首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We investigated the impact of viruses, nutrient loading, and microzooplankon grazing on phytoplankton communities in two New York estuaries that hosted blooms of the brown tide alga Aureococcus anophagefferens during 2000 and 2002. The absence of a bloom at one location during 2002 allowed for the fortuitous comparison of a bloom and non-bloom year at the same location as well as a comparison of two sites experiencing bloom and non-bloom conditions during the same year. During the study, blooms were found at locations with high levels of dissolved organic nitrogen and lower nitrate concentrations compared to a non-bloom location. Experimental additions of inorganic nitrogen and phosphorus yielded growth rates within the total phytoplankton community which significantly exceeded control treatments in 83% of experiments, while A. anophagefferens experienced significantly increased growth during only 20% of experimental inorganic nutrient additions. Consistent with prior research, these results suggest brown tides are not caused by eutrophication, but instead are more likely to occur when sources of labile DOM are readily available. Microzooplankton grazing rates on the total phytoplankton community during a bloom were lower than grazing rates at a non-bloom site, and grazing rates on A. anophagefferens were lower than grazing rates on the total community on some dates, suggesting that reduced grazing mortality may also promote brown tides. Mean densities of viruses during blooms (3 × 108 ml−1) were elevated compared to most estuarine environments and were twice the levels found at a non-bloom site. Experimental enrichment of the natural viral densities yielded a significant increase in A. anophagefferens growth rates relative to control treatments when background levels of viruses were low (<1.7 × 108 ml−1), suggesting that viruses may promote bloom occurrence by regenerating DOM or altering the composition of microbial communities.  相似文献   

2.
Reflections on the ballast water dispersal—harmful algal bloom paradigm   总被引:1,自引:0,他引:1  
The ballast water dispersal—HAB paradigm, increasingly invoked circumstantially to explain puzzling and unaccountable HAB species outbreaks when lacking the multiple tests of confirmation recommended by Bolch and de Salas (2007), is evaluated. The types and examples of natural dispersions and taxon cycles are compared to exotic species bloom behavior linked to ballast water vectoring. The regional spreading, bloom behavior and disjunct distributions of the brown tide pelagophyte Aureococcus anophagefferens and the toxic dinoflagellate Gymnodinium catenatum, attributed to ballast water vectoring, are used as representative examples to evaluate the general application of the ballast water—HAB paradigm and associated interpretative problems. Human-aided emigration has a seeding and colonization ecology that differs from bloom ecology. For self-sustaining blooms to occur, these two ecologies must be accommodated by habitat growth conditions. The three stages that a non-native species must pass through (pioneering, persistence, community entry) to achieve colonization, community maintenance, and to bloom, and the niche-related factors and role of habitat disturbance are discussed. The relevance of cryptic occurrences, cyst deposits, dormancy periods and bloom rhythms of HAB species to their blooms attributed to ballast water-assisted introductions is also sketched. The different forms of HAB species rarity, their impact on the ballast water dispersal—HAB paradigm, and the dispersion and blooms of specialist and generalist HAB species are discussed. The remarkable novel and, often, monospecific blooms of dinoflagellate HAB species are being paralleled by similar eruptive bloom behavior cutting across phylogenetic lines, and being found also in raphidophytes, haptophytes, diatoms, silicoflagellates, etc. These blooms cannot be explained only as seeding events. An ecological release of ‘old barriers’ appears to be occurring generally at coastal bloom sites, i.e. something significant is happening ecologically and embedded within the ballast water—HAB paradigm. There may be a relationship between Life Form type [Smayda, T.J., Reynolds, C.S., 2001. Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. J. Plankton Res. 23, 447–461] and mode of expatriation; HAB dinoflagellate species commonly reported to produce ballast water-assisted toxic blooms invariably are members of cyst-producing Life Forms IV, V, VI. Ballast water vectoring of Life Forms I, II, III is rarely reported, even though many produce cysts, and where their novel introductions do occur they are more likely to be ichthyotoxic and vectored in shellfish stock consignments. The relevance of, and need to distinguish between morphospecies and their geographic/ribotype clades are discussed based on the Alexandrium tamarense/catenella/fundyense complex. Morphospecies-level ballast water dispersions are probably minor compared to the dispersal of the different ribotypes (toxic/non-toxic clades) making up HAB morphospecies; the redistribution and admixture of genotypes should be the focus. Ballast water-assisted expatriations impact the global occurrence of HABs through the direct transfer of previously absent species or introduction of genetic strains from the donor habitat that are ecologically favored over resident strains. The hybridization of species may be of potentially greater impact, resulting from the (1) mating of individuals from the donor and recipient habitats, or (2) through the interbreeding of strains introduced from two different donor sites into the recipient site, and whose progeny have greater ecological fitness than indigenous strains. Exceptional ecological changes of some sort appear to be occurring globally which, in combination with the genetically altered ecophysiological behavior of HAB species linked to ballast water dispersion and admixture, underpins the global HAB phenomenon. The impact of ballast water and shellfish transplantation on HABs and phytoplankton community ecology, generally, is considerably greater than the current focus on HAB species distributions, vectoring, and blooms. The methodological, investigative and conceptual potential of the ballast water—HAB paradigm should be exploited by developing a GEOHAB type intiative to advance quantification of global HAB ecology.  相似文献   

3.
Large-scale blooms suspected to be “brown tides” occurred in early summer for three consecutive years from 2009 to 2011 in the coastal waters of Qinhuangdao, China, and had significant negative impacts on the shellfish mariculture industry. To identify the causative species of the blooms, phytoplankton samples were collected from regions with and without bloom in the coastal waters of Qinhuangdao in 2011, and clone libraries were built using eukaryote-specific 18S ribosomal RNA gene (18S rDNA). Altogether 50 clones, including 17 clones from bloom area and 33 clones from nearby regions without bloom were amplified. Blasted in GenBank, 17 clones amplified from the bloom area were assigned to Pelagophyceae (8 clones), Mediophyceae (2 clones), Cryptophyta (2 clones), Dinophyceae (2 clones) and unidentified eukaryotic species (3 clones). Those from the non-bloom site were assigned to Cryptophyta, Eustigmatophyceae, Prasinophyceae, Coscinodiscophyceae, Mediophyceae, Raphidophyceae and Dinophyceae, but not Pelagophyceae. All 8 pelagophyte clones from the bloom area were 99.7–100% similar to a single species, Aureococcus anophagefferens Hargraves et Sieburth, the causative species of brown tides on the east coast of USA. For nearly the entire length of the 18S rDNA, there were 0–6 base pair differences between the 8 amplicons and those of A. anophagefferens from USA. Furthermore, all of the 8 clones were clustered into the same well-supported clade with A. anophagefferens (posterior probability = 0.99) in a phylogenetic tree established for pelagophytes and other related microalgae. In our previous studies, the causative species of the bloom was tentatively identified as a pelagophyte, haptophyte or silicoflagellate, based on the pigment profile of the size-fractioned phytoplankton samples. Based on this study, we conclude that blooms in the coastal waters of Qinhuangdao of the Bohai Sea were brown tides caused by A. anophagefferens. As far as we know, this is the first report of brown tide events caused by A. anophagefferens in China, which is the third country in the world reporting A. anophagefferens blooms in addition to USA and South Africa.  相似文献   

4.
Brown tide algal blooms, caused by the excessive growth of Aureococcus anophagefferens, recur in several northeastern US coastal bays. Direct bloom control could alleviate the ecological and economic damage associated with bloom outbreak. This paper explored the effectiveness and safety of natural chemical biocide hydrogen peroxide (H2O2) for brown tide bloom control. Culture studies showed that H2O2 at 1.6 mg L−1 effectively eradicated high density A. anophagefferens within 24-hr, but caused no significant growth inhibition in the diatoms, prymnesiophytes, green algae and dinoflagellates of >2–3 μm cell sizes among 12 phytoplankton species tested over 1-week observation. When applied to brown tide bloom prone natural seawater in a microcosm study, this treatment effectively removed the developing brown tide bloom, while the rest of phytoplankton assemblage (quantified via HPLC based marker pigment analyses), particularly the diatoms and green algae, experienced only transient suppression then recovered with total chlorophyll a exceeding that in the controls within 72-hr; cyanobacteria was not eradicated but was still reduced about 50% at 72-hr, as compared to the controls. The action of H2O2 against phytoplankton as a function of cell size and cell wall structure, and a realistic scenario of H2O2 application were discussed.  相似文献   

5.
The brown tides occurring in the coastal scallop cultivation area of Qinhuangdao, China, in recent years are caused by Aureococcus anophagefferens and significantly impact the scallop industry and the marine ecosystem in this region. Long-term investigations of phytoplankton and hydrological variables in the Qinhuangdao sea area were conducted in this study to understand the spatial-temporal variations of A. anophagefferens in relation to environmental factors. Samples were collected during twelve cruises from July 2011 to December 2013 and were analyzed for the temperature, salinity, dissolved oxygen (DO), nutrients and phytoplankton pigments. All diagnostic pigments of A. anophagefferens, such as chlorophyll c3 (Chl c3), Chl c2, 19′-butanoyloxyfucoxanthin (But-fuco), fucoxanthin (Fuco), and diadinoxanthin (Diad), were detected in the surface water by using high-performance liquid chromatography (HPLC). The highest concentrations of But-fuco (5.64 μg L−1), Fuco (37.94 μg L−1) and chlorophyll a (Chl a, 17.25 μg L−1) occurred in different seasons and sampling sites. The A. anophagefferens bloom (as indicated by But-fuco) usually expanded from the south to the north of the Qinhuangdao sea area, close to scallop-culturing regions. The bloom unusually starts in May, reaches its peak in June and almost disappears in August, with the temperature ranging from ca. 19 °C to 23 °C. The redundancy analysis (RDA) indicated that relatively high salinity (>29) and low inorganic nutrients were suitable for the development of the A. anophagefferens bloom. The ratios of diagnostic pigments to Chl a were not constant during different cruises and generally obeyed two different linear relationships, thus indicating the co-occurrence of the blooms of A. anophagefferens and other species, such as Minutocellus polymorphus. In summary, our work reports the long-term variation of A. anophagefferens blooms based on diagnostic pigments and environmental controls, which may provide more insights into the formation mechanisms of the brown tide in this region.  相似文献   

6.
Parasitic dinoflagellates of the genus Amoebophrya infect free-living dinoflagellates, some of which can cause harmful algal blooms (HABs). High prevalence of Amoebophrya spp. has been linked to the decline of some HABs in marine systems. The objective of this study was to evaluate the impact of Amoebophrya spp. on the dynamics of dinoflagellate blooms in Salt Pond (MA, USA), particularly the harmful species Alexandrium fundyense. The abundance of Amoebophrya life stages was estimated 3–7 days per week through the full duration of an annual A. fundyense bloom using fluorescence in situ hybridization coupled with tyramide signal amplification (FISH- TSA). More than 20 potential hosts were recorded including Dinophysis spp., Protoperidinium spp. and Gonyaulax spp., but the only dinoflagellate cells infected by Amoebophrya spp. during the sampling period were A. fundyense. Maximum A. fundyense concentration co-occurred with an increase of infected hosts, followed by a massive release of Amoebophrya dinospores in the water column. On average, Amoebophrya spp. infected and killed ∼30% of the A. fundyense population per day in the end phase of the bloom. The decline of the host A. fundyense population coincided with a dramatic life-cycle transition from vegetative division to sexual fusion. This transition occurred after maximum infected host concentrations and before peak infection percentages were observed, suggesting that most A. fundyense escaped parasite infection through sexual fusion. The results of this work highlight the importance of high frequency sampling of both parasite and host populations to accurately assess the impact of parasites on natural plankton assemblages.  相似文献   

7.
The entire microbial plankton community was quantified on a weekly basis April through June of 2000 in Quantuck Bay as part of an ongoing study to identify factors contributing to the initiation of blooms of Aureococcus anophagefferens (brown tide) in Long Island, NY bays. We used flow cytometry, imaging cytometry, fluorescent antibody cell counts, and traditional visual cell counting to quantify the picophytoplankton, heterotrophic bacteria, nanophytoplankton, heterotrophic protists, and microplankton prior to, and during the initiation of a brown tide bloom. Cells passing through a 5 μm mesh dominated the total chlorophyll concentration (>80%) for most of the spring study period. The A. anophagefferens bloom occurred in the context of a larger pico/nanophytoplankton bloom where A. anophagefferens accounted for only 30% of the total cell count when it was at its maximum concentration of 4.8 × 105 mL−1. Levels of dissolved organic nitrogen were enriched during the bloom peak relative to pre-bloom levels and heterotrophic bacteria also bloomed, reaching abundances over 107 mL−1. A trophic cascade within the heterotrophic protist community may have occurred, coinciding with the A. anophagefferens bloom. Before the onset of the bloom, larger grazers increased in abundance, while the next smaller trophic level of grazers were diminished. These smaller grazers were the likely water column predators of A. anophagefferens, and the brown tide bloom initiated when they were depleted. These results suggest that this bloom initiated due to interactions with other pico/nano algae and release from grazing pressure through a trophic cascade.  相似文献   

8.
The rate of growth of juvenile hard clams, Mercenaria mercenaria, was studied in the Coastal Bays of Maryland during an outbreak of the brown tide, Aureococcus anophagefferens. Brown tide dominated the plankton community during the month of June 2002, with cell densities at several sites reaching category 3 (>200,000 cells ml−1) levels. Temperatures during the bloom were 18.6–27.5 °C. Nutrient conditions preceding and during the bloom were conducive for the proliferation of A. anophagefferens: while inorganic nitrogen and phosphorus were <1 μg at N or P l−1, urea was elevated during bloom development. Organic nitrogen, phosphorus and carbon were in the range of levels observed in previous brown tide blooms and increased following the collapse of the bloom. Growth rates of juvenile clams were significantly lower during the period of the brown tide bloom than following its collapse. Growth rates of M. mercenaria were found to be negatively impacted at brown tide densities as low as 20,000 cells ml−1, or category 1 levels. The low growth rates of M. mercenaria could not be explained by temperature, as the lowest growth rates were found when water temperatures were at levels previously found to be optimal for growth.  相似文献   

9.
On the basis of experiences in mitigating harmful algal blooms (HABs) with modified clay (MC), a bloom does not continue after the dispersal of the MC, even though the density of the residual cells in the water remains as high as 20–30% of the initial cell density. This interesting phenomenon indicates that in addition to flocculation, MC has additional mechanisms of HAB control. Here, Aureococcus anophagefferens was selected as a model organism to study the physiological response dynamics of residual cells treated with MC, and RT-qPCR was used to measure the differential expression of 40 genes involved in anti-oxidation, photosynthesis, phospholipid synthesis, programmed cell death and cell proliferation at five time points. The results showed that every functional gene category exhibited a "V" shaped pattern with a turning point. It was reflected that there were two processes for MC inhibiting the growth of residual cells. One is the oxidative stress process (OSP) caused by ineffective collision with MC, whose effect weakened gradually; another is the programmed cell death process (PCDP) caused by the lysis of damaged residual cells, whose effect enhanced two days after MC treatment. In addition, the scanning electron micrographs verified that some of the residual cells were deformed or even lysed. Combined with the effects of OSP and PCDP in dynamics, the growth of residual cells was inhibited and was followed by gradual bloom disappearance. This study further elucidates the mechanism of MC controlling HABs at the molecular level and enable a more comprehensive understanding of HAB mitigation using MC.  相似文献   

10.
A method was developed for the rapid detection and enumeration of Aureococcus anophagefferens, the cause of harmful algal blooms called “brown tides” in estuaries of the Mid-Atlantic United States. The method employs a monoclonal antibody (MAb) and a colorimetric, enzyme-linked immunosorbent assay format. The MAb obtained exhibits high reactivity with A. anophagefferens and very low cross-reactivities with a phylogenetically diverse array of other protists and bacteria. Standard curves are constructed for each 96-well microtiter plate by using known amounts of a preserved culture of A. anophagefferens. This approach allows estimation of the abundance of the alga in natural samples. The MAb method was compared to an existing method that employs polyclonal antibodies and epifluorescence microscopy and to direct microscopic counts of A. anophagefferens in samples with high abundances of the alga. The MAb method provided increased quantitative accuracy and greatly reduced sample processing time. A spatial survey of several Long Island estuaries in May 2000 using this new approach documented a range of abundances of A. anophagefferens in these bays spanning nearly 3 orders of magnitude.  相似文献   

11.
Dinoflagellates are a major cause of harmful algal blooms (HABs), with consequences for coastal marine ecosystem functioning and services. Alexandrium fundyense (previously Alexandrium tamarense) is one of the most abundant and widespread toxigenic species in the temperate Northern and Southern Hemisphere and produces paralytic shellfish poisoning toxins as well as lytic allelochemical substances. These bioactive compounds may support the success of A. fundyense and its ability to form blooms. Here we investigate the impact of grazing on monoclonal and mixed set-ups of highly (Alex2) and moderately (Alex4) allelochemically active A. fundyense strains and a non-allelochemically active conspecific (Alex5) by the heterotrophic dinoflagellate Polykrikos kofoidii. While Alex4 and particularly Alex5 were strongly grazed by P. kofoidii when offered alone, both strains grew well in the mixed assemblages (Alex4 + Alex5 and Alex2 + Alex5). Hence, the allelochemical active strains facilitated growth of the non-active strain by protecting the population as a whole against grazing. Based on our results, we argue that facilitation among clonal lineages within a species may partly explain the high genotypic and phenotypic diversity of Alexandrium populations. Populations of Alexandrium may comprise multiple cooperative traits that act in concert with intraspecific facilitation, and hence promote the success of this notorious HAB species.  相似文献   

12.
Blooms of the brown tide pelagophyte, Aureococcus anophagefferens, have been reported in coastal bays along the east coast of the USA for nearly two decades. Blooms appear to be constrained to shallow bays that have low flushing rates, little riverine input and high salinities (e.g., >28). Nutrient enrichment and coastal eutrophication has been most frequently implicated as the cause of A. anophagefferens and other blooms in coastal bays. We compare N and C dynamics during two brown tide blooms, one in Quantuck Bay, on Long Island, NY in 2000, and the other in Chincoteague Bay, at Public Landing, MD in 2002, with a physically similar site in Chincoteague Bay that did not experience a bloom. We found that the primary forms of nitrogen (N) taken up during the bloom in Quantuck Bay were ammonium and dissolved free amino acids (DFAA) while the primary form of N fueling production at both sites in Chincoteague Bay was urea. At both Chincoteague sites, amino acid carbon (C) was taken up while urea C was not. Even though A. anophagefferens has the ability to take up organic C, during the bloom at Chincoteague Bay, photosynthetic uptake of bicarbonate was the dominant pathway of C acquisition by the >1.2 μm size fraction during the day. C uptake by cells <5.0 μm was insufficient to meet cellular C demand based on the measured N uptake rates and the C:N ratio of particulate material. While cells >1.2 μm did not take up much organic C during the day, smaller cells (>0.2 μm) did. Peptide hydrolysis appeared to play an important role in mobilizing organic matter in Quantuck Bay, where amino acids contributed substantially to N and C uptake, but not in Chincoteague Bay. Dissolved organic N (DON), dissolved organic C (DOC) concentrations and the DOC/DON ratio were higher and total dissolved inorganic N (DIN) concentrations were lower at the bloom site in Chincoteague Bay than at the nonbloom site in the same bay. We conclude that A. anophagefferens is capable of using a wide variety of N and C compounds, and that nutrient inputs, biotic interactions and the dominant recycling pathways determine which compounds are available and which metabolic pathways are active at a particular site.  相似文献   

13.
Annual blooms of the toxic dinoflagellate Karenia brevis in the eastern Gulf of Mexico represent one of the most predictable global harmful algal bloom (HAB) events, yet remain amongst the most difficult HABs to effectively monitor for human and environmental health. Monitoring of Karenia blooms is necessary for a variety of precautionary, management and predictive purposes. These include the protection of public health from exposure to aerosolized brevetoxins and the consumption of toxic shellfish, the protection and management of environmental resources, the prevention of bloom associated economic losses, and the evaluation of long term ecosystem trends and for potential future bloom forecasting and prediction purposes. The multipurpose nature of Karenia monitoring, the large areas over which blooms occur, the large range of Karenia cell concentrations (from 5 × 103 cells L?1 to >1 × 106 cells L?1) over which multiple bloom impacts are possible, and limitations in resources and knowledge of bloom ecology have complicated K. brevis monitoring, mitigation and management strategies. Historically, K. brevis blooms were informally and intermittently monitored on an event response basis in Florida, usually in the later bloom stages after impacts (e.g. fish kills, marine mammal mortalities, respiratory irritation) were noted and when resources were available. Monitoring of different K. brevis bloom stages remains the most practical method for predicting human health impacts and is currently accomplished by the state of Florida via direct microscopic counts of water samples from a state coordinated volunteer HAB monitoring program. K. brevis cell concentrations are mapped weekly and disseminated to stakeholders via e-mail, web and toll-free phone numbers and provided to Florida Department of Agriculture and Consumer Services (FDACS) for management of both recreational and commercial shellfish beds in Florida and to the National Oceanic and Atmospheric Administration (NOAA) for validation of the NOAA Gulf of Mexico HAB bulletin for provision to environmental managers. Many challenges remain for effective monitoring and management of Karenia blooms, however, including incorporating impact specific monitoring for the diverse array of potential human and environmental impacts associated with blooms, timely detection of offshore bloom initiation, sampling of the large geographic extent of blooms which often covers multiple state boundaries, and the involvement of multiple Karenia species other than K. brevis (several of which have yet to be isolated and described) with unknown toxin profiles. The implementation and integration of a diverse array of optical, molecular and hybrid Karenia detection technologies currently under development into appropriate regulatory and non-regulatory monitoring formats represents a further unique challenge.  相似文献   

14.
Cochlodinium polykrikoides is a cosmopolitan dinoflagellate that is notorious for causing fish-killing harmful algal blooms (HABs) across North America and Asia. While recent laboratory and ecosystem studies have definitively demonstrated that Cochlodinium forms resting cysts that may play a key role in the dynamics of its HABs, uncertainties regarding cyst morphology and detection have prohibited even a rudimentary understanding of the distribution of C. polykrikoides cysts in coastal ecosystems. Here, we report on the development of a fluorescence in situ hybridization (FISH) assay using oligonucleotide probes specific for the large subunit (LSU) ribosomal DNA (rDNA) of C. polykrikoides. The LSU rDNA-targeted FISH assay was used with epifluorescence microscopy and was iteratively refined to maximize the fluorescent reaction with C. polykrikoides and minimize cross-reactivity. The final LSU rDNA-targeted FISH assay was found to quantitatively recover cysts made by North American isolates of C. polykrikoides but not cysts formed by other common cyst-forming dinoflagellates. The method was then applied to identify and map C. polykrikoides cysts across bloom-prone estuaries. Annual cyst and vegetative cell surveys revealed that elevated densities of C. polykrikoides cysts (>100 cm−3) during the spring of a given year were spatially consistent with regions of dense blooms the prior summer. The identity of cysts in sediments was confirmed via independent amplification of C. polykrikoides rDNA. This study mapped C. polykrikoides cysts in a natural marine setting and indicates that the excystment of cysts formed by this harmful alga may play a key role in the development of HABs of this species.  相似文献   

15.
16.
Concentrations of the accessory phytoplankton pigment 19′-butanoyloxyfucoxanthin (but-fuco), derived from archived high performance liquid chromatography (HPLC) data from the Atlantic coastal bays of Maryland and Virginia (1993–1995 and 1999–2002), were used to determine the presence of Aureococcus anophagefferens at 18 stations. Paired data of direct cell counts of A. anophagefferens and but-fuco concentration data from 2000 to 2002 were linearly regressed (R2 = 0.78). This regression was used to estimate historical cell densities from 1994 to 1995 and to improve the spatial resolution from 1999 to 2002. Although the HPLC method used did not permit quantification of but-fuco before 1994, the records indicate that qualitatively A. anophagefferens was present in 1993. Quantitative measurements grouped into bloom index categories showed that annually, peak densities occurred in May to July. Severe Category 3 blooms (>200,000 cells ml−1) were found in 1995, 2001, and 2002. Spatially, concentrations of but-fuco were higher in the northern extent of the study region than in the lower Chincoteague Bay, and along the western shore of Chincoteague Bay than on the eastern side. On an interannual basis, it appeared that A. anophagefferens became more geographically widespread and blooms more intense throughout the study period.  相似文献   

17.
Red tides caused by the marine dinoflagellate Cochlodinium polykrikoides Margalef pose significant environmental problems worldwide. Recently, the existence of severe blooms attributable to a single Cochlodinium Schütt species has been questioned by many researchers. Herein we investigated the dinoflagellate composition of harmful algal blooms (HABs) attributed to C. polykrikoides in Korean coastal waters at nine different stations (St.). The component species of Cochlodinium blooms were examined by using microscopic and gene-cloning methods. In the nine study areas, C. polykrikoides was the predominant species of HABs in St. 2, 4, 7, and St. 9. Based on the morphological identification, the bloom was initially thought to be caused only by C. polykrikoides; however, we detected additional bloom-forming dinoflagellates (Polykrikos schwartzii Bütschli and Polykrikos kofoidii Chatton), and diatoms (Pseudo-nitzschia americana (Hasle) Fryxell) along with C. polykrikoides. The parasitic dinoflagellates Amoebophrya Koeppen and Euduboscquella Coats, Bachvaroff & Delwiche were found to be co-located with Cochlodinium in our study, and for the first time, Cochlodinium fulvescens Iwataki, Kawami & Matsuoka was detected in Korea (west coast). These results suggest co-existence of multiple dinoflagellates in bloom populations of Cochlodinium and describe the composition of other dinoflagellate blooms (e.g., Polykrikos spp.) in Korean coastal regions. This co-occurrence may be considered during efforts to monitor and control HABs.  相似文献   

18.
19.
赫冬梅  段舜山 《生态科学》2011,30(4):454-458
海洋生态系统是地球生物圈的重要组成部分。目前,人类活动已经严重破坏了海洋生态系统,导致了海洋生态系统的失衡。赤潮的发生正是这种不平衡的具体体现。文章讨论了人类活动对海洋生态系统的负面影响以及对近海海域赤潮发生的推波助澜作用;主要综述了影响赤潮发生和消亡的生态条件及环境影响因子。最后,强调了学科交叉研究在管理和防范赤潮的发生,维护近海海洋生态系统健康服务功能的必要性,并提出了一些相应的对策和措施。  相似文献   

20.
《Harmful algae》2009,8(1):167-174
Every year harmful algal blooms (HABs) cause serious impacts to local economies, coastal ecosystems, and human health on a global scale. It is well known that nutrient availability can influence important aspects of harmful algae biology and ecology, such as growth, toxin production, and life cycle stage, as well as bloom initiation, persistence and decline. Increases in the rate of supply of organic matter to ecosystems (eutrophication) carries many possible ramifications to coastal systems, including the potential for nutrient enrichment and the potential for stimulation of harmful algal blooms. Traditional studies on algal nutrition typically use either cultured isolates or community level assays, to examine nutrient uptake, nutrient preference, elemental composition, and other metrics of a species’ response to nutrients. In the last decade, technological advances have led to a great increase in the number of sequences available for critical harmful species. This, in turn, has led to new insights with regards to algal nutrition, and these advances highlight the promise of molecular technologies, and genomic approaches, to improving our understanding of algal nutrient acquisition and nutritional physiological ecology, in both cultures and field populations. With these developments increased monitoring of nutritional physiology in field populations of harmful algae will allow us to better discriminate how eutrophication impacts these groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号