首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Diospyros lotus is traditionally used for the treatment of diabetes, diarrhea, tumor, and hypertension. The purpose of this study was to investigate the anti-inflammatory effect and underlying molecular mechanisms of myricetin in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Myricetin dose-dependently suppressed the production of pro-inflammatory mediators (NO, iNOS, PGE2, and COX-2) in LPS-stimulated RAW264.7 macrophages. Myricetin administration decreased the production of NO, iNOS, TNF-α, IL-6, and IL-12 in mice. Myricetin decreased NF-κB activation by suppressing the degradation of IκBα, nuclear translocation of p65 subunit of NF-κB, and NF-κB DNA binding activity in LPS-stimulated RAW264.7 macrophages. Moreover, myricetin attenuated the phosphorylation of STAT1 and the production of IFN-β in LPS-stimulated RAW264.7 macrophages. Furthermore, myricetin induced the expression of HO-1 through Nrf2 translocation. In conclusion, these results suggest that myricetin inhibits the production of pro-inflammatory mediators through the suppression of NF-κB and STAT1 activation and induction of Nrf2-mediated HO-1 expression in LPS-stimulated RAW264.7 macrophages.  相似文献   

3.
Stimulated macrophages produce nitric oxide (NO) via inducible nitric oxide synthase (iNOS) using molecular O2, L-arginine, and NADPH. Exposure of macrophages to hypoxia decreases NO production within seconds, suggesting substrate limitation as the mechanism. Conflicting data exist regarding the effect of pO2 on NADPH production via the oxidative pentose phosphate cycle (OPPC). Therefore, the present studies were developed to determine whether NADPH could be limiting for NO production under hypoxia. Production of NO metabolites (NOx) and OPPC activity by RAW 264.7 cells was significantly increased by stimulation with lipopolysaccharide (LPS) and interferon γ (IFNγ) at pO2 ranging from 0.07 to 50%. OPPC activity correlated linearly with NOx production at pO2 > 0.13%. Increased OPPC activity by stimulated RAW 264.7 cells was significantly reduced by 1400 W, an iNOS inhibitor. OPPC activity was significantly increased by concomitant treatment of stimulated RAW 264.7 cells with chemical oxidants such as hydroxyethyldisulfide or pimonidazole, at 0.07 and 50% O2, without decreasing NOx production. These results are the first to investigate the effect of pO2 on the relationship between NO production and OPPC activity, and to rule out limitations in OPPC activity as a mechanism by which NO production is decreased under hypoxia.  相似文献   

4.
5.
6.
《Cytotherapy》2022,24(10):999-1012
Background aimsOwing to the lack of biological assays, determining the biological activity of extracellular vesicles has proven difficult. Here the authors standardized an in vitro assay to assess the anti-inflammatory activity of mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEVs) based on their ability to prevent acquisition of the M1 phenotype in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Induction of tumor necrosis factor alpha, IL-1β, IL-6 and inducible nitric oxide synthase (iNOS) characterizes the M1 phenotype. Nitric oxide released by iNOS turns into nitrite, which can be easily quantitated in culture media by Griess reaction.MethodsThe authors first tested different assay conditions in 96-well plates, including two seeding densities (2 × 104 cells/well and 4 × 104 cells/well), four LPS doses (1 ng/mL, 10 ng/mL, 100 ng/mL and 1000 ng/mL) and two time points (16 h and 24 h), in order to determine the best set-up to accurately measure nitrite concentration as an index of M1 macrophage polarization.ResultsThe authors found that seeding 2 × 104 cells/well and stimulating with 10 ng/mL LPS for 16 h allowed the inhibition of nitrite production by 60% with the use of dexamethasone. Using these established conditions, the authors were able to test different MSC-sEV preparations and generate dose–response curves. Moreover, the authors fully analytically validated assay performance and fulfilled cross-validation against other M1 markers.ConclusionsThe authors standardized a quick, cheap and reproducible in vitro macrophage assay that allows for the evaluation and estimation of the anti-inflammatory activity of MSC-sEVs.  相似文献   

7.
Abstract IFN-γ and/or LPS induced nitrite production and inhibition of Chlamydia trachomatis (CT) replication in the murine macrophage cell line, RAW264.7. Linear regression analysis demonstrated a strong correlation between nitrite production and inhibition of CT replication (correlation coefficients: −0.93, P < 0.001). l -NMMA specifically inhibited nitrite production and restored CT replication (55–71%). Inducible nitric oxide synthase (iNOS) mRNA was analyzed by Northern and dot blot hybridization with an iNOS cDNA probe. A strong correlation between iNOS mRNA expression and inhibition of CT replication also was observed (correlation coefficient: −0.97, P < 0.05). Furthermore, anti-TNF-α antibody, which completely neutralized biological activity of the secreted TNF-α, neither inhibited nitrite production nor restored CT replication in the LPS- and/or IFN-γ-treated RAW264.7 cells. In mouse peritoneal macrophages treated with IFN-γ, both l -NMMA and anti-TNF-α antibody inhibited nitrite production and restored CT replication. However, l -NMMA and the antibody had no effect upon nitrite production and CT inhibition in LPS-treated peritoneal macrophages. These data indicate that NO production is one mechanism for inhibition of CT replication in IFN-γ-activated murine macrophages.  相似文献   

8.
9.
10.
11.
12.
Tanshinone IIA (Tan IIA) is a major compound extracted from a traditional herbal medicine Salvia miltiorrhiza BUNGE, which is used to treat cardiovascular diseases, cerebrovascular diseases and postmenopausal syndrome. It has also been shown to possess anti-inflammatory activity. Since Tan IIA has a similar structure to that of 17β-estradiol (E2), the present study was undertaken to characterize the estrogenic activity of Tan IIA and to demonstrate a functional role of this activity in RAW 264.7 cells. In transient transfection assay, Tan IIA (10 μM) increases ERE-luciferase activity in an estrogen receptor (ER) subtype-dependent manner when either ERα or ERβ were co-expressed in Hela cells. In LPS-induced RAW 264.7 cells, Tan IIA exerts anti-inflammatory effects by inhibition of iNOS gene expression and NO production, as well as inhibition of inflammatory cytokine (IL-1β, IL-6, and TNF-α) expression via ER-dependent pathway. Therefore, it could serve as a potential selective estrogen receptor modulator (SERM) to treat inflammation-associated neurodegenerative and cardiovascular diseases without increasing the risk of breast cancer.  相似文献   

13.
14.

Background

Ligularia fischeri (common name Gomchwi) is known for its pharmaceutical properties and used in the treatment of jaundice, scarlet-fever, rheumatoidal arthritis, and hepatic diseases; however, little is known about its anti-inflammatory effect. In this study the influence of blanching and pan-frying on the anti-inflammatory activity of Ligularia fischeri (LF) was evaluated.

Results

Fresh LF and cooked LF showed no significant effect on the viability of macrophages after 24 h incubation. Fresh LF was found to be the most potent inhibitor of nitric oxide (NO) production at 100 μg/ml, while pan-fried LF showed little inhibitory effect on lipoloysaccharide (LPS) stimulated murine machrophage RAW264.7 cells. In contrast with its effect on NO production, pan-fried LF showed significant attenuation of the expression of inducible nitiric oxide synthase (iNOS) compared with fresh LF. In the cooking method of LF, PGE2 production was not affected in the LPS-induced RAW 264.7 cells. In LPS-induced RAW 264.7 cells, pretreatment by fresh and cooked LF increased COX2 mRNA expression. The 3-O-caffeoylquinic acid content of blanching and pan-frying LF increased by 4.92 and 9.7 fold with blanching and pan-frying respectively in comparison with uncooked LF.

Conclusions

Regardless of the cooking method, Ligularia fischeri exhibited potent inhibition of NO production through expression of iNOS in LPS-induced RAW264.7 cells.  相似文献   

15.
Inflammation is a system used by a host to defend against the presence of bacteria, viruses, or yeasts. Toll-like receptors (TLRs) in the plasma membranes of macrophages are activated when they recognize the molecular structure of a virus or bacterium. Lipopolysaccharide (LPS), an outer cell-wall component of Gram-negative bacteria, initiates an inflammatory process via TLR4. We investigated the effect of the extract of Anethum graveloens flowers (AGFs) on LPS-mediated inflammation in RAW 264.7 cells. The extract markedly suppressed nitric oxide generation in a concentration-dependent manner in LPS-stimulated RAW 264.7 cells. It inhibited inducible nitric oxide synthase (iNOS) and the mRNA expression of cytokines such as interleukin-1 beta and interleukin-6 in LPS-stimulated RAW 264.7 cells. It also inhibited iNOS protein levels in LPS-stimulated RAW 264.7 cells. In addition, AGF decreased the LPS-induced phosphorylation of mitogen-activated protein kinases in LPS-stimulated RAW 264.7 cells. AGF inhibited the phosphorylation of Akt, an upstream molecule of the nuclear factor kappa B (NF-κB) pathway, and thus inhibited NF-κB activity in LPS-stimulated RAW 264.7 cells. These results suggest that AGF exerts an anti-inflammatory effect in LPS-stimulated RAW 264.7 cells by inhibiting iNOS expression and blocking the NF-κB pathway.  相似文献   

16.
The biological activity of Mastixia arborea (MA) relates to inflammation, but the underlying mechanisms are largely unknown. We confirmed the anti-inflammatory effects of a methanol extract of MA extract on lipopolysaccharide (LPS)-stimulated RAW264.7 mouse macrophage cells and carrageenan-induced mice paw edema. The MA extract significantly inhibited nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-1β (IL-1β), and IL-6 production in LPS-stimulated RAW264.7 cells. In vitro expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was suppressed by the extract. The extract attenuated acute inflammatory responses in carrageenan-induced mice paw edema. A mechanism study indicated that translocation of the NF-κB (p65) subunit into the nucleus and phosphorylation of ERK and JNK were inhibited by the extract. These results indicate that the extract is an effective suppressor of the inflammatory response, blocking the phosphorylation of ERK and JNK and the translocation of NF-κB in macrophages, thereby producing an anti-inflammatory effect in vivo.  相似文献   

17.

Background  

2-Chloroethyl ethyl sulphide (CEES) is a sulphur vesicating agent and an analogue of the chemical warfare agent 2,2'-dichlorodiethyl sulphide, or sulphur mustard gas (HD). Both CEES and HD are alkylating agents that influence cellular thiols and are highly toxic. In a previous publication, we reported that lipopolysaccharide (LPS) enhances the cytotoxicity of CEES in murine RAW264.7 macrophages. In the present investigation, we studied the influence of CEES on nitric oxide (NO) production in LPS stimulated RAW264.7 cells since NO signalling affects inflammation, cell death, and wound healing. Murine macrophages stimulated with LPS produce NO almost exclusively via inducible nitric oxide synthase (iNOS) activity. We suggest that the influence of CEES or HD on the cellular production of NO could play an important role in the pathophysiological responses of tissues to these toxicants. In particular, it is known that macrophage generated NO synthesised by iNOS plays a critical role in wound healing.  相似文献   

18.

Background

β-Glucans obtained from fungi, such as baker's yeast (Saccharomyces cerevisiae)-derived β-glucan (BBG), potently activate macrophages through nuclear factor κB (NFκB) translocation and activation of its signaling pathways. The mechanisms by which β-glucans activate these signaling pathways differ from that of lipopolysaccharide (LPS). However, the effects of β-glucans on LPS-induced inflammatory responses are poorly understood. Here, we examined the effects of BBG on LPS-induced inflammatory responses in RAW264.7 mouse macrophages.

Methods

We explored the actions of BBG in RAW264.7 macrophages.

Results

BBG inhibited LPS-stimulated nitric oxide (NO) production in RAW264.7 macrophages by 35–70% at concentrations of 120–200 μg/ml. BBG also suppressed mRNA and protein expression of LPS-induced inducible NO synthase (iNOS) and mitogen-activated protein kinase phosphorylation, but not NFκB activation. By contrast, a neutralizing antibody against dectin-1, a β-glucan receptor, did not affect BBG-mediated inhibition of NO production. Meanwhile, BBG suppressed Pam3CSK-induced NO production. Moreover, BBG suppressed LPS-induced production of pro-and anti-inflammatory cytokines, including interleukin (IL)-1α, IL-1ra, and IL-27.

Conclusions

Our results indicate that BBG is a powerful inhibitor of LPS-induced NO production by downregulating iNOS expression. The mechanism involves inactivation of mitogen-activated protein kinase and TLR2 pathway, but is independent of dectin-1.

General significance

BBG might be useful as a novel agent for the chemoprevention of inflammatory diseases.  相似文献   

19.
Burkholderia mallei is a facultative intracellular pathogen that can cause fatal disease in animals and humans. To better understand the role of phagocytic cells in the control of infections caused by this organism, studies were initiated to examine the interactions of B. mallei with RAW 264.7 murine macrophages. Utilizing modified kanamycin-protection assays, B. mallei was shown to survive and replicate in RAW 264.7 cells infected at multiplicities of infection (moi) of ≤ 1. In contrast, the organism was efficiently cleared by the macrophages when infected at an moi of 10. Interestingly, studies demonstrated that the monolayers only produced high levels of TNF-α, IL-6, IL-10, GM-CSF, RANTES and IFN-β when infected at an moi of 10. In addition, nitric oxide assays and inducible nitric oxide synthase (iNOS) immunoblot analyses revealed a strong correlation between iNOS activity and clearance of B. mallei from RAW 264.7 cells. Furthermore, treatment of activated macrophages with the iNOS inhibitor, aminoguanidine, inhibited clearance of B. mallei from infected monolayers. Based upon these results, it appears that moi significantly influence the outcome of interactions between B. mallei and murine macrophages and that iNOS activity is critical for the clearance of B. mallei from activated RAW 264.7 cells.  相似文献   

20.
A series of 1,3-benzothiazinone derivatives were designed and synthesized for pharmacological assessments. Among the synthesized 19 compounds, some compounds showed high activities on inhibiting LPS-induced nitrite oxide and TNF-α production, down-regulating COX-2 and increasing IL-10 production in RAW264.7 cells. All the compounds had no obvious cytotoxicity in in vitro assay. LD50 value of compound 25 was greater than 2000 mg/kg, which was safer than meloxicam. Compound 25 significantly inhibited phosphorylation of NF-κB and STAT3 in LPS-induced RAW264.7 cells. Inhibition of synthesized compounds on COX activity was weaker than meloxicam. Compound 25 displayed lower gastrointestinal toxicity than meloxicam. Besides, compound 25 decreased the swelling in carrageenan-induced paw edema models of inflammation and reduced PGE2 level significantly. In summary, 1,3-benzothiazinone derivatives are unique scaffolds with anti-inflammatory activity and low toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号