首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Heterotopic ossification (HO) refers to the pathological formation of ectopic bone in soft tissues, it occurs following severe trauma or in patients with a rare genetic disorder known as fibrodysplasia ossificans progressiva. The pathological process of HO formation is a two-step mechanism: inflammation and destruction of connective tissues, followed by bone formation. The latter is further subdivided into three stages: fibroproliferation/angiogenesis, chondrogenesis, and osteogenesis. Currently, therapeutic options for HO are limited. New potential therapeutics will most likely arise from a more detailed understanding of the signaling pathways implicated in each stage of ectopic bone formation and molecular targets that may be effective at both the early and late stages of HO. Bone morphogenetic protein (BMP) signaling is believed to play a key role in the overall HO process. Recently, the mammalian target of rapamycin (mTOR) signaling pathway has received attention as a critical pathway for chondrogenesis, osteogenesis, and HO. Inhibition of mTOR signaling has been shown to block trauma-induced and genetic HO. Intriguingly, recent studies have revealed crosstalk between mTOR and BMP signaling. Moreover, mTOR has emerged as a factor involved in the early hypoxic and inflammatory stages of HO. We will summarize the current knowledge of the roles of mTOR and BMP signaling in HO, with a particular focus on the crosstalk between mTOR and BMP signaling. We also discuss the activation of AMP activated protein kinase (AMPK) by the most widely used drug for type 2 diabetes, metformin, which exerts a dual negative regulatory effect on mTOR and BMP signaling, suggesting that metformin is a promising drug treatment for HO. The discovery of an mTOR-BMP signaling network may be a potential molecular mechanism of HO and may represent a novel therapeutic target for the pharmacological control of HO.  相似文献   

2.
Traumatic heterotopic ossification (HO) is the abnormal formation of bone in soft tissues as a consequence of injury. However, the pathological mechanisms leading to traumatic HO remain unknown. Here, we report that aberrant expression of IL-17 promotes traumatic HO formation by activating β-catenin signalling in mouse model. We found that elevated IL-17 and β-catenin levels are correlated with a high degree of HO formation in specimens from patients and HO animals. We also show that IL-17 initiates and promotes HO progression in mice. Local injection of an IL-17 neutralizing antibody attenuates ectopic bone formation in a traumatic mouse model. IL-17 enhances the osteoblastic differentiation of mesenchymal stem cells (MSCs) by activating β-catenin signalling. Moreover, inhibition of IL-17R or β-catenin signalling by neutralizing antibodies or drugs prevents the osteogenic differentiation of isolated MSCs and decreases HO formation in mouse models. Together, our study identifies a novel role for active IL-17 as the inducer and promoter of ectopic bone formation and suggests that IL-17 inhibition might be a potential therapeutic target in traumatic HO.  相似文献   

3.
Heterotopic ossification (HO) is the formation of bone outside of the skeleton which forms following major trauma, burn injuries, and orthopaedic surgical procedures. The majority of animal models used to study HO rely on the application of exogenous substances, such as bone morphogenetic protein (BMP), exogenous cell constructs, or genetic mutations in BMP signaling. While these models are useful they do not accurately reproduce the inflammatory states that cause the majority of cases of HO. Here we describe a burn/tenotomy model in mice that reliably produces focused HO. This protocol involves creating a 30% total body surface area partial thickness contact burn on the dorsal skin as well as division of the Achilles tendon at its midpoint. Relying solely on traumatic injury to induce HO at a predictable location allows for time-course study of endochondral heterotopic bone formation from intrinsic physiologic processes and environment only. This method could prove instrumental in understanding the inflammatory and osteogenic pathways involved in trauma-induced HO. Furthermore, because HO develops in a predictable location and time-course in this model, it allows for research to improve early imaging strategies and treatment modalities to prevent HO formation.  相似文献   

4.
The development of heterotopic ossification (HO) is considered one of the major complications following cervical total disc replacement (TDR). Even though previous studies have identified clinical and biomechanical conditions that may stimulate HO, the mechanism of HO formation has not been fully elucidated. The objective of this study is to investigate whether mechanical loading is a biomechanical condition that plays a substantial role to decide the HO formation. A finite element model of TDR on the C5–C6 was developed, and HO formation was predicted by simulating a bone adaptation process under various physiological mechanical loadings. The distributions of strain energy on vertebrae were assessed after HO formation. For the compressive force, most of the HO formation occurred on the vertebral endplates uncovered by the implant footplate which was similar to the Type 1 HO. For the anteriorly directed shear force, the HO was predominantly formed in the anterior parts of both the upper and lower vertebrae as the Type 2 HO. For both the flexion and extension moments, the HO shapes were similar to those for the shear force. The total strain energy was reduced after HO formation for all loading conditions. Two distinct types of HO were predicted based on mechanically induced bone adaptation processes, and our findings were consistent with those of previous clinical studies. HO formation might have a role in compensating for the non-uniform strain energy distribution which is one of the mechanical parameters related to the bone remodeling after cervical TDR.  相似文献   

5.
6.
7.
Heterotopic ossification (HO) is a disabling condition associated with neurologic injury, inflammation, and overactive bone morphogenetic protein (BMP) signaling. The inductive factors involved in lesion formation are unknown. We found that the expression of the neuro-inflammatory factor Substance P (SP) is dramatically increased in early lesional tissue in patients who have either fibrodysplasia ossificans progressiva (FOP) or acquired HO, and in three independent mouse models of HO. In Nse-BMP4, a mouse model of HO, robust HO forms in response to tissue injury; however, null mutations of the preprotachykinin (PPT) gene encoding SP prevent HO. Importantly, ablation of SP(+) sensory neurons, treatment with an antagonist of SP receptor NK1r, deletion of NK1r gene, or genetic down-regulation of NK1r-expressing mast cells also profoundly inhibit injury-induced HO. These observations establish a potent neuro-inflammatory induction and amplification circuit for BMP-dependent HO lesion formation, and identify novel molecular targets for prevention of HO.  相似文献   

8.
Heterotopic ossification (HO), or bone formation in soft tissues, is often the result of traumatic injury. Much evidence has linked the release of BMPs (bone morphogenetic proteins) upon injury to this process. HO was once thought to be a rare occurrence, but recent statistics from the military suggest that as many as 60% of traumatic injuries, resulting from bomb blasts, have associated HO. In this study, we attempt to define the role of peripheral nerves in this process. Since BMP2 has been shown previously to induce release of the neuroinflammatory molecules, substance P (SP) and calcitonin gene related peptide (CGRP), from peripheral, sensory neurons, we examined this process in vivo. SP and CGRP are rapidly expressed upon delivery of BMP2 and remain elevated throughout bone formation. In animals lacking functional sensory neurons (TRPV1(-/-) ), BMP2-mediated increases in SP and CGRP were suppressed as compared to the normal animals, and HO was dramatically inhibited in these deficient mice, suggesting that neuroinflammation plays a functional role. Mast cells, known to be recruited by SP and CGRP, were elevated after BMP2 induction. These mast cells were localized to the nerve structures and underwent degranulation. When degranulation was inhibited using cromolyn, HO was again reduced significantly. Immunohistochemical analysis revealed nerves expressing the stem cell markers nanog and Klf4, as well as the osteoblast marker osterix, after BMP2 induction, in mice treated with cromolyn. The data collectively suggest that BMP2 can act directly on sensory neurons to induce neurogenic inflammation, resulting in nerve remodeling and the migration/release of osteogenic and other stem cells from the nerve. Further, blocking this process significantly reduces HO, suggesting that the stem cell population contributes to bone formation.  相似文献   

9.
A high incidence of heterotopic ossification (HO) has been reported in patients with diffuse idiopathic skeletal hyperostosis (DISH), a metabolic disease characterized by calcifications of entheses at spine and peripheral sites. We performed histological and immunohistochemical analyses in five different HO sites in a patient with DISH to study a possible mutual interaction of bone morphogenetic protein 2 (BMP-2), transforming growth factor beta (TGF-β), and decorin, crucial for bone mass increasing, matrix calcification, and endochondral bone formation. We speculated that the surgical trauma triggered HO, inducing TGF-β release at the lesion site. TGF-β recruits osteoblast precursor cells and determines the overexpression of BMP-2 in the surrounding skeletal muscle, inducing a further osteogenic differentiation, contributing to HO onset.Key words: heterotopic ossification, DISH, BMP-2, TGF-beta, decorin  相似文献   

10.
Despite the fact that extensive studies have focused on heterotopic ossification (HO), its molecular mechanism remains unclear. The endothelial‐mesenchymal transition (EndMT), which may be partially modulated by neuroendocrine cytokines is thought to play a major role in HO. Neurotrophin‐3 (NT‐3), which has neuroendocrine characteristics is believed to promote skeletal remodeling. Herein, we suggest that that NT‐3 may promote HO formation through regulation of EndMT. Here, we used an in vivo model of HO and an in vitro model of EndMT induction to elucidate the effect and underlying mechanism of NT‐3 on EndMT in HO. Our results showed that heterotopic bone and cartilage arose from EndMT and NT‐3 promoted HO formation in vivo. Our in vitro results showed that NT‐3 up‐regulated mesenchymal markers (FSP‐1, α‐SMA and N‐cadherin) and mesenchymal stem cell (MSC) markers (STRO‐1, CD44 and CD90) and down‐regulated endothelial markers (Tie‐1, VE‐cadherin and CD31). Moreover, NT‐3 enhanced a chondrogenesis marker (Sox9) and osteogenesis markers (OCN and Runx2) via activation of EndMT. However, both EndMT specific inhibitor and tropomyosin‐related kinase C (TrkC) specific inhibitor rescued NT‐3‐induced HO formation and EndMT induction in vivo and in vitro. In conclusion, our findings demonstrate that NT‐3 promotes HO formation via modulation of EndMT both in vivo and in vitro, which offers a new potential target for the prevention and therapy of HO.  相似文献   

11.
12.
Fibrodysplasia ossificans progressiva (FOP) is a genetic disease characterized by heterotopic ossification (HO). The disease is caused by a mutation in the activin receptor type 1 (ACVR1) gene that enhances this receptor's responsiveness to Activin-A. Binding of Activin-A to the mutated ACVR1 receptor induces osteogenic differentiation. Whether Activin-A also affects osteoclast formation in FOP is not known. Therefore we investigated its effect on the osteoclastogenesis-inducing potential of periodontal ligament fibroblasts (PLF) from teeth of healthy controls and patients with FOP. We used western blot analysis of phosphorylated SMAD3 (pSMAD3) and quantitative polymerase chain reaction to assess the effect of Activin-A on the PLF. PLF-induced osteoclast formation and gene expression were studied by coculturing control and FOP PLF with CD14-positive osteoclast precursor cells from healthy donors. Osteoclast formation was also assessed in control CD14 cultures stimulated by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANK-L). Although Activin-A increased activation of the pSMAD3 pathway in both control and FOP PLF, it increased ACVR1, FK binding protein 12 (FKBP12), an inhibitor of DNA binding 1 protein (ID-1) expression only in FOP PLF. Activin-A inhibited PLF mediated osteoclast formation albeit only significantly when induced by FOP PLF. In these cocultures, it reduced M-CSF and dendritic cell-specific transmembrane protein (DC-STAMP) expression. Activin-A also inhibited osteoclast formation in M-CSF and RANK-L mediated monocultures of CD14+ cells by inhibiting their proliferation. This study brings new insight on the role of Activin A in osteoclast formation, which may further add to understanding FOP pathophysiology; in addition to the known Activin-A-mediated HO, this study shows that Activin-A may also inhibit osteoclast formation, thereby further promoting HO formation.  相似文献   

13.
We investigated the role of fetuin A during heterotopic ossification (HO) in rats following Achilles tenotomy. We performed a right midpoint Achilles tenotomy on 24 rats. At 5 and 10 h after surgery, we investigated the formation of ectopic bone using X-ray and histological examination. We evaluated the mRNA level of fetuin A using real-time PCR. Presence of fetuin A in the Achilles tendon was assessed by immunohistochemical staining. We also measured the serum concentration of fetuin A using enzyme linked immunosorbent assay (ELISA). The expression of fetuin A was significantly decreased in both the liver and Achilles tendon during HO. ELISA showed a small amount of fetuin A in blood throughout the development of HO. Immunohistochemical staining showed that fetuin A was abundant in the ectopic bone. Fetuin A appears to be involved in the formation of ectopic bone induced by Achilles tenotomy, and a deficiency of fetuin A plays a role in the development of HO.  相似文献   

14.
Heterotopic ossification (HO) is a pathological process that often occurs in soft tissues following severe trauma. There is no effective therapy for HO. The BMP signalling pathway plays an essential role in the pathogenesis of HO. Our previous study showed that AMPK negatively regulates the BMP signalling pathway and osteogenic differentiation. The present study aims to study the effect of two AMPK activators berberine and aspirin on osteogenic differentiation and HO induced by traumatic injury. The effects of two AMPK activators, berberine and aspirin, on BMP signalling and osteogenic differentiation were measured by western blot, ALP and Alizarin red S staining in C3H10T1/2 cells. A mouse model with Achilles tenotomy was employed to assess the effects of berberine and aspirin on HO using μCT and histological analysis. First, our study showed that berberine and aspirin inhibited phosphorylation of Smad1/5 induced by BMP6 and the inhibition was attributed to the down-regulation of ALK2 expression. Second, the combination of berberine and aspirin yielded more potent effects on BMP signalling. Third, we further found that there was an additive effect of berberine and aspirin combination on osteogenic differentiation. Finally, we found that berberine and aspirin blocked trauma-induced ectopic bone formation in mice, which may be through suppression of phosphorylation of Smad1/5 in injured tissues. Collectively, these findings indicate that berberine and aspirin inhibit osteogenic differentiation in C3H10T1/2 cells and traumatic HO in mice, possibly through the down-regulation of the BMP signalling pathway. Our study sheds a light on prevention and treatment of traumatic HO using AMPK pharmacological activators berberine and aspirin.  相似文献   

15.
Chen YH  Chao YY  Hsu YY  Hong CY  Kao CH 《Plant cell reports》2012,31(6):1085-1091
Lateral root (LR) development performs the essential tasks of providing water, nutrients, and physical support to plants. Therefore, understanding the regulation of LR development is of agronomic importance. In this study, we examined the effect of nitric oxide (NO), auxin, and hemin (Hm) on LR formation in rice. Treatment with Hm [a highly effective heme oxygenase (HO) inducer], sodium nitroprusside (SNP, an NO donor), or indole-3-butyric acid (IBA, a naturally occurring auxin) induced LR formation and HO activity. LR formation and HO activity induced by SNP and IBA but not Hm was reduced by the specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. As well, Hm, SNP, and IBA could induce OsHO1 mRNA expression. Zn protoporphyrin IX (the specific inhibitor of HO) and hemoglobin (the carbon monoxide/NO scavenger) reduced LR number and HO activity induced by Hm, SNP, and IBA. Our data suggest that HO is required for Hm-, auxin-, and NO-induced LR formation in rice.  相似文献   

16.
Lateral roots (LRs) perform the essential tasks of providing water, nutrients, and physical support to plants. Therefore, understanding the regulation of LR development is of agronomic importance. Recent findings suggest that heme oxygenase (HO) plays an important role in LR development. In this study, we examined the effect of cobalt chloride (CoCl2) on LR formation and HO expression in rice. Treatment with CoCl2 induced LR formation and HO activity. We further observed that CoCl2 could induce the expression of OsHO1 but not OsHO2. CoCl2-increased HO activity occurred before LR formation. Zinc protoporphyrin IX (ZnPPIX, the specific inhibitor of HO) and hemoglobin (the carbon monoxide/nitric oxide scavenger) reduced LR formation, HO activity, and OsHO1 expression. Application of biliverdin, a product of HO-catalyzed reaction, to CoCl2-treated rice seedlings reversed the ZnPPIX-inhibited LR formation and ZnPPIX-decreased HO activity. CoCl2 had no effect on H2O2 content and nitric oxide production. Moreover, application of ascorbate, a H2O2 scavenger, failed to affect CoCl2-promoted LR formation and HO activity. It is concluded that HO is required for CoCl2-promoted LR formation in rice.  相似文献   

17.

Background

The chick middle ear bone, the columella, provides an accessible model in which to study the tissue and molecular interactions necessary for induction and patterning of the columella, as well as associated multiple aspects of endochondral ossification. These include mesenchymal condensation, chondrogenesis, ossification of the medial footplate and shaft, and joint formation between the persistent cartilage of the extracolumella and ossified columella. Middle and external ear defects are responsible for approximately 10% of congenital hearing defects. Thus, understanding the morphogenesis and the molecular mechanisms of the formation of the middle ear is important to understanding normal and abnormal development of this essential component of the hearing apparatus.

Results

The columella, which arises from proximal ectomesenchyme of the second pharyngeal arch, is induced and patterned in a dynamic multi-step process. From the footplate, which inserts into the inner ear oval window, the shaft spans the pneumatic middle ear cavity, and the extracolumella inserts into the tympanic membrane. Through marker gene and immunolabeling analysis, we have determined the onset of each stage in the columella's development, from condensation to ossification. Significantly, a single condensation with the putative shaft and extracolumella arms already distinguishable is observed shortly before initiation of five separate chondrogenic centers within these structures. Ossification begins later, with periosteum formation in the shaft and, unexpectedly, a separate periosteum in the footplate.

Conclusions

The data presented in this study document the spatiotemporal events leading to morphogenesis of the columella and middle ear structures and provide the first gene expression data for this region. These data identify candidate genes and facilitate future functional studies and elucidation of the molecular mechanisms of columella formation.  相似文献   

18.
Heme oxygenase‐1 (HO‐1) is a stress protein expressed in various pathological conditions associated with oxidative stress. Brain HO‐1 expression and activity in response to LPS treatment showed regional variability with the highest levels in the substantia nigra (SN) and hippocampus. HO‐1 induction by LPS was redox‐sensitive and associated with increased levels of NO synthase and arginase, two proteins involved in the regulation of cellular redox state. Brain HO‐2 and HO‐3 expression, studied by quantitative RT‐PCR, did not show significant changes. Our data suggest an interaction between NO and the HO system in the brain after LPS treatment. As SN and hippocampus are involved in Parkinson's and Alzheimer's diseases, understanding interaction of these proteins in the brain will help to elucidate the mechanisms involved in neurodegeneration.  相似文献   

19.
Heme oxygenase and heme degradation   总被引:5,自引:0,他引:5  
The microsomal heme oxygenase system consists of heme oxygenase (HO) and NADPH-cytochrome P450 reductase, and plays a key role in the physiological catabolism of heme which yields biliverdin, carbon monoxide, and iron as the final products. Heme degradation proceeds essentially as a series of autocatalytic oxidation reactions involving heme bound to HO. Large amounts of HO proteins from human and rat can now be prepared in truncated soluble form, and the crystal structures of some HO proteins have been determined. These advances have greatly facilitated the understanding of the mechanisms of individual steps of the HO reaction. HO can be induced in animals by the administration of heme or several other substances; the induction is shown to involve Bach1, a translational repressor. The induced HO is assumed to have cytoprotective effects. An uninducible HO isozyme, HO-2, has been identified, so the authentic HO is now called HO-1. HOs are also widely distributed in invertebrates, higher plants, algae, and bacteria, and function in various ways according to the needs of individual species.  相似文献   

20.
To date, no histochemical data exist concerning the process of ossification of developing pedicles in deer. Four different zones of the growing pedicle (subcutaneous tissue; fibrous layer of the periosteum; cambial layer of the periosteum; women bone of the primary spongiosa) were analysed in direct correlation to their histological appearance. The level of extractable specific alkaline phosphatase in the preosseous zones of the pedicle was 4-fold higher than levels in the epiphyseal growth plate previously reported. These results reflect that rapid bone formation takes place in the growing pedicle. Highest buffer-extractable alkaline phosphatase activity was found in the cambial layer directly in front of the mineralization area of the pedicle-bone, connected with maximal values for organically bound phosphate and inorganic phosphate. Moreover, the values for buffer-extractable alkaline phosphatase, organically bound phosphate and inorganic phosphate decreased with increasing mineralization in the zone of the primary spongiosa. The present histological and biochemical findings on the process of ossification in the pedicle show similarities to typical endochondral ossification. The process of pedicle growth may serve as a new and important system for chondrogenic and osteogenic studies, including a better understanding of antler development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号