首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The trophic niche and parasite infection of Arctic charr (Salvelinus alpinus) were explored in two lakes with sympatric burbot (Lota lota) and two lakes without burbot in subarctic Norway. The CPUE of burbot and charr were similar in one lake, but burbot had a low population density in the other. Burbot were benthivorous in both lakes. Other co-occurring species like brown trout (Salmo trutta), Atlantic salmon parr (Salmo salar), grayling (Thymallus thymallus) and minnow (Phoxinus phoxinus) were also benthivores. At high densities, benthivorous burbot forced the whole Arctic charr population to utilise mainly the limnetic trophic niche. In contrast, at low burbot density or without burbot present, Arctic charr were primarily benthivorous in the littoral zone. Thus, a clear interactive segregation in diet was observed between Arctic charr and burbot at high burbot densities. There was also a high predation pressure from burbot on young Arctic charr along the benthic zones. The extensive use of zooplankton as prey caused a high parasite infection pressure of copepod transmitted Diphyllobothrium spp. larvae, with the potential for high negative impact on the Arctic charr population. As the benthivore trophic niche was occupied by burbot, the ecological opportunities for polymorphism with benthivorous ecotypes or morphs of Arctic charr were probably prevented. Therefore, the sympatry with burbot seems to have large ecological and evolutionary consequences for this Arctic charr population compared with neighbouring lakes where burbot is absent.  相似文献   

2.
Little research has been conducted on effects of iteroparous anadromous fishes on Arctic lakes. We investigated trophic ecology, fish growth, and food web structure in six lakes located in Nunavut, Canada; three lakes contained anadromous Arctic charr (Salvelinus alpinus) whereas three lakes did not contain Arctic charr. All lakes contained forage fishes and lake trout (Salvelinus namaycush; top predator). Isotope ratios (δ13C, δ15N) of fishes and invertebrates did not differ between lakes with and without anadromous Arctic charr; if anadromous Arctic charr deliver marine-derived nutrients and/or organic matter to freshwater lakes, these inputs could not be detected with δ13C and/or δ15N. Lake trout carbon (C):nitrogen (N) and condition were significantly higher in lakes with Arctic charr (C:N = 3.42, K = 1.1) than in lakes without Arctic charr (C:N = 3.17, K = 0.99), however, and ninespine stickleback (Pungitius pungitius) condition was significantly lower in lakes with Arctic charr (K = 0.58) than in lakes without Arctic charr (K = 0.64). Isotope data indicated that pre-smolt and resident Arctic charr may be prey for lake trout and compete with ninespine stickleback. Linear distance metrics applied to isotope data showed that food webs were more compact and isotopically redundant in lakes where Arctic charr were present. Despite this, lake trout populations in lakes with Arctic charr occupied a larger isotope space and showed greater inter-individual isotope differences. Anadromous Arctic charr appear to affect ecology and feeding of sympatric freshwater species, but effects are more subtle than those seen for semelparous anadromous species.  相似文献   

3.
A generalist strategy, as an adaptation to environmental heterogeneity, is common in Arctic freshwater systems, often accompanied, however, by intraspecific divergence that promotes specialization in niche use. To better understand how resources may be partitioned in a northern system that supports intraspecific diversity of Lake Trout, trophic niches were compared among four shallow‐water morphotypes in Great Bear Lake (N65° 56′ 39″, W120° 50′ 59″). Bayesian mixing model analyses of stable isotopes of carbon and nitrogen were conducted on adult Lake Trout. Major niche overlap in resource use among four Lake Trout morphotypes was found within littoral and pelagic zones, which raises the question of how such polymorphism can be sustained among opportunistic generalist morphotypes. Covariances of our morphological datasets were tested against δ13C and δ15N values. Patterns among morphotypes were mainly observed for δ15N. This link between ecological and morphological differentiation suggested that selection pressure(s) operate at the trophic level (δ15N), independent of habitat, rather than along the habitat‐foraging opportunity axis (δ13C). The spatial and temporal variability of resources in Arctic lakes, such as Great Bear Lake, may have favored the presence of multiple generalists showing different degrees of omnivory along a weak benthic–pelagic gradient. Morphs 1–3 had more generalist feeding habits using both benthic and pelagic habitats than Morph 4, which was a top‐predator specialist in the pelagic habitat. Evidence for frequent cannibalism in Great Bear Lake was found across all four morphotypes and may also contribute to polymorphism. We suggest that the multiple generalist morphs described here from Great Bear Lake are a unique expression of diversity due to the presumed constraints on the evolution of generalists and contrast with the development of multiple specialists, the standard response to intraspecific divergence.  相似文献   

4.
Nearly half of the freshwater discharge into the Gulf of Alaska originates from landscapes draining glacier runoff, but the influence of the influx of riverine organic matter on the trophodynamics of coastal marine food webs is not well understood. We quantified the ecological impact of riverine organic matter subsidies to glacier‐marine habitats by developing a multi‐trophic level Bayesian three‐isotope mixing model. We utilized large gradients in stable (δ13C, δ15N, δ2H) and radiogenic (Δ14C) isotopes that trace riverine and marine organic matter sources as they are passed from lower to higher trophic levels in glacial‐marine habitats. We also compared isotope ratios between glacial‐marine and more oceanic habitats. Based on isotopic measurements of potential baseline sources, ambient water and tissues of marine consumers, estimates of the riverine organic matter source contribution to upper trophic‐level species including fish and seabirds ranged from 12% to 44%. Variability in resource use among similar taxa corresponded to variation in species distribution and life histories. For example, riverine organic matter assimilation by the glacier‐nesting seabirds Kittlitz's murrelet (Brachyramphus brevirostris) was greater than that of the forest‐nesting marbled murrelet (B. marmoratus). The particulate and dissolved organic carbon in glacial runoff and near surface coastal waters was aged (12100–1500 years BP 14C‐age) but dissolved inorganic carbon and biota in coastal waters were young (530 years BP 14C‐age to modern). Thus terrestrial‐derived subsidies in marine food webs were primarily composed of young organic matter sources released from glacier ecosystems and their surrounding watersheds. Stable isotope compositions also revealed a divergence in food web structure between glacial‐marine and oceanic sites. This work demonstrates linkages between terrestrial and marine ecosystems, and facilitates a greater understanding of how climate‐driven changes in freshwater runoff have the potential to alter food web dynamics within coastal marine ecosystems in Alaska.  相似文献   

5.
Arctic ecosystem dynamics are shifting in response to warming temperatures and sea ice loss. Such ecosystems may be monitored by examining the diet of upper trophic level species, which varies with prey availability. To assess interannual variation in the Beaufort Sea ecosystem, we examined spatial and temporal trends in ringed seal (Pusa hispida) δ13C and δ15N in claw growth layers grown from 1964 to 2011. Stable isotopes were correlated with climate indices, environmental conditions, seal population productivity, and geographic location. Sex and age did not influence stable isotopes. Enriched 13C was linked to cyclonic circulation regimes, seal productivity, and westward sampling locations. Higher δ15N was linked to lower sea surface temperatures, a higher percentage of pups in the subsistence harvest, and sample locations that were eastward and further from shore. From the 1960s to 2000s, ringed seal niche width expanded, suggesting a diversification of diet due to expansion of prey and/or seal space use. Overall, trends in ringed seal stable isotopes indicate changes within the Beaufort Sea ecosystem affected by water temperatures and circulation regimes. We suggest that continued monitoring of upper trophic level species will yield insights into changing ecosystem structure with climate change.  相似文献   

6.
While most studies have focused on the timing and nature of ontogenetic niche shifts, information is scarce about the effects of community structure on trophic ontogeny of top predators. We investigated how community structure affects ontogenetic niche shifts (i.e., relationships between body length, trophic position, and individual dietary specialization) of a predatory fish, brown trout (Salmo trutta). We used stable isotope and stomach content analyses to test how functional characteristics of lake fish community compositions (competition and prey availability) modulate niche shifts in terms of (i) piscivorous behavior, (ii) trophic position, and (iii) individual dietary specialization. Northern Scandinavian freshwater fish communities were used as a study system, including nine subarctic lakes with contrasting fish community configurations: (i) trout‐only systems, (ii) two‐species systems (brown trout and Arctic charr [Salvelinus alpinus] coexisting), and (iii) three‐species systems (brown trout, Arctic charr, and three‐spined sticklebacks [Gasterosteus aculeatus] coexisting). We expected that the presence of profitable small prey (stickleback) and mixed competitor–prey fish species (charr) supports early piscivory and high individual dietary specialization among trout in multispecies communities, whereas minor ontogenetic shifts were expected in trout‐only systems. From logistic regression models, the presence of a suitable prey fish species (stickleback) emerged as the principal variable determining the size at ontogenetic niche shifts. Generalized additive mixed models indicated that fish community structure shaped ontogenetic niche shifts in trout, with the strongest positive relationships between body length, trophic position, and individual dietary specialization being observed in three‐species communities. Our findings revealed that the presence of a small‐sized prey fish species (stickleback) rather than a mixed competitor–prey fish species (charr) was an important factor affecting the ontogenetic niche‐shift processes of trout. The study demonstrates that community structure may modulate the ontogenetic diet trajectories of and individual niche specialization within a top predator.  相似文献   

7.
8.
We compared the trophic niches of freshwater sculpins Cottus spp. with those of other co-habiting forage fishes in two groups of boreal lakes with distinct habitats and fish communities. Near North Lakes (45° 00′ to 47° 30′ N) were deeper, stratified and contained lake trout Salvelinus namaycush as the apex piscivore, whereas Far North Lakes (51° 10′ to 52° 20′ N) were shallower, did not stratify and contained pike Esox lucius and walleye Sander vitreus as the apex piscivores. Trophic niches of sculpins and other forage fishes were compared based on niche metrics calculated from muscle stable carbon (δ13C) and nitrogen (δ15N) isotope ratios. In Near North Lakes, sculpins were found almost exclusively in deep, offshore waters and their niche positions reflected a greater reliance on pelagic production (lower δ13C) and a higher trophic elevation (higher δ15N) compared with most other forage fishes. Furthermore, sculpins in Near North Lakes tended to have larger trophic niches (occupied greater area in δ13C– δ15N space), particularly in the food chain (δ15N) dimension, than other cohabiting forage fishes. In contrast, sculpins in Far North Lakes were commonly found in the nearshore and had trophic niche positions and sizes that were similar to those of the other cohabiting forage fishes. This study illustrates the flexibility in the realised trophic niches of sculpins in relation to habitat availability and fish community composition in boreal lakes.  相似文献   

9.
10.
Trophic niche divergence is considered to be a major process by which species coexistence is facilitated. When studying niche segregation in lake ecosystems, we tend to view the niche on a one-dimensional pelagic-littoral axis. In reality, however, the niche use may be more complex and individual fidelity to a niche may be variable both between and within populations. In order to study this complexity, relative simple systems with few species are needed. In this paper, we study how competitor presence affects the resource use of brown trout (Salmo trutta) in 11 species-poor Faroese lakes by comparing relative abundance, stable isotope ratios and diet in multiple habitats. In the presence of three-spined sticklebacks (Gasterosteus aculeatus), a higher proportion of the trout population was found in the pelagic habitat, and trout in general relied on a more pelagic diet base as compared to trout living in allopatry or in sympatry with Arctic charr (Salvelinus alpinus). Diet analyses revealed, however, that niche-segregation may be more complex than described on a one-dimensional pelagic-littoral axis. Trout from both littoral and offshore benthic habitats had in the presence of sticklebacks a less benthic diet as compared to trout living in allopatry or in sympatry with charr. Furthermore, we found individual habitat specialization between littoral/benthic and pelagic trout in deep lakes. Hence, our findings indicate that for trout populations interspecific competition can drive shifts in both habitat and niche use, but at the same time they illustrate the complexity of the ecological niche in freshwater ecosystems.  相似文献   

11.
12.
Marine food webs are highly compartmentalized, and characterizing the trophic niches among consumers is important for predicting how impact from human activities affects the structuring and functioning of marine food webs. Biomarkers such as bulk stable isotopes have proven to be powerful tools to elucidate trophic niches, but they may lack in resolution, particularly when spatiotemporal variability in a system is high. To close this gap, we investigated whether carbon isotope (δ13C) patterns of essential amino acids (EAAs), also termed δ13CAA fingerprints, can characterize niche differentiation in a highly dynamic marine system. Specifically, we tested the ability of δ13CAA fingerprints to differentiate trophic niches among six functional groups and ten individual species in the Baltic Sea. We also tested whether fingerprints of the common zooplanktivorous fishes, herring and sprat, differ among four Baltic Sea regions with different biochemical conditions and phytoplankton assemblages. Additionally, we investigated how these results compared to bulk C and N isotope data for the same sample set. We found significantly different δ13CAA fingerprints among all six functional groups. Species differentiation was in comparison less distinct, due to partial convergence of the species' fingerprints within functional groups. Herring and sprat displayed region‐specific δ13CAA fingerprints indicating that this approach could be used as a migratory marker. Niche metrics analyses showed that bulk isotope data had a lower power to differentiate between trophic niches than δ13CAA fingerprinting. We conclude that δ13CAA fingerprinting has a strong potential to advance our understanding of ecological niches, and trophic linkages from producers to higher trophic levels in dynamic marine systems. Given how management practices of marine resources and habitats are reshaping the structure and function of marine food webs, implementing new and powerful tracer methods are urgently needed to improve the knowledge base for policy makers.  相似文献   

13.
Green sturgeon (Acipenser medirostris) and white sturgeon (A. transmontanus) are closely related, sympatric species that inhabit the San Francisco estuary. Green sturgeon have a more marine life history but both species spawn in the Sacramento River and reside for some duration in San Francisco Bay. These sturgeons are of conservation concern, yet little is known about their dietary competition when they overlap in space and time. To examine evidence of dietary differentiation, we collected whole blood and blood plasma from 26 green sturgeon and 35 white sturgeon in San Francisco Bay. Using carbon and nitrogen stable isotope analyses, we compared their relative trophic levels and foraging locations along the freshwater to marine gradient. Sampling blood plasma and whole blood allowed comparison of dietary integration over shorter and longer time scales, respectively. Plasma and whole blood δ13C values confirmed green sturgeon had more marine dietary sources than white sturgeon. Plasma δ15N values revealed white sturgeon fed at lower trophic levels than green sturgeon recently, however, whole blood δ15N values demonstrated the two species fed at the same trophic level over longer time scales. Larger individuals of both species had higher δ13C values than smaller individuals, reflecting more marine food sources in adulthood. Length did not affect δ15N values of either species. Isotope analyses supported the more marine life history of green than white sturgeon and potentially highlight a temporary trophic differentiation of diet between species during and preceding the overlapping life stage in San Francisco Bay.  相似文献   

14.
15.
The purpose of this study was to assess if there was trophic niche overlap of silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis) in four large freshwater ecosystems from southern China using stable carbon and nitrogen isotopes (δ13C and δ15N). Multivariate analysis of variance (MANOVA) on the δ13C and δ15N values measured from muscle tissue indicates trophic niche overlap in one unproductive and one highly productive large system and trophic niche segregation in two systems with moderate watershed size and productivity. For these two coexisting planktivorous fish, which were hitherto believed to occupy different trophic niches, this study demonstrated that the degree of their trophic niche overlap varied according to ecosystem properties.  相似文献   

16.
Summer habitat use by sympatric Arctic charr Salvelinus alpinus, young Atlantic salmon Salmo salar and brown trout Salmo trutta was studied by two methods, direct underwater observation and electrofishing, across a range of habitats in two sub-arctic rivers. More Arctic charr and fewer Atlantic salmon parr were observed by electrofishing in comparison to direct underwater observation, perhaps suggesting a more cryptic behaviour by Arctic charr. The three species segregated in habitat use. Arctic charr, as found by direct underwater observation, most frequently used slow (mean ±s .d . water velocity 7·2 ± 16·6 cm s−1) or often stillwater and deep habitats (mean ±s .d . depth 170·1 ± 72·1 cm). The most frequently used mesohabitat type was a pool. Young Atlantic salmon favoured the faster flowing areas (mean ±s .d . water velocity 44·0 ± 16·8 cm s−1 and depth 57·1 ± 19·0 cm), while brown trout occupied intermediate habitats (mean ±s .d . water velocity 33·1 ± 18·6 cm s−1 and depth 50·2 ± 18·0 cm). Niche overlap was considerable. The Arctic charr observed were on average larger (total length) than Atlantic salmon and brown trout (mean ±s .d . 21·9 ± 8·0, 10·2 ± 3·1 and 13·4 ± 4·5 cm). Similar habitat segregation between Atlantic salmon and brown trout was found by electrofishing, but more fishes were observed in shallower habitats. Electrofishing suggested that Arctic charr occupied habitats similar to brown trout. These results, however, are biased because electrofishing was inefficient in the slow-deep habitat favoured by Arctic charr. Habitat use changed between day and night in a similar way for all three species. At night, fishes held positions closer to the bottom than in the day and were more often observed in shallower stream areas mostly with lower water velocities and finer substrata. The observed habitat segregation is probably the result of interference competition, but the influence of innate selective differences needs more study.  相似文献   

17.
Twenty-one metazoan parasite species were found in Arctic charr at three coastal sites in west Greenland, including Neascus sp. and the nematode Pseudoterranova decipiens , new records for Arctic charr. Twelve species are new records for Arctic charr in Greenland. The quantitative composition of the parasite communities varied, but the freshwater species ( Diphyllobothrium ditremwn, Eubothriutn salvelini, Proteocephalus longicollis, Crepidostotnutn farianis ) were usually numerically dominant, even in anadromous fish. The absence from Greenland of Mysidacea, Amphipoda, Ephemeroptera and Odonata excludes parasites requiring such organisms as intermediate hosts, including the cestode Cyathocephalus truncatus , nematodes of the genus Cystidicola , and freshwater acanthocephalans.  相似文献   

18.
Narwhals (Monodon monoceros) are sentinel species in the Arctic and to investigate marine food web changes from 1982–2011 we examined diet using fatty acids, δ15N, and δ13C, in narwhals from Baffin Bay (BB) and northern Hudson Bay (NHB). We predicted temporal changes would be greater in NHB due to a significant reduction in summer ice cover. In NHB, δ15N significantly increased, δ13C displayed a parabolic trend, and fatty acids gradually shifted, albeit not significantly, over time. δ15N was stable, δ13C decreased, and fatty acids significantly changed over time in BB. Stable isotope mixing models indicated a dietary reduction in capelin and increase in Greenland halibut from 1994–2000 to 2006–2011 in BB, while capelin was an important dietary component for narwhals in NHB in recent years (2006–2011). These dietary changes may be attributed to changes in sea ice and narwhal migration. Seasonal dietary changes, as evidenced by changes in blubber fatty acids and skin and muscle stable isotopes, were not as apparent in the NHB population, which may be indicative of a reduced migratory distance. Long‐term monitoring of narwhal diet and migratory patterns associated with reduced sea ice provides invaluable information about how the marine ecosystem will redistribute with global warming.  相似文献   

19.
Pteropods are a group of small marine gastropods that are highly sensitive to multiple stressors associated with climate change. Their trophic ecology is not well studied, with most research having focused primarily on the effects of ocean acidification on their fragile, aragonite shells. Stable isotopes analysis coupled with isotope‐based Bayesian niche metrics is useful for characterizing the trophic structure of biological assemblages. These approaches have not been implemented for pteropod assemblages. We used isotope‐based Bayesian niche metrics to investigate the trophic relationships of three co‐occurring pteropod species, with distinct feeding behaviors, sampled from the Southern Kerguelen Plateau area in the Indian Sector of the Southern Ocean—a biologically and economically important but poorly studied region. Two of these species were gymnosomes (shell‐less pteropods), which are traditionally regarded as specialist predators on other pteropods, and the third species was a thecosome (shelled pteropod), which are typically generalist omnivores. For each species, we aimed to understand (a) variability and overlap among isotopic niches; and (b) whether there was a relationship between body size and trophic position. Observed isotopic niche areas were broadest for gymnosomes, especially Clione limacina antarctica, whose observed isotopic niche area was wider than expected on both δ13C and δ15N value axes. We also found that trophic position significantly increased with increasing body length for Spongiobranchaea australis. We found no indication of a dietary shift toward increased trophic position with increasing body size for Clio pyramidata f. sulcata. Trophic positions ranged from 2.8 to 3.5, revealing an assemblage composed of both primary and secondary consumer behaviors. This study provides a comprehensive comparative analysis on trophodynamics in Southern Ocean pteropod species, and supports previous studies using gut content, fatty acid and stable isotope analyses. Combined, our results illustrate differences in intraspecific trophic behavior that may be attributed to differential feeding strategies at species level.  相似文献   

20.
1. Termites consume a wide range of plant material at different stages of decomposition and, accordingly, have been classified into ‘feeding groups’. African savannah ecosystems harbour many termite species, yet most belong to Termitidae. Especially striking is the co‐occurrence of up to eight Macrotermitinae and five Trinervitermes species, each having apparently identical trophic niches, i.e. fungus‐growers and grass‐feeders, respectively. 2. This study examined stable isotope signatures of 15N and 13C of West African savannah termites to test the validity of existing feeding group concepts and whether there is fine‐scaled niche differentiation of species within feeding groups. Despite a phylogenetic signal that species from the same subfamily and congenerics have correlated isotope signatures, evidence of niche differentiation was found. 3. Interestingly, species with similar δ15N values generally differed in δ13C values, and vice versa. The dominant mound‐building fungus‐grower Macrotermes bellicosus had the lowest δ15N values among all fungus‐growers, indicating that it occupies a different trophic niche. 4. This fine‐scaled differentiation along the trophic niche axis can help to explain the coexistence of so many apparently identical termite species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号