首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Patients with end‐stage renal disease (ESRD) have elevated circulating calcium (Ca) and phosphate (Pi), and exhibit accelerated progression of calcific aortic valve disease (CAVD). We hypothesized that matrix vesicles (MVs) initiate the calcification process in CAVD. Ca induced rat valve interstitial cells (VICs) calcification at 4.5 mM (16.4‐fold; p < 0.05) whereas Pi treatment alone had no effect. Ca (2.7 mM) and Pi (2.5 mM) synergistically induced calcium deposition (10.8‐fold; p < 0.001) in VICs. Ca treatment increased the mRNA of the osteogenic markers Msx2, Runx2, and Alpl (p < 0.01). MVs were harvested by ultracentrifugation from VICs cultured with control or calcification media (containing 2.7 mM Ca and 2.5 mM Pi) for 16 hr. Proteomics analysis revealed the marked enrichment of exosomal proteins, including CD9, CD63, LAMP‐1, and LAMP‐2 and a concomitant up‐regulation of the Annexin family of calcium‐binding proteins. Of particular note Annexin VI was shown to be enriched in calcifying VIC‐derived MVs (51.9‐fold; p < 0.05). Through bioinformatic analysis using Ingenuity Pathway Analysis (IPA), the up‐regulation of canonical signaling pathways relevant to cardiovascular function were identified in calcifying VIC‐derived MVs, including aldosterone, Rho kinase, and metal binding. Further studies using human calcified valve tissue revealed the co‐localization of Annexin VI with areas of MVs in the extracellular matrix by transmission electron microscopy (TEM). Together these findings highlight a critical role for VIC‐derived MVs in CAVD. Furthermore, we identify calcium as a key driver of aortic valve calcification, which may directly underpin the increased susceptibility of ESRD patients to accelerated development of CAVD.  相似文献   

2.
Disruption of the extracellular matrix (ECM) is frequently found in calcific aortic valve disease (CAVD), yet the role of ECM components in valvular interstitial cell (VIC) function and dysfunction remains poorly understood. This study examines the contributions of exogenous and endogenous hyaluronic acid (HA), in both two-dimensional (2-D) and 3-D environments, in regulating the phenotype and calcification of VICs. VIC calcification was first assessed in a 2-D setting in which the cells were exposed to different molecular weights of exogenous HA presented in either an immobilized or soluble form. Delivery of HA suppressed nodule formation in a molecular weight-dependent manner, while blocking VIC recognition of HA via an antibody to CD44 abolished these nodule-suppressive effects and stimulated other hallmarks of valvular dysfunction. These 2-D results were then validated in a more physiologically-relevant setting, using an approach that allowed the characterization of VIC phenotype in response to HA alterations in the native 3-D environment. In this approach, leaflet organ cultures were analyzed following treatment with anti-CD44 or with hyaluronidase to specifically remove HA. Disruption of VIC-HA interactions upregulated markers of VIC disease and induced leaflet mineralization. Similarly, HA-deficient leaflets exhibited numerous hallmarks of CAVD, including increased VIC proliferation, apoptosis, increased expression of disease-related markers, and mineralization. These findings suggest that VIC-HA interactions are crucial in maintaining a healthy VIC phenotype. Identification ECM components that can regulate VIC phenotype and function has significant implications for understanding native valve disease, investigating possible treatments, and designing new biomaterials for valve tissue engineering.  相似文献   

3.
Increasing evidence indicates that the progression of calcific aortic valve disease (CAVD) is influenced by the mechanical forces experienced by valvular interstitial cells (VICs) embedded within the valve matrix. The ability of VICs to sense and respond to tissue-level mechanical stimuli depends in part on cellular-level biomechanical properties, which may change with disease. In this study, we used micropipette aspiration to measure the instantaneous elastic modulus of normal VICs and of VICs induced to undergo pathological differentiation in vitro to osteoblast or myofibroblast lineages on compliant and stiff collagen gels, respectively. We found that VIC elastic modulus increased after subculturing on stiff tissue culture-treated polystyrene and with pathological differentiation on the collagen gels. Fibroblast, osteoblast, and myofibroblast VICs had distinct cellular-level elastic properties that were not fully explained by substrate stiffness, but were correlated with α-smooth muscle actin expression levels. C-type natriuretic peptide, a peptide expressed in aortic valves in vivo, prevented VIC stiffening in vitro, consistent with its ability to inhibit α-smooth muscle actin expression and VIC pathological differentiation. These data demonstrate that VIC phenotypic plasticity and mechanical adaptability are linked and regulated both biomechanically and biochemically, with the potential to influence the progression of CAVD.  相似文献   

4.
Both aortic and mitral valves calcify in pathological conditions; however, the prevalence of aortic valve calcification is high whereas mitral valve leaflet calcification is somewhat rare. Patterns of valvular calcification may differ due to valvular architecture, but little is known to that effect. In this study, we investigated the intrinsic osteogenic differentiation potential of aortic versus mitral valve interstitial cells provided minimal differentiation conditions. For the assessment of calcification at the cellular level, we used classic inducers of osteogenesis in stem cells: β-glycerophosphate (β-Gly), dexamethasone (Dex), and ascorbate (Asc). In addition to proteomic analyses, osteogenic markers and calcium precipitates were evaluated across treatments of aortic and mitral valve cells. The combination of β-Gly, Asc, and Dex induced aortic valve interstitial cells to synthesize extracellular matrix, overexpress osteoblastic markers, and deposit calcium. However, no strong evidence showed the calcification of mitral valve interstitial cells. Mitral cells mainly responded to Asc and Dex by cell activation. These findings provide a deeper understanding of the physiological properties of aortic and mitral valves and tendencies for calcific changes within each valve type, contributing to the development of future therapeutics for heart valve diseases.  相似文献   

5.
6.
While many large-scale risk factors for calcific aortic valve disease (CAVD) have been identified, the molecular etiology and subsequent pathogenesis of CAVD have yet to be fully understood. Specifically, it is unclear what biological phenomena underlie the significantly higher occurrence of CAVD in the male population. We hypothesized the existence of intrinsic, cellular-scale differences between male and female valvular interstitial cells (VICs) that contribute to male sex being a risk factor for CAVD. Differences in gene expression profiles between healthy male and female porcine VICs were investigated via microarray analysis. Mean expression values of each probe set in the male samples were compared to the female samples, and biological processes were analyzed for overrepresentation using Gene Ontology term enrichment analysis. There were 183 genes identified as significantly (fold change>2; P<0.05) different in male versus female aortic valve leaflets. Within this significant gene list there were 298 overrepresented biological processes, several of which are relevant to pathways identified in CAVD pathogenesis. In particular, pathway analysis indicated that cellular proliferation, apoptosis, migration, ossification, angiogenesis, inflammation, and extracellular matrix reorganization were all significantly represented in the data set. These gene expression findings also translated into functional differences in VIC behavior in the in vitro environment, as sex-related differences in proliferation and apoptosis were confirmed in VIC populations cultured in vitro. These data suggest that a sex-related propensity for CAVD exists on the cellular level in healthy subjects, a phenomenon that could have significant clinical implications. These findings also strongly support discontinuing the use of mixed-sex VIC cultures, thereby changing the current standard in the field.  相似文献   

7.
Inhibitory role of Notch1 in calcific aortic valve disease   总被引:1,自引:0,他引:1  
  相似文献   

8.
目的:探究小干扰RNA(small interference RNA,siRNA)介导的骨形态发生蛋白7(bone morphogenetic protein7,BMP7)基因沉默对钙盐诱导猪主动脉瓣膜间质细胞成骨分化的影响及机制,为钙化性主动脉瓣膜病(calcific aortic valve disease,CAVD)的干预及治疗提供理论依据。方法:非CAVD瓣膜组织(non-CAVD组)取自手术治疗的主动脉夹层患者,CAVD瓣膜组织(CAVD组)取自因钙化性主动脉瓣狭窄而进行主动脉瓣膜置换术的患者,采用免疫组化和Western blot法检测non-CAVD组和CAVD组中BMP7、Runt相关转录因子2(Runx2)的蛋白质表达水平。选取健康家猪处死后即刻于无菌条件下取主动脉瓣叶,采用胶原酶连续消化法分离主动脉瓣膜间质细胞,观察其形态特征,并用免疫荧光染色行表型鉴定。采用脂质体转染法将BMP7-siRNA转染猪主动脉瓣膜间质细胞,采用qPCR和Western blot法验证BMP7表达的变化;利用钙盐培养基诱导细胞成骨分化,建立体外主动脉瓣膜间质细胞钙化模型后,采用ALP染色和茜素红S染色实验分别检测细胞早期及晚期成骨分化能力;采用qPCR和Western blot法分别检测细胞成骨相关基因及蛋白质Runx2、OCN和OPN的表达情况。并用Western blot法检测BMP7下游信号通路中Smad1/5/8的磷酸化水平。结果:BMP7和Runx2蛋白在CAVD组中表达明显高于non-CAVD组。成功分离出原代猪主动脉瓣膜间质细胞,α-平滑肌肌动蛋白(α-SMA)及波形蛋白(vimentin)染色阳性,血管性血友病因子(von willebrand factor,vWF)染色阴性。转染BMP7-siRNA后猪主动脉瓣膜间质细胞中BMP7的mRNA和蛋白质水平均明显下调,早期及晚期成骨分化能力均明显降低。沉默BMP7基因的表达,可下调Runx2、OCN和OPN的基因及蛋白质表达,且磷酸化的Smad1/5/8(p-Smad1/5/8)蛋白水平明显降低。结论:BMP7基因沉默抑制钙盐诱导的主动脉瓣膜间质细胞的成骨分化能力,BMP7/Smads信号通路可能在该过程中发挥重要作用。  相似文献   

9.
The differentiation of valvular interstitial cells (VICs) to a myofibroblastic or osteoblast-like phenotype is commonly found in calcific valvular stenosis, although the molecular-level mechanisms of this process remain poorly understood. Due to the role of the Rho pathway in various vascular diseases and in the expression of a myofibroblast phenotype, the present study was inspired by the hypothesis that Rho activation is involved in regulating cellular processes related to valve calcification. It was found that increased RhoA and Rho kinase (ROCK) activity was associated with increased nodule formation in VIC cultures in vitro, and intentional induction of RhoA activity led to a further increase in nodules and expression of α-smooth muscle actin. VICs treated with ROCK inhibitors were also examined for nodule formation, proliferation, apoptosis, and expression of myofibroblastic or osteoblastic markers. ROCK inhibition dramatically reduced myofibroblast-regulated nodule formation in VIC cultures, as evidenced by a decrease in nodule number, total nodule area, α-smooth muscle actin-positive stress fibers, apoptosis, and gene expression of myofibroblast-related phenotypic markers. Meanwhile, ROCK inhibition was less effective at reducing nodule formation associated with osteogenic activity. In fact, ROCK inhibition increased the expression of alkaline phosphatase and effected only a modest decrease in nodule number when applied to VIC cultures with higher osteogenic activity. Thus, the Rho pathway possesses a complex role in regulating the VIC phenotype and nodule formation, and it is hoped that further elucidation of these molecular-level events will lead to an improved understanding of valvular disease and identification of potential treatments.  相似文献   

10.
Type 2 diabetes is a known risk factor for cardiovascular diseases and is associated with an increased risk to develop aortic heart valve degeneration. Nevertheless, molecular mechanisms leading to the pathogenesis of valve degeneration in the context of diabetes are still not clear. Hence, we hypothesized that classical key factors of type 2 diabetes, hyperinsulinemia and hyperglycemia, may affect signaling, metabolism and degenerative processes of valvular interstitial cells (VIC), the main cell type of heart valves. Therefore, VIC were derived from sheep and were treated with hyperinsulinemia, hyperglycemia and the combination of both. The presence of insulin receptors was shown and insulin led to increased proliferation of the cells, whereas hyperglycemia alone showed no effect. Disturbed insulin response was shown by impaired insulin signaling, i.e. by decreased phosphorylation of Akt/GSK-3α/β pathway. Analysis of glucose transporter expression revealed absence of glucose transporter 4 with glucose transporter 1 being the predominantly expressed transporter. Glucose uptake was not impaired by disturbed insulin response, but was increased by hyperinsulinemia and was decreased by hyperglycemia. Analyses of glycolysis and mitochondrial respiration revealed that VIC react with increased activity to hyperinsulinemia or hyperglycemia, but not to the combination of both. VIC do not show morphological changes and do not acquire an osteogenic phenotype by hyperinsulinemia or hyperglycemia. However, the treatment leads to increased collagen type 1 and decreased α-smooth muscle actin expression. This work implicates a possible role of diabetes in early phases of the degeneration of aortic heart valves.  相似文献   

11.
Aortic valve (AoV) calcification is common in aged populations. Its subsequent aortic stenosis has been linked with increased morbidity, but still has no effective pharmacological intervention. Our previous data show endoplasmic reticulum (ER) stress is involved in AoV calcification. Here, we investigated whether deficiency of ER stress downstream effector CCAAT/enhancer‐binding protein homology protein (CHOP) may prevent development of AoV calcification. AoV calcification was evaluated in Apoe?/? mice (n = 10) or in mice with dual deficiencies of ApoE and CHOP (Apoe?/?CHOP?/?, n = 10) fed with Western diet for 24 weeks. Histological and echocardiographic analysis showed that genetic ablation of CHOP attenuated AoV calcification, pro‐calcification signaling activation, and apoptosis in the leaflets of Apoe?/? mice. In cultured human aortic valvular interstitial cells (VIC), we found oxidized low‐density lipoprotein (oxLDL) promoted apoptosis and osteoblastic differentiation of VIC via CHOP activation. Using conditioned media (CM) from oxLDL‐treated VIC, we further identified that oxLDL triggered osteoblastic differentiation of VIC via paracrine pathway, while depletion of apoptotic bodies (ABs) in CM suppressed the effect. CM from oxLDL‐exposed CHOP‐silenced cells prevented osteoblastic differentiation of VIC, while depletion of ABs did not further enhance this protective effect. Overall, our study indicates that CHOP deficiency protects against Western diet‐induced AoV calcification in Apoe?/? mice. CHOP deficiency prevents oxLDL‐induced VIC osteoblastic differentiation via preventing VIC‐derived ABs releasing.  相似文献   

12.
该文主要研究颗粒蛋白前体(progranulin,PGRN)对猪主动脉瓣膜间质细胞(valve interstitial cells,VICs)成骨分化的影响及机制,为钙化性主动脉瓣膜病(calcific aortic valve disease,CAVD)的早期干预及治疗提供理论依据。采用免疫组化检测正常组和CAVD组中Runx2、OPN的表达,Western blot检测PGRN、纤维化指标α-SMA、钙化指标(Runx2、OPN)的表达以及AKT磷酸化水平。采用胶原酶连续消化法分离VICs,并用免疫荧光染色行表型鉴定。体外实验加入人PGRN重组蛋白,采用ALP染色、茜素红S染色、qPCR和Western blot检测细胞早期及晚期成骨分化能力以及AKT的磷酸化水平;并加入AKT的激活剂SC-79进行反向验证。结果表明,与正常组织相比,CAVD瓣膜组织中PGRN明显降低,α-SMA、Runx2、OPN和p-AKT在CAVD组中表达均明显高于正常组。成功分离出原代VICs,α-SMA和vimentin阳性,vWF阴性。PGRN可使VICs的ALP活性降低、钙盐沉积明显减少;PGRN可下调纤维化/钙化指标,且AKT的磷酸化水平降低;SC-79可减弱PGRN对纤维化/钙化指标的下调作用。提示PGRN能够抑制静止的VIC向肌纤维母细胞样的活化VIC乃至成骨样VIC进行转化,AKT信号通路可能在该过程中发挥重要作用。  相似文献   

13.
该文主要探究了LPS通过上调骨形态发生蛋白4(bone morphogenetic protein 4,BMP4)促进猪主动脉瓣膜间质细胞(valve interstitial cells,VICs)成骨样分化的作用及机制,为钙化性主动脉瓣膜病(calcific aortic valve disease,CAVD)的干...  相似文献   

14.
Calcific aortic valve disease (CAVD) is a chronic inflammatory condition and affects a large number of elderly people. Aortic valve interstitial cells (AVICs) occupy an important role in valvular calcification and CAVD progression. While pro-inflammatory mechanisms are capable of inducing the osteogenic responses in AVICs, the molecular interaction between pro-inflammatory and pro-osteogenic mechanisms remains poorly understood. This study tested the hypothesis that intercellular adhesion molecule-1 (ICAM-1) plays a role in mediating pro-osteogenic factor expression in human AVICs. AVICs were isolated from normal human aortic valves and cultured in M199 medium. Treatment with leukocyte function-associated factor-1 (LFA-1, an ICAM-1 ligand) up-regulated the expression of bone morphogenetic protein-2 (BMP-2) and resulted in increased alkaline phosphatase activity and formation of calcification nodules. Pre-treatment with lipopolysaccharide (LPS, 0.05 μg/ml) increased ICAM-1 levels on cell surfaces and exaggerated the pro-osteogenic response to LFA-1, and neutralization of ICAM-1 suppressed this response. Further, ligation of ICAM-1 by antibody cross-linking also up-regulated BMP-2 expression. Interestingly, LFA-1 elicited Notch1 cleavage and NF-κB activation. Inhibition of NF-κB markedly reduced LFA-1-induced BMP-2 expression, and inhibition of Notch1 cleavage with a γ-secretase inhibitor suppressed LFA-1-induced NF-κB activation and BMP-2 expression. Ligation of ICAM-1 on human AVICs activates the Notch1 pathway. Notch1 up-regulates BMP-2 expression in human AVICs through activation of NF-κB. The results demonstrate a novel role of ICAM-1 in translating a pro-inflammatory signal into a pro-osteogenic response in human AVICs and suggest that ICAM-1 on the surfaces of AVICs contributes to the mechanism of aortic valve calcification.  相似文献   

15.
16.
Calcific aortic valve disease (CAVD) is a major cardiovascular disorder caused by osteogenic differentiation of valvular interstitial cells (VICs) within aortic valves. Conventional methods like colorimetric assays and histology fail to detect small calcium depositions during in‐vitro VIC cultures. Laser‐induced breakdown spectroscopy (LIBS) is a robust analytical tool used for inorganic materials characterizations, but relatively new to biomedical applications. We employ LIBS, for the first time, for quantitative in‐vitro detection of calcium depositions in VICs at various osteogenic differentiation stages. VICs isolated from porcine aortic valves were cultured in osteogenic media over various days. Colorimetric calcium assays based on arsenazo dye and Von Kossa staining measured the calcium depositions within VICs. Simultaneously, LIBS signatures for Ca I (422.67 nm) atomic emission lines were collected for estimating calcium depositions in lyophilized VIC samples. Our results indicate excellent linear correlation between the calcium assay and our LIBS measurements. Furthermore, unlike the assay results, the LIBS results could resolve calcium signals from cell samples with as early as 2 days of osteogenic culture. Quantitatively, the LIBS measurements establish the limit of detection for calcium content in VICs to be ~0.17±0.04 μg which indicates a 5‐fold improvement over calcium assay. Picture : Quantitative LIBS enables in‐vitro analysis for early stage detection of calcium deposition within aortic valvular interstitial cells (VICs).

  相似文献   


17.
18.
19.
Valve disease and particularly calcific aortic valve disease (CAVD) and diabetes (DM) are progressive diseases constituting a global health burden for all aging societies (Progress in Cardiovascular Diseases. 2014;56(6):565: Circulation Research. 2021;128(9):1344). Compared to non-diabetic individuals (The Lancet. 2008;371(9626):1800: The American Journal of Cardiology. 1983;51(3):403: Journal of the American College of Cardiology. 2017;69(12):1523), the diabetic patients have a significantly greater propensity for cardiovascular disorders and faster degeneration of implanted bioprosthetic aortic valves. Previously, using an original experimental model, the diabetic-hyperlipemic hamsters, we have shown that the earliest alterations induced by these conditions occur at the level of the aortic valves and, with time these changes lead to calcifications and CAVD. However, there are no pharmacological treatments available to reverse or retard the progression of aortic valve disease in diabetes, despite the significant advances in the field. Therefore, it is critical to uncover the mechanisms of valve disease progression, find biomarkers for diagnosis and new targets for therapies. This review aims at presenting an update on the basic research in CAVD in the context of diabetes. We provide an insight into the accumulated data including our results on diabetes-induced progressive cell and molecular alterations in the aortic valve, new potential biomarkers to assess the evolution and therapy of the disease, advancement in targeted nanotherapies, tissue engineering and the potential use of circulating endothelial progenitor cells in CAVD.  相似文献   

20.
We have previously shown that one of the potential mediators of the deleterious effects of high glucose on extracellular matrix protein (ECM) expression in renal mesangial cells is its metabolic flux through the hexosamine biosynthesis pathway (HBP). Here, we investigate further whether the hexosamines induce oxidative stress, cell-cycle arrest and ECM expression using SV-40-transformed rat mesangial (MES) cells and whether the anti-oxidant alpha-lipoic acid will reverse some of these effects. Culturing renal MES cells with high glucose (HG, 25 mM) or glucosamine (GlcN, 1.5 mM) for 48 h stimulates laminin gamma1 subunit expression significantly approximately 1.5 +/- 0.2- and 1.9 +/- 0.3-fold, respectively, when compared to low glucose (LG, 5 mM). Similarly, HG and GlcN increase the level of G0/G1 cell-cycle progression factor cyclin D1 significantly approximately 1.7 +/- 0.2- and 1.4 +/- 0.04-fold, respectively, versus LG (p < 0.01 for both). Azaserine, an inhibitor of glutamine:fruc-6-PO(4) amidotransferase (GFAT) in the HBP, blocks the HG-induced expression of laminin gamma1 and cyclin D1, but not GlcN's effect because it exerts its metabolic function distal to GFAT. HG and GlcN also elevate reactive oxygen species (ROS) generation, pro-apoptotic caspase-3 activity, and lead to mesangial cell death as revealed by TUNEL and Live/Dead assays. FACS analysis of cell-cycle progression shows that the cells are arrested at G1 phase; however, they undergo cell growth and hypertrophy as the RNA/DNA ratio is significantly (p < 0.05) increased in HG or GlcN-treated cells relative to LG. The anti-oxidant alpha-lipoic acid (150 microM) reverses ROS generation and mesangial cell death induced by HG and GlcN. Alpha-lipoic acid also reduces HG and GlcN-induced laminin gamma1 and cyclin D1 expression in MES cells. In addition, induction of diabetes in rats by streptozotocin (STZ) increases both laminin gamma1 and cyclin D1 expression in the renal cortex and treatment of the diabetic rats with alpha-lipoic acid (400 mg kg(-1) body weight) reduces the level of both proteins significantly (p < 0.05) when compared to untreated diabetic rats. These results support the hypothesis that the hexosamine pathway mediates mesangial cell oxidative stress, ECM expression and apoptosis. Anti-oxidant alpha-lipoic acid reverses the effects of high glucose, hexosamine and diabetes on oxidative stress and ECM expression in mesangial cells and rat kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号