首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Community structure affects trophic ontogeny in a predatory fish
Authors:Javier Sánchez‐Hernández  Antti P Eloranta  Anders G Finstad  Per‐Arne Amundsen
Institution:1. Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Santiago de Compostela, Spain;2. Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Troms?, Norway;3. Department of Natural History, NTNU University Museum, Trondheim, Norway;4. Aquatic Ecology Department, Norwegian Institute for Nature Research (NINA), Trondheim, Norway;5. Department of Biological and Environmental Sciences, University of Jyv?skyl?, Jyv?skyl?, Finland
Abstract:While most studies have focused on the timing and nature of ontogenetic niche shifts, information is scarce about the effects of community structure on trophic ontogeny of top predators. We investigated how community structure affects ontogenetic niche shifts (i.e., relationships between body length, trophic position, and individual dietary specialization) of a predatory fish, brown trout (Salmo trutta). We used stable isotope and stomach content analyses to test how functional characteristics of lake fish community compositions (competition and prey availability) modulate niche shifts in terms of (i) piscivorous behavior, (ii) trophic position, and (iii) individual dietary specialization. Northern Scandinavian freshwater fish communities were used as a study system, including nine subarctic lakes with contrasting fish community configurations: (i) trout‐only systems, (ii) two‐species systems (brown trout and Arctic charr Salvelinus alpinus] coexisting), and (iii) three‐species systems (brown trout, Arctic charr, and three‐spined sticklebacks Gasterosteus aculeatus] coexisting). We expected that the presence of profitable small prey (stickleback) and mixed competitor–prey fish species (charr) supports early piscivory and high individual dietary specialization among trout in multispecies communities, whereas minor ontogenetic shifts were expected in trout‐only systems. From logistic regression models, the presence of a suitable prey fish species (stickleback) emerged as the principal variable determining the size at ontogenetic niche shifts. Generalized additive mixed models indicated that fish community structure shaped ontogenetic niche shifts in trout, with the strongest positive relationships between body length, trophic position, and individual dietary specialization being observed in three‐species communities. Our findings revealed that the presence of a small‐sized prey fish species (stickleback) rather than a mixed competitor–prey fish species (charr) was an important factor affecting the ontogenetic niche‐shift processes of trout. The study demonstrates that community structure may modulate the ontogenetic diet trajectories of and individual niche specialization within a top predator.
Keywords:dietary switch  fish assemblage  individual specialization  interindividual variation  niche shift  predation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号