首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
The planar cell polarity (PCP) protein, Prickle (Pk), is conserved in invertebrates and vertebrates, and regulates cellular morphogenesis and movement. Vertebrate Pk consists of at least two family members, Pk1 and Pk2, both of which are expressed in the brain; however, their localization and function at synapses remain elusive. Here, we show that Pk2 is expressed mainly in the adult brain and is tightly associated with the postsynaptic density (PSD) fraction obtained by subcellular fractionation. In primary cultured rat hippocampal neurons, Pk2 is colocalized with PSD-95 and synaptophysin at synapses. Moreover, immunoelectron microcopy shows that Pk2 is localized at the PSD of asymmetric synapses in the hippocampal CA1 region. Biochemical assays identified that Pk2 forms a complex with PSD proteins including PSD-95 and NMDA receptor subunits via the direct binding to the C-terminal guanylate kinase domain of PSD-95. These results indicate that Pk2 is a novel PSD protein that interacts with PSD-95 and NMDA receptors through complex formations in the brain.  相似文献   

2.
The estrogen 17β-estradiol (E2) modulates dendritic spine plasticity in the cornu ammonis 1 (CA1) region of the hippocampus, and GPR30 (G-protein coupled estrogen receptor 1 (GPER1)) is an estrogen-sensitive G-protein-coupled receptor (GPCR) that is expressed in the mammalian brain and in specific subregions that are responsive to E2, including the hippocampus. The subcellular localization of hippocampal GPR30, however, remains unclear. Here, we demonstrate that GPR30 immunoreactivity is detected in dendritic spines of rat CA1 hippocampal neurons in vivo and that GPR30 protein can be found in rat brain synaptosomes. GPR30 immunoreactivity is identified at the post-synaptic density (PSD) and in the adjacent peri-synaptic zone, and GPR30 can associate with the spine scaffolding protein PSD-95 both in vitro and in vivo. This PSD-95 binding capacity of GPR30 is specific and determined by the receptor C-terminal tail that is both necessary and sufficient for PSD-95 interaction. The interaction with PSD-95 functions to increase GPR30 protein levels residing at the plasma membrane surface. GPR30 associates with the N-terminal tandem pair of PDZ domains in PSD-95, suggesting that PSD-95 may be involved in clustering GPR30 with other receptors in the hippocampus. We demonstrate that GPR30 has the potential to associate with additional post-synaptic GPCRs, including the membrane progestin receptor, the corticotropin releasing hormone receptor, and the 5HT1a serotonin receptor. These data demonstrate that GPR30 is well positioned in the dendritic spine compartment to integrate E2 sensitivity directly onto multiple inputs on synaptic activity and might begin to provide a molecular explanation as to how E2 modulates dendritic spine plasticity.  相似文献   

3.
An antiserum was generated against a synthetic peptide corresponding to amino acids 95-117 of bovine proenkephalin, and a sensitive radioimmunoassay was developed. Comparison of the reactivities of the synthetic peptide, its specific cleavage products, and other synthetic peptides showed that the important immunological determinant was contained within residues 101-109 of bovine proenkephalin (-Gly-Gly-Glu-Val-Leu-Gly-Lys-Arg-Tyr-). Radioimmunoassay of fractions after gel filtration of bovine adrenal medullary chromaffin granule lysate showed three pools of immunoreactivity: pool 1 (Mr 20,000-30,000), pool 2 (Mr 10,000-20,000), and pool 3 (Mr approximately 5,000). Further characterization by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by immunoblotting showed that the antiserum recognized 27-, 20.5-, 16.5-, and 5.6-kilodalton enkephalin-containing proteins. The radioimmunoassay was also used to detect proenkephalin-like material in extracts of rat adrenal and regions of rat brain and spinal cord following gel filtration. Immunoreactivity from the rat adrenal chromatographed predominantly as high molecular weight material (Mr 31,500-43,500), whereas material in regions of rat brain showed a broader molecular weight distribution (Mr 4,000-43,500). This indicated differences in the processing of proenkephalin between rat adrenal and brain tissue. Differences were also seen in the molecular weight profile of immunoreactivity in different brain regions, most noticeable in the case of striatum and hypothalamus, suggesting regional differences in processing. Based on quantitation of higher molecular weight immunoreactive proenkephalin-like material and free Met-enkephalin immunoreactivity in different brain regions, it was apparent that extensive processing of proenkephalin occurs in brain. We concluded that antisera against proenkephalin-(95-117) recognize a wide range of intermediates in the processing of proenkephalin in both bovine adrenal medulla and rat adrenal, brain, and spinal cord, making it a useful tool for further studies concerned with the expression and post-translational processing of proenkephalin.  相似文献   

4.
Preparations of isolated brain postsynaptic densities (PSDs) contain a characteristic set of proteins among which the most prominent has a molecular weight of approximately 50,000. Following the suggestion that this major PSD protein might be related to a similarly sized component of neurofilaments (F. Blomberg et al., 1977, J. Cell Biol., 74:214- 225), we searched for evidence of neurofilament proteins among the PSD polypeptides. This was done with a novel technique for detecting protein antigens in SDS-polyacrylamide gels (immunoblotting) and an antiserum that was selective for neurofilaments in immunohistochemical tests. As a control, an antiserum against glial filament protein (GFAP) was used because antisera against GFAP stain only glial cells in immunohistochemical tests. They would, therefore, not be expected to react with PSDs that occur only in neurons. The results of these experiments suggested that PSDs contain both neuronal and also glial filament proteins at higher concentrations than either synaptic plasma membranes, myelin, or myelinated axons. However, immunoperoxidase staining of histological sections with the same two antisera gave contradictory results, indicating that PSDs in intact brain tissue contain neither neuronal or glial filament proteins. This suggested that the intermediate filament proteins present in isolated PSD preparations were contaminants. To test this possibility, the proteins of isolated brain intermediate filaments were labeled with 125I and added to brain tissue at the start of a subcellular fractionation schedule. The results of this experiment confirmed that both neuronal and glial filament proteins stick selectively to PSDs during the isolation procedure. The stickiness of PSDs for brain cytoplasmic proteins indicates that biochemical analysis of subcellular fractions is insufficient to establish a given protein as a synaptic junctional component. An immunohistochemical localization of PSDs in intact tissue, which has now been achieved for tubulin, phosphoprotein I, and calmodulin, appears to be an essential accessory item of evidence. Our findings also corroborate recent evidence which suggests that isolated preparations of brain intermediate filaments contain both neuronal and glial filaments.  相似文献   

5.
Du CP  Gao J  Tai JM  Liu Y  Qi J  Wang W  Hou XY 《The Biochemical journal》2009,417(1):277-285
PSD (postsynaptic density)-95, a scaffold protein that tethers NMDA (N-methyl-D-aspartate) receptors to signal molecules, is implicated in pathological events resulting from excitotoxicity. The present study demonstrates that brain ischaemia and reperfusion increase the tyrosine phosphorylation of PSD-95 in the rat hippocampus. PP2, a specific inhibitor of SrcPTKs (Src family protein tyrosine kinases), prevents the ischaemia-induced increases not only in the tyrosine phosphorylation of PSD-95, but also in the interaction between PSD-95 and Src kinases. PSD-95 is phosphorylated either by purified Src/Fyn kinases in vitro or by co-expression of constitutively active Src/Fyn in COS7 cells. The results suggest that SrcPTKs are involved in PSD-95 phosphorylation. The single Tyr(523) mutation to phenylalanine (Y523F) reduces the Src/Fyn-mediated phosphorylation of PSD-95 in COS7 cells and in vitro. As shown with a rabbit polyclonal antibody against phospho-PSD-95 (Tyr(523)), Tyr(523) phosphorylation is responsible for the increased tyrosine phosphorylation of PSD-95 induced by ischaemia in the rat hippocampus. In cultured hippocampal neurons, overexpression of PSD-95 Y523F, but not PSD-95 Y533F, abolishes the facilitating effect of PSD-95 on the glutamate- or NMDA-mediated currents, implying that PSD-95 Tyr(523) phosphorylation contributes to the post-ischaemic over-activation of NMDA receptors. Thus the present study reveals an additional mechanism for the regulation of PSD-95 by tyrosine phosphorylation. This mechanism may be of pathological significance since it is associated with excitotoxicity in the ischaemic brain.  相似文献   

6.
NMDA receptors are linked to intracellular cytoskeletal and signaling molecules via the PSD-95 protein complex. We report a novel family of postsynaptic density (PSD) proteins, termed Shank, that binds via its PDZ domain to the C terminus of PSD-95-associated protein GKAP. A ternary complex of Shank/GKAP/PSD-95 assembles in heterologous cells and can be coimmunoprecipitated from rat brain. Synaptic localization of Shank in neurons is inhibited by a GKAP splice variant that lacks the Shank-binding C terminus. In addition to its PDZ domain, Shank contains a proline-rich region that binds to cortactin and a SAM domain that mediates multimerization. Shank may function as a scaffold protein in the PSD, potentially cross-linking NMDA receptor/PSD-95 complexes and coupling them to regulators of the actin cytoskeleton.  相似文献   

7.
PARTIAL CHARACTERIZATION OF A NEW MYELIN PROTEIN COMPONENT   总被引:32,自引:17,他引:15  
A new protein component has been demonstrated in myelin isolated from rat whole brain and from white matter dissected from bovine, dog and rabbit brain. It is also present in rabbit optic nerve. It does not appear to be present in other subcellular fractions of rat brain. It has a molecular weight of 20,540 ± 490(S.D.), as determined by polyacrylamide gel electrophoresis in sodium dodecyl sulphate. A rapid procedure for the isolation of myelin is also described.  相似文献   

8.
An immunologic probe for a defined region of the myelin proteolipid   总被引:1,自引:0,他引:1  
Antiserum has been prepared against an isolated polypeptide fragment, designated BPS4, which comprises residues 181-211 of the bovine myelin proteolipid. The antiserum recognizes the intact bovine proteolipid protein but not several other polypeptide fragments within the molecule, nor the myelin basic protein, thus demonstrating specificity of the antiserum. In a competitive enzyme-linked immunosorbent assay, both the major proteolipid and the DM 20 bands observed on sodium dodecyl sulfate-polyacrylamide gels reacted equally well with the antiserum, indicating that the BPS4 segment is present in both molecular species. The rat myelin proteolipid protein cross-reacted with antiserum against the intact bovine protein but showed minimal cross-reactivity with the antiserum against the bovine BPS4 fragment. This was demonstrated in parallel experiments using three types of preparations, namely, sodium dodecyl sulfate-solubilized myelin, delipidated myelin, and isolated proteolipid apoprotein. The difference between the bovine and rat proteins, which presumably reflects amino acid sequence differences, is thus detectable by the antiserum against the polypeptide fragment but not by the antiserum against the intact protein. Isolated bovine myelin membranes did not bind the antiserum in the absence of detergent or without delipidation. On the other hand, in vesicles reconstituted with the intact bovine apoprotein, the BPS4 segment was oriented on the exterior face of the liposome where it was capable of binding antibody and was susceptible to Pronase digestion.  相似文献   

9.
Activity-dependent neuroprotective protein (ADNP, approximately 123562.8 Da), is synthesized in astrocytes and expression of ADNP mRNA is regulated by the neuroprotective peptide vasoactive intestinal peptide (VIP). The gene that encodes ADNP is conserved in human, rat and mouse, and contains a homeobox domain profile that includes a nuclear-export signal and a nuclear-localization signal. ADNP is essential for embryonic brain development, and NAP, an eight-amino acid peptide that is derived from ADNP, confers potent neuroprotection. Here, we investigate the subcellular localization of ADNP through cell fractionation, gel electrophoresis, immunoblotting and immunocytochemistry using alpha-CNAP, an antibody directed to the neuroprotective NAP fragment that constitutes part of an N-terminal epitope of ADNP. Recombinant ADNP was used as a competitive ligand to measure antibody specificity. ADNP-like immunoreactivity was found in the nuclear cell fraction of astrocytes and in the cytoplasm. In the cytoplasm, ADNP-like immunoreactivity colocalized with tubulin-like immunoreactivity and with microtubular structures, but not with actin microfilaments. Because microtubules are key components of developing neurons and brain, possible interaction between tubulin and ADNP might indicate a functional correlate to the role of ADNP in the brain. In addition, ADNP-like immunoreactivity in the extracellular milieu of astrocytes increased by approximately 1.4 fold after incubation of the astrocytes with VIP. VIP is known to cause astrocytes to secrete neuroprotective/neurotrophic factors, and we suggest that ADNP constitutes part of this VIP-stimulated protective milieu.  相似文献   

10.
In order to study the role of tyrosine kinase signaling in the post-synaptic density (PSD), tyrosine-phosphorylated proteins associated with the PSD-95/NMDA receptor complex were analyzed. The NMDA receptor complex from the mouse brain was successfully solubilized with deoxycholate and immunopurified with anti-PSD-95 or anti-phosphotyrosine antibody. Immunoblot analyses revealed that the predominantly tyrosine-phosphorylated proteins in the NMDA receptor complex are the NR2A/B subunits and a novel 120 kDa protein. Purification and microsequencing analysis showed that the 120 kDa protein is mouse PSD-93/Chapsyn-110. Recombinant PSD-93 was phosphorylated by Fyn in vitro, and Tyr-384 was identified as a major phosphorylation site. Tyrosine phosphorylation of PSD-93 was greatly reduced in brain tissue from Fyn-deficient mice compared with wild-type mice. Furthermore, an N-terminal palmitoylation signal of PSD-93 was found to be essential for its anchoring to the membrane, where Fyn is also localized. In COS7 cells, exogenously expressed PSD-93 was phosphorylated, dependent on its membrane localization. In addition, tyrosine-phosphorylated PSD-93 was able to bind to Csk, a negative regulator of Src family kinases, in vitro as well as in a brain lysate. These results suggest that PSD-93 serves as a membrane-anchored substrate of Fyn and plays a role in the regulation of Fyn-mediated modification of NMDA receptor function.  相似文献   

11.
Glial subcellular re-sealed particles (referred to as gliosomes here) were purified from rat cerebral cortex and investigated for their ability to release glutamate. Confocal microscopy showed that the glia-specific proteins glial fibrillary acidic protein (GFAP) and S-100, but not the neuronal proteins 95-kDa postsynaptic density protein (PSD-95), microtubule-associated protein 2 (MAP-2) and beta-tubulin III, were enriched in purified gliosomes. Furthermore, gliosomes exhibited labelling neither for integrin-alphaM nor for myelin basic protein, which are specific for microglia and oligodendrocytes respectively. The Ca2+ ionophore ionomycin (0.1-5 microm) efficiently stimulated the release of tritium from gliosomes pre-labelled with [3H]d-aspartate and of endogenous glutamate in a Ca(2+)-dependent and bafilomycin A1-sensitive manner, suggesting the involvement of an exocytotic process. Accordingly, ionomycin was found to induce a Ca(2+)-dependent increase in the vesicular fusion rate, when exocytosis was monitored with acridine orange. ATP stimulated [3H]d-aspartate release in a concentration- (0.1-3 mm) and Ca(2+)-dependent manner. The gliosomal fraction contained proteins of the exocytotic machinery [syntaxin-1, vesicular-associated membrane protein type 2 (VAMP-2), 23-kDa synaptosome-associated protein (SNAP-23) and 25-kDa synaptosome-associated protein (SNAP-25)] co-existing with GFAP immunoreactivity. Moreover, GFAP or VAMP-2 co-expressed with the vesicular glutamate transporter type 1. Consistent with ultrastructural analysis, several approximately 30-nm non-clustered vesicles were present in the gliosome cytoplasm. It is concluded that gliosomes purified from adult brain contain glutamate-accumulating vesicles and can release the amino acid by a process resembling neuronal exocytosis.  相似文献   

12.
Guanylate kinase-associated protein (GKAP)/SAP90/PSD-95-associated protein (SAPAP)/DLG-associated protein (DAP) is a protein of the postsynaptic density (PSD), and binds to the guanylate kinase domain of PSD-95/synapse-associated protein (SAP) 90 and synaptic scaffolding molecule. GKAP/SAPAP/DAP recruits PSD-95/SAP90 and its interacting protein, brain-enriched guanylate kinase-interacting protein, into the Triton X-100-insoluble fraction in transfected cells, suggesting that GKAP/SAPAP/DAP may link several PSD components to the Triton X-100-insoluble structures in the PSD. We have identified here a novel neuronal GKAP/SAPAP/DAP-binding protein and named it synamon. Synamon has seven ankyrin repeats at the NH(2) terminus followed by one src homology 3 domain and one PSD-95/Dlg-A/ZO-1 domain, and several proline-rich regions at the carboxyl terminus. Synamon interacts with the COOH-terminal region of GKAP/SAPAP/DAP via the middle region containing a PSD-95/Dlg-A/ZO-1 domain. Synamon was coimmunoprecipitated with SAPAP from rat crude synaptosomes and colocalized with SAPAP in primary cultured rat hippocampal neurons. Because synamon is composed of various protein-interacting modules, it may also interact with proteins other than GKAP/SAPAP/DAP to organize the architecture of the PSD.  相似文献   

13.
The postsynaptic density (PSD) of central excitatory synapses is essential for postsynaptic signaling, and its components are heterogeneous among different neuronal subtypes and brain structures. Here we report large scale relative and absolute quantification of proteins in PSDs purified from adult rat forebrain and cerebellum. PSD protein profiles were determined using the cleavable ICAT strategy and LC-MS/MS. A total of 296 proteins were identified and quantified with 43 proteins exhibiting statistically significant abundance change between forebrain and cerebellum, indicating marked molecular heterogeneity of PSDs between different brain regions. Moreover we utilized absolute quantification strategy, in which synthetic isotope-labeled peptides were used as internal standards, to measure the molar abundance of 32 key PSD proteins in forebrain and cerebellum. These data confirm the abundance of calcium/calmodulin-dependent protein kinase II and PSD-95 and reveal unexpected stoichiometric ratios between glutamate receptors, scaffold proteins, and signaling molecules in the PSD. Our data also demonstrate that the absolute quantification method is well suited for targeted quantitative proteomic analysis. Overall this study delineates a crucial molecular difference between forebrain and cerebellar PSDs and provides a quantitative framework for measuring the molecular stoichiometry of the PSD.  相似文献   

14.
Hippocampal slices offer an excellent experimental system for the study of activity-induced changes in the postsynaptic density (PSD). While studies have documented electrophysiological and structural changes at synapses in response to precise manipulations of hippocampal slices, parallel biochemical and proteomic analyses were hampered by the lack of subcellular fractionation techniques applicable to starting tissue about three orders of magnitude smaller than that used in conventional protocols. Here, we describe a simple and convenient method for the preparation of PSD fractions from hippocampal slices and the identification of its components by proteomic techniques. The "micro PSD fraction" obtained following two consecutive extractions of a synaptosomal fraction with Triton X-100 shows a significant enrichment in the marker protein PSD-95. Thin section electron microscopy shows PSDs similar to those observed in situ. However, other particulate material, especially myelin, and membrane vesicles are also present. The composition of the PSD fraction from hippocampal slices was analyzed by 2D LC/MS/MS. The proteomic approach which utilizes as little as 10microg total protein allowed the identification of >100 proteins. Many of the proteins detected in the fraction are the same as those identified in conventional PSD preparations including specialized PSD-scaffolding proteins, signaling molecules, cytoskeletal elements as well as certain contaminants. The results show the feasibility of the preparation of a PSD fraction from hippocampal slices of reasonable purity and of sufficient yield for proteomic analyses. In addition, we show that further purification of PSDs is possible using magnetic beads coated with a PSD-95 antibody.  相似文献   

15.
Secretory proteins of the lung in rodents: immunocytochemistry   总被引:2,自引:0,他引:2  
The reactivity of rabbit antisera to rat lung secretory proteins with other rodent species was evaluated by immunocytochemistry. Rabbit anti-rat surfactant apoprotein antiserum reacts with the cytoplasm of rat, mouse, and hamster type II pneumocytes and is specific for these cells. Rabbit antiserum to rat Clara cell secretory proteins stains rat, mouse, and hamster Clara cells. Rabbit antisera specific to the two antigenic types of rat Clara cell antigens were also both reactive with rat, mouse, and hamster Clara cells. An antiserum to the non-serum proteins of hamster lung lavage was also prepared and shown to be specifically reactive with hamster Clara cells. The availability of specific reagents for secretory proteins of rodent lungs is expected to facilitate studies of the respective cell types in various pathologic states.  相似文献   

16.
Mannose-rich glycopeptides derived from brain glycoproteins were obtained by proteolysis of bovine brain tissue or subcellular fractions derived from rat brain tissue. The dialyzable mannose-rich glycopeptides were isolated by colum electrophoresis and gel flitration. These glycopeptides contained, on the average, six mannose and two N-acetylglucosamine residues with variable amounts of fucose and galactose. Over 50% of the mannose-rich glycopeptides of rat brain were localized in the microsomal and synaptosomal fractions; myelin and the soluble fraction contained lesser amounts. None was recovered from the mitochondria. The amount, per mg protein, of mannose-rich oligosaccharide chains in the myelin exceeded the concentration found in the microsomal and synaptosomal fractions. The concentration of mannose-rich glycopeptides derived from glycoproteins was 50% higher in white matter than in gray. On the other hand, the non-dialyzable and acidic sialoglycopeptides showed a three-fold enrichment in gray matter compared to white. The relatively lower ratio of sialoglycopeptides to mannose-rich glycopeptides observed in white matter (2.5) compared to gray matter (6.9) is reflected in the lower value for the ratio in myelin (1.1) compared to synpatosomes (2.1). Although glycoproteins that contain mannose-rich oligosaccharide chains are present in the nerve cell and its terminals, these glycoproteins appear to be relatively enriched in myelin and/or glial membranes.  相似文献   

17.
Abstract— A homogeneous preparation of proteolipid protein (PLP) from rat brain myelin was isolated by preparative gel electrophoresis in sodium dodecyl sulfate and chemically characterized. The results of amino acid and N-terminal amino acid analyses are reported. The same preparation of myelin PLP was used to produce specific precipitating antibodies. Rabbit and goat antisera to myelin PLP each gave a single precipitin line with purified PLP dissolved in Triton X-100. Under identical conditions, no precipitation was observed with antiserum to myelin basic protein or with control serum. Immunofluorescence localization employing antiserum to PLP demonstrated bright specific fluorescence restricted to the myelin sheaths of axons in all anatomical areas of the rat brain examined. Neuronal cell bodies and their dendrites were completely negative with respect to the presence of proteolipid protein. PLP could not be localized in the cell bodies or fibrous processes in any of the glial elements in the adult rat brain. However, myelin PLP was clearly visible in the cytoplasm and processes of actively myelinating oligodendrocytes in the corpus callosum in the brains of 10-day-old rats.  相似文献   

18.
We developed two monoclonal antibodies, E5 and F5, which react with mouse epidermal growth factor (mEGF) and urogastrone. These antibodies and a rabbit antiserum to mEGF were used for immunohistochemical analysis of staining reactions in rodent and human tissues. Our results do not confirm the published reports of EGF-like immunoreactivity in Brunner's glands, human submandibular glands, human kidney tissue, or rodent brain sections.  相似文献   

19.
We have made a monoclonal antibody which specifically recognizes smg p25A among many ras p21/ras p21-like GTP-binding proteins thus far purified from bovine brain membranes. By use of this antibody, we have investigated the localization and subcellular distribution of smg p25A in rat brain by light and electron microscopic immunocytochemistry and by immunoblotting. By light microscopic immunocytochemistry, specific immunoreactivity is widely distributed, most abundant in neuropil, weak in neuronal somata, and absent from white matter. By electron microscopic immunocytochemistry, intense labeling is demonstrated on most of the synapses and concentrated in the presynaptic area where synaptic vesicles are observed. Presynaptic plasma membranes are weakly labeled but mitochondria, postsynaptic plasma membranes, and postsynaptic densities are unlabeled. In subcellular fractionation analysis of cerebrum, about one-fifth of smg p25A is found in the soluble cytosol fraction and the rest is found in the particulate fraction. About half of the particulate-bound smg p25A is recovered in the P2 fraction containing synaptosomes, mitochondria, and myelin, among which a major portion of smg p25A is recovered in the synaptosomal fraction. In the synaptosomal fraction, smg p25A is concentrated about 8-fold in the fraction containing synaptic vesicles and about 3-fold in the fraction containing synaptic plasma membranes compared with the original homogenate. smg p25A is present at a low level in the fraction containing synaptosomal soluble substances but almost absent from the fractions containing intrasynaptosomal mitochondria or post-synaptic densities. These results suggest that smg p25A plays important roles in the regulation of synaptic functions such as exo-endocytotic recycling of synaptic vesicles during neurotransmitter release.  相似文献   

20.
Abstract: The preparation and characterisation of a monoclonal antibody to an antigen enriched in day-old chick brain postsynaptic densities (PSDs), with respect to other subcellular loci, are described. Immunolabelling with this antibody produced a dendritic immunoprecipitate that was markedly stronger in PSDs than in other subcellular loci. Thus, the antiserum could be used as a marker for PSDs during their purification by subcellular fractionation, as well as in the study of PSD assembly. Monoclonal antibody 411B has already been shown to be a useful tool in the chemical determination of changes in synapse density after various experimental manipulations in both the chick and rat. In the present study, we have used the antiserum to monitor the appearance and maintenance or redundancy of synaptic components in the developing chick forebrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号