents, e.g. BoneTag and OsteoSense, are currently used for in vivo imaging of bone. The aim of the present study was to validate these probes for fast and simple detection and quantification of in vitro matrix mineralization by KS483 cells and thus enabling high-throughput screening experiments.  相似文献   

17.
《Phytomedicine》2014,21(12):1498-1503
Phytoestrogen-rich Pueraria mirifica (PM) tuberous extract is a promising candidate for the development of anti-osteoporosis drugs for postmenopausal women, but its action has never been validated in humans or in non-human primates, which are more closely related to humans than rodents. In vitro study of non-human primate osteoblasts is thus fundamental to prepare for in vivo studies of phytoestrogen effects on primate bone. This study aimed to establish a culture system of baboon primary osteoblasts and to investigate the effects of PM extract and its phytoestrogens on these cells. Primary osteoblasts from adult baboon fibulae exhibited osteoblast characteristics in regard to proliferation, differentiation, mineralization, and estrogen receptor expression. They responded to 17β-estradiol by increased proliferation rate and mRNA levels of alkaline phosphatase (ALP), type I collagen, and osteocalcin. After being exposed for 48 h to 100 μg/ml PM extract, 1000 nM genistein, or 1000 nM puerarin, primary baboon osteoblasts markedly increased the rate of proliferation and mRNA levels of ALP and type I collagen without changes in Runx2, osterix, or osteocalcin expression. PM extract, genistein, and puerarin also decreased the RANKL/OPG ratio, suggesting that they could decrease osteoclast-mediated bone resorption. However, neither PM extract nor its phytoestrogens altered calcium deposition in osteoblast culture. In conclusion, we have established baboon primary osteoblast culture, which is a new tool for bone research and drug discovery. Furthermore, the present results provide substantial support for the potential of PM extract and its phytoestrogens to be developed as therapeutic agents against bone fragility.  相似文献   

18.
Nobiletin (NOB) is polymethoxy flavonoids, which plentifully there in Citrus depressa and they demonstrate numerous pharmacological effects. NOB has an anti-proliferative effect, attenuates ovalbumin-treated eosinophilic airway inflammation and Type II collagen treated arthritis. NOB noticeably inhibits bone resorption and renovates bone loss in mice model, but role of NOB in bone metabolism is unclear. Human bone is a important organ that sustains its homeostasis among bone resorpting osteoclasts and bone developing osteoblasts. The balances of among these two kind of cell outcomes are implicated in bone remodeling. The current study designed to explore possessions of NOB on differentiation and proliferation of MG-63 cells and contribution of morphogenetic protein signaling. Cell proliferation was analyzed by MTT, mineralization analysis by alizarin red staining and morphogenetic signaling protein by RT-PCR. No stimulus outcome of NOB on cell proliferation was found at days of 1, 3 and 7. Accumulation of calcium was augmented after that treatment of NOB. The mRNA expression of BMP-2, COL-I, ALP, OCN, RUNX2 and COL1A1 augmented markedly with NOB supplement. Hence, NOB can stimulate osteogenic differentiation of MG-63, almost certainly by promoting RUNX2 and BMP-2 signaling and this result might provide to its action on stimulation of osteoblast development, differentiation and augments of bone mass.  相似文献   

19.
G S Stein  J B Lian  T A Owen 《FASEB journal》1990,4(13):3111-3123
The relationship of cell proliferation to the temporal expression of genes characterizing a developmental sequence associated with bone cell differentiation can be examined in primary diploid cultures of fetal calvarial-derived osteoblasts by the combination of molecular, biochemical, histochemical, and ultrastructural approaches. Modifications in gene expression define a developmental sequence that has 1) three principal periods: proliferation, extracellular matrix maturation, and mineralization; and 2) two restriction points to which the cells can progress but cannot pass without further signals. The first restriction point is when proliferation is down-regulated and gene expression associated with extracellular matrix maturation is induced, and the second when mineralization occurs. Initially, actively proliferating cells, expressing cell cycle and cell growth regulated genes, produce a fibronectin/type I collagen extracellular matrix. A reciprocal and functionally coupled relationship between the decline in proliferative activity and the subsequent induction of genes associated with matrix maturation and mineralization is supported by 1) a temporal sequence of events in which an enhanced expression of alkaline phosphatase occurs immediately after the proliferative period, and later an increased expression of osteocalcin and osteopontin at the onset of mineralization; 2) increased expression of a specific subset of osteoblast phenotype markers, alkaline phosphatase and osteopontin, when proliferation is inhibited; and 3) enhanced levels of expression of the osteoblast markers when collagen deposition is promoted, suggesting that the extracellular matrix contributes to both the shutdown of proliferation and development of the osteoblast phenotype. The loss of stringent growth control in transformed osteoblasts and in osteosarcoma cells is accompanied by a deregulation of the tightly coupled relationship between proliferation and progressive expression of genes associated with bone cell differentiation.  相似文献   

20.
Hesperidin found in citrus fruits has been reported to be a promising bioactive compound for maintaining an optimal bone status in ovariectomized rodent models. In this study, we examined the capacity of hesperetin (Hp) to affect the proliferation, differentiation and mineralization of rodent primary osteoblasts. Then, the impact of Hp on signalling pathways known to be implicated in bone formation was explored. We exposed osteoblasts to physiological concentrations of 1 μM Hp (Hp1) and 10 μM Hp (Hp10). Neither proliferation nor mineralization was affected by Hp at either dose during 19 days of exposure. Hp at both doses enhanced differentiation by significantly increasing alkaline phosphatase (ALP) activity from Day 14 of exposure (Day 19: Hp1: +9%, Hp10: +14.8% vs. control; P<.05). However, Hp did not induce an obvious formation of calcium nodules. The effect of Hp10 on ALP was inhibited by addition of noggin protein, suggesting a possible action of this flavanone through the bone morphogenetic protein (BMP) pathway. Indeed, Hp10 significantly induced (1.2- to 1.4-fold) mRNA expression of genes involved in this signalling pathway (i.e., BMP2, BMP4, Runx2 and Osterix) after 48 h of exposure. This was strengthened by enhanced phosphorylation of the complex Smad1/5/8. Osteocalcin mRNA level was up-regulated by Hp only at 10 μM (2.2 fold vs. control). The same dose of Hp significantly decreased osteopontin (OPN) protein level (50% vs. control) after 14 days of culture. Our findings suggest that Hp may regulate osteoblast differentiation through BMP signalling and may influence the mineralization process by modulating OPN expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号