首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melanogenesis is regulated by a variety of environmental and hormonal factors. In this study, we showed that protein kinase C (PKC) plays a major role in regulating melanogenesis in B16 mouse melanoma cells. Chronic treatment of B16 cells with phorbol dibutyrate resulted in a concentration-dependent loss of density-dependent induction of tyrosinase activity, which correlated positively with a concentration-dependent loss of PKC enzyme activity. In contrast, B16 clones overexpressing PKCα had increased tyrosinase activity. Different phorbol derivatives inhibited tyrosinase activity and depleted cellular PKCα in a manner that reflected their reported tumor-promoting activity. Western blotting analysis showed that phorbol dibutyrate decreased the amount of the brown locus gene product (TRP-1) by 50% and lowered the amount of the albino locus gene product (tyrosinase) to undetectable levels. None of the phorbol derivatives affected the level of the slaty locus protein (TRP-2). The decrease in tyrosinase and TRP-1 protein levels was found to be due to a decrease in the mRNA encoded by these genes. In addition to inhibiting the density-dependent increase in tyrosinase activity, phorbol dibutyrate inhibited some, but not all, of the 8-bromocyclic AMP-induced increase in tyrosinase activity. This was accompanied by a decrease in the amount of tyrosinase protein induced by 8-bromocyclic AMP. Although 8-bromocyclic AMP did not change the level of TRP-1, it did reverse the decrease in the amount of this protein induced by phorbol dibutyrate. The amount of TRP-2 was not altered by any of these agents. These data suggest that PKC regulates melanogenesis primarily by controlling the constitutive expression of tyrosinase and, to a lesser extent, TRP-1. © 1996 Wiley-Liss, Inc.  相似文献   

2.
3.
In order to better understand the cascade of melanogenic events in melanocytes, this report has introduced our two recent approaches for the expression of melanogenesis/or melanosome-associated genes and encoded proteins in melanocytes (melanoma cells) after repeated exposure to UV -B and after cotransfection of two human genes, i.e., tyrosinase and tyrosinase-related protein-1 (TRP-1). Repeated exposure of UV B (2.5–5.0 mJ/cm2) caused not only upregulation of tyrosinase and TRP-1 genes but also coordinated increase in the gene and protein synthesis expression of Lamp-1 (lysosome-associated membrane protein-1). When COS-7 kidney cells and amelanotic melanoma (C32 and SKMEL-24) and melanotic melanoma (G361 and SK-MEL-23) cells were exposed to cotransfection of human tyrosinase and TRP-1 cDNAs, there was also an increased expression of Lamp-1 mRNA and protein along with tyrosinase activation and new melanin synthesis. Importantly, single transfectants of human tyrosinase cDNA revealed marked cellular degeneration, whereas this degeneration was not seen in single transfectants of TRP-1 cDNA or cotransfectants of human tyrosinase and TRP-1 cDNAs, indicating that TRP-1 prevented, along with Lamp-1, programmed death of melanocytes after transfection of tyrosinase gene. The coordinated expression of TRP-1 and Lamp-1 was further confirmed by antisense oligodeoxynucleotide hybridization experiment against Lamp-1 gene, showing the decreased expression of TRP-1 as identified by three different types of anti-TRP-1 monoclonal antibodies. We propose therefore that human tyrosinase and TRP-l, when activated or expressed together, will coordinate to upregulate the mRNA expression and protein synthesis of Lamp-1. The Lamp-1 molecules will, in turn, cover the inner surface of melanosomal membrane, together with TRP-1 molecules, thus protecting the melanosomal membrane from toxic melanin intermediates generated during melanogenesis in the presence of active tyrosinase. In contrast, the expression of other lysosome-related proteins, e.g., β-galactosidase and CD63 is not stimulated in new melanogenesis.  相似文献   

4.
The effects of 2-mercapto-1-(beta-4-pyridethyl) benzimidazole (MPB), one of the benzimidazole derivatives designed for a nucleic acid analogue, on melanogenesis of murine B16-F10 melanoma cell lines were investigated. MPB (40 microM) induced a striking dendricity in B16 melanoma cells within 12 h and maximal dendricity between 48 and 72 h. The stimulation of melanin synthesis was observed after only 2 days of treatment together with a dose-dependent growth inhibition. Moreover, MPB increased the activity of tyrosinase through the expression of tyrosinase mRNA without increasing the intracellular cyclic AMP content. MPB-induced melanogenesis was inhibited by novel protein kinase A inhibitors, KT-5720 and H-85. These findings indicate that MPB stimulated B16 cells to terminally differentiate and may be a useful drug in studying the regulation of melanogenesis.  相似文献   

5.
6.
7.
8.
Theophylline, a phosphodiesterase inhibitor, was found to be a potent stimulator of melanogenesis in the RPMI 3460 hamster melanoma cell line. This stimulation was greater than that caused by either dibutyryl cyclic AMP (db-cAMP) or another phosphodiesterase inhibitor, papaverine. Theophylline and db-cAMP treatments also produced strikingly different morphologies in the monolayered cells. The theophylline effect on melanogenesis was diminished by db-cAMP, whereas simultaneous treatment of cells with db-cAMP and papaverine produced greater stimulation of melanotic activity than either agent acting alone. Theophylline, therefore, may have phenotypic effects that are at least partially independent of phosphodiesterase inhibition. Theophylline stimulated melanin biosynthesis, as measured by rates of 2- [2-14C] thiouracil incorporation, and also caused an increase in the level of tyrosinase (EC 1.10.3.1) activity. This melanotic stimulation was prevented by the presence of cordycepin or cycloheximide. Theophylline inhibited DNA synthesis and mitosis in the melanoma cell cultures but stimulated protein synthesis. However, inhibition of proliferation and the first appearance of induced melanotic activity did not bear an immediate direct relationship to one another.  相似文献   

9.
10.
Tyrosinase-related protein (TRP)-1 is one of the most abundant melanosomal glycoproteins involved in melanogenesis. This report summarizes our recent research efforts related to the biological role and biosynthesis of TRP-1 and its transport from TGN (trans-Golgi network) to the stage I melanosome. Our UV irradiation and tyrosinase and TRP-1 cDNA co-transfection studies indicated that human TRP-1 is involved in not only melanogenesis but also prevention of melanocyte death, which may occur during biosynthesis of melanin pigment in the presence of tyrosinase. Furthermore, a coordinated gene interaction was indicated between tyrosinase and TRP-1, resulting in upregulation of mRNA and protein expression of LAMP (lysosome-associated membrane protein)-1 that would directly prevent the tyrosinase-mediated programmed cell death of melanocytes. Similar to tyrosinase, however, TRP-1 appears to require a molecular chaperone, calnexin, which we have cloned recently. Our cDNA transfection study of tyrosinase with calnexin showed clearly the necessity of calnexin in order to have efficient, functional activity of melanosomal glycoprotein, especially tyrosinase. Once glycosylation is completed, TRP-1 will be transported from TGN to the stage I melanosome. At this stage, TRP-1 will have its own target signal, in particular, tyrosine-rich leucine residues in cytoplasmic tail. Our TRP-1 cDNA transfection and immunoelectron microscopy study shows that TRP-1 will be transported through small vesicles, probably non-clathrin-coated type, to large vacuoles, identical to the MPR (mannose-6-phosphate receptor)-positive, late endosomes. In this transport process, a low molecular weight G-protein, rab-7, was isolated from the purified melanosomal protein on 2D-PAGE and identified by subsequent sequencing and PCR amplification. Confocal microscopy with double immunostaining and immunoelectron microscopy confirmed the co-localization of rab-7 and TRP-1 in the melanosomes with early stages of maturation (I-III). Furthermore, this process will also be regulated by phosphatidylinositol 3-kinase (PI-3 kinase).  相似文献   

11.
A widely accepted notion is that an increasing cellular cyclic AMP (cAMP) concentration is prerequisite for increasing tyrosinase activity and melanin synthesis and for regulating proliferation of pigment cells. alpha-Melanocyte stimulating hormone (alpha-MSH) increases cAMP and tyrosinase activity in Cloudman melanoma cells. Prostaglandins (PGs) E1 and E2 increase melanoma cell tyrosinase activity and inhibit proliferation. Both PGs, but not alpha-MSH, block the progression of Cloudman melanoma cells from G2 phase of the cell cycle into M or G1. Only PGE1 and not PGE2 causes an elevation of cellular cAMP concentrations. The adenylate cyclase inhibitor 2',5'-dideoxyadenosine (DDA) at 5 x 10(-4) M effectively blocks the increased cAMP synthesis by cells treated with 10 micrograms/ml PGE1. The addition of DDA, however, enhances the melanogenic response of melanoma cells to 10 micrograms/ml PGE1 or PGE2, 10(-7) M alpha-MSH, 10(-4) M isobutylmethylxanthine, 10(-4) M dibutyryl cyclic AMP. DDA also augments the effects of PGE1 or PGE2 on the melanoma cell cycle. Moreover, when DDA is added concomitantly with alpha-MSH, more cells are recruited into G2 than observed in untreated controls. Neither alpha-MSH nor DDA alone has any effect on the cell cycle. These findings undermine the role of cAMP in the melanogenic process and suggest that blocking melanoma cells in G2 may be required for the remarkable stimulation of tyrosinase activity observed with PGE1 or PGE2 alone or in combination with DDA. The observed block in G2 may be essential for the synthesis of sufficient mRNA, which is required for stimulation of tyrosinase activity.  相似文献   

12.
13.
A hot-water extract of adzuki was obtained by boiling beans of adzuki (Vigna angularis). This hot-water extract was fractionated using HP-20 column chromatography. Its distilled water fraction (WEx) was found to stimulate tyrosinase activity in cultured mouse B16 melanoma cells and hair color pigmentation in C3H mice. At concentrations of 1–3 mg/ml, WEx stimulated melanogenesis without inhibiting cell growth. During this effect, WEx activated tyrosinase-inducing activity in the cells, but did not activate tyrosinase, which exists at an intracellular level. In this study, WEx increased cyclic adenosine-3′,5′-monophospate (cAMP) content in the cells and protein kinase A (PKA) activity, and stimulated translocation of cytosolic protein kinase C (PKC) to the membrane-bound PKC. These results suggest that the addition of WEx activates the adenylcyclase and protein kinase pathways and, as a result, stimulates melanogenesis. WEx was found to have pigmentation activity on hair color in C3H mice. It might be useful in anti-graying, protecting human skin from irradiation.  相似文献   

14.
In response to alpha-melanocyte-stimulating hormone (alpha-MSH) or cAMP-elevating agents (forskolin and isobutylmethylxanthine), mouse B16 melanoma cells underwent differentiation characterized by increased melanin biosynthesis. However, the mechanism(s) underlying the regulation of melanogenesis during differentiation has not yet been clearly understood. Phospholipase D (PLD) has been reported to be involved in differentiation. This enzyme cleaves phosphatidylcholine upon stimulation with stimuli to generate phosphatidic acid. In the current study, the involvement of PLD in the regulation of melanogenesis characteristic of differentiation was examined using mouse B16 melanoma cells. Treatment of B16 cells with alpha-MSH was found to cause marked decreases in the PLD1 activity concurrent with its reduced protein level. Moreover, treatment of exogenous bacterial PLD also inhibited alpha-MSH-induced melanogenesis. To further investigate the role of PLD1 in the regulation of melanogenesis, we examined the effects of overexpression of PLD1 on melanogenesis in B16 melanoma cells. The B16 cells overexpressing PLD were prepared by transfection with the vector containing the cDNA encoding PLD1. The melanin contents in PLD1-overexpressing cells (B16/PLD1) were observed to be lower compared with those in the vector control cells (B16/Vec), concomitant with the decreases in both activity and protein level of tyrosinase, a key regulatory enzyme in melanogenesis. Moreover, overexpression of PLD1 resulted in a marked inhibition of melanogenesis induced by alpha-MSH. The inhibition of melanogenesis was well correlated with the decrease in the tyrosinase activity associated with its expression. These results indicated that PLD1 negatively regulated the melanogenic signaling by modulating the expression of tyrosinase in mouse B16 melanoma cells.  相似文献   

15.
When we studied the effects of polyphenols from apple fruits on melanogenesis in B16 mouse melanoma cell lines, phloridzin had dose-dependent progressive effects on melanogenesis between 10 and 500 μg/ml without inhibiting cell growth. At a concentration of 500 μg/ml, phloridzin increased the melanin content in the cells to 181% of that in control cells. In contrast, phloretin, the aglycon of phloridzin, did not activate melanogenesis in the cells and was cytotoxic at a concentration of 5 μg/ml. Phloridzin increased the activity of tyrosinase to 223% of that in control cells. Furthermore, phloridzin inhibited the activity of protein kinase C (PKC), which is recognized to regulate tyrosinase activity. The inhibition of PKC activity continued for 120min from the addition of phloridzin. Therefore, we estimated that the activation of melanogenesis by phloridzin resulted from the increase of tyrosinase activity caused by the inhibition of PKC activity.  相似文献   

16.
Eight glycosidic compounds, 1-8, including two new compounds, (4ξ)-α-terpineol 8-O-[α-L-arabinopyranosyl-(1→6)-β-D-glucopyranoside] (5) and myrtenol 10-O-[β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside] (7), were isolated from the BuOH-soluble fraction of a MeOH extract of Momordica charantia leaves. The structures of the new compounds were elucidated on the basis of extensive spectroscopic analyses and comparison with literature. Upon evaluation of compounds 1-8 on the melanogenesis in B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), these compounds were found to exhibit inhibitory activities with 7.1-27.0% and 23.6-46.4% reduction of melanin content at 30 μM and 100 μM, respectively, with no or almost no toxicity to the cells (80.0-103.5% of cell viability at 100 μM). Western blot analysis showed that compound 7 reduced the protein levels of MITF, tyrosinase, TRP-1, and TRP-2 mostly in a concentration-dependent manner, suggesting that this compound inhibits melanogenesis on the α-MSH-stimulated B16 melanoma cells by, at least in part, inhibiting the expression of MITF, followed by decreasing the expression of tyrosinase, TRP-1, and TRP-2.  相似文献   

17.
To discover new molecules with an inhibitory activity of melanogenesis a hundred of scorpions, snakes, spiders and amphibians venoms were screened for their capacity to inhibit mushroom tyrosinase using 3,4-l-dihydroxyphenylalanine (l-DOPA) as substrate.The Argiope lobata spider venom proved to be the most active. HPLC fraction containing Argiotoxine-636 (ArgTX-636), a polyamine known for its numerous biological activities, was found to also show a good regulation activity of melanogenesis by inhibiting DOPA and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) oxidases activities, wore by tyrosinase (TYR) and tyrosinase-related protein 1 (TRP-1), respectively. Our results demonstrate that ArgTX-636 reduced the mushroom tyrosinase activity in a dose-dependent way with a maximal half inhibitory concentration (IC50) value of 8.34 μM, when l-DOPA is used as substrate. The Lineweaver–Burk study showed that ArgTX-636 is a mixed type inhibitor of the diphenolase activity. Moreover, ArgTX-636 inhibits DHICA oxydase activity of mushroom tyrosinase activity with IC50 at 41.3 μM. ArgTX-636 has no cytotoxicity in B16F10 melanoma cells at concentrations up to 42.1 μM. The effect of ArgTX-636 on melanogenesis showed that melanin production in B16F10 melanoma cell decreased by approximatively 70% compared to untreated cells. ArgTX-636 displayed no significant effect on the TYR expression while the protein level of TRP-1 decreased in B16F10 cells. Thus, ArgTX-636 could have particular interest for cosmetic and/or pharmaceutical use in order to reduce important dermatoses in black and mixed skins.  相似文献   

18.
A hot-water extract of adzuki was obtained by boiling beans of adzuki (Vigna angularis). This hot-water extract was fractionated using HP-20 column chromatography. Its distilled water fraction (WEx) was found to stimulate tyrosinase activity in cultured mouse B16 melanoma cells and hair color pigmentation in C3H mice. At concentrations of 1-3 mg/ml, WEx stimulated melanogenesis without inhibiting cell growth. During this effect, WEx activated tyrosinase-inducing activity in the cells, but did not activate tyrosinase, which exists at an intracellular level. In this study, WEx increased cyclic adenosine-3',5'-monophospate (cAMP) content in the cells and protein kinase A (PKA) activity, and stimulated translocation of cytosolic protein kinase C (PKC) to the membrane-bound PKC. These results suggest that the addition of WEx activates the adenylcyclase and protein kinase pathways and, as a result, stimulates melanogenesis. WEx was found to have pigmentation activity on hair color in C3H mice. It might be useful in anti-graying, protecting human skin from irradiation.  相似文献   

19.
Melanogenesis is a process to synthesize melanin, which is a primary responsible for the pigmentation of human skin, eye and hair. Although numerous enzymatic catalyzed and chemical reactions are involved in melanogenesis process, the enzymes such as tyrosinase and tyrosinase-related protein-1 (TRP-1) and TRP-2 played a major role in melanin synthesis. Specifically, tyrosinase is a key enzyme, which catalyzes a rate-limiting step of the melanin synthesis, and the downregulation of tyrosinase is the most prominent approach for the development of melanogenesis inhibitors. Therefore, numerous inhibitors that target tyrosinase have been developed in recent years. The review focuses on the recent discovery of tyrosinase inhibitors that are directly involved in the inhibition of tyrosinase catalytic activity and functionality from all sources, including laboratory synthetic methods, natural products, virtual screening and structure-based molecular docking studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号