首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biopharmaceutical industry gains enormous flexibility in production processes by using sterilized preassembled single-use devices. Gamma irradiation is an established sterilization technology that may be restricted in the future by the availability of 60Co as irradiation source and irradiation capacities. X-ray technology is considered an alternative type of radiation for sterilizing SU equipment. In the context of extractables and leachables—one concern connected with the use of single-use process equipment—the effect of X-ray irradiation on the extractables profile of the materials needs to be compared to established gamma irradiation to qualify this alternative technology. An approach is presented to obtain robust and comprehensive extractables data for materials used in SU devices after sterilization either using X-ray or gamma irradiation. A careful selection of the test items and the test design allows a one-to-one comparison of data obtained from a combination of orthogonal analytical techniques. The extractables of a modern SU film material and the copolyester Tritan™ are evaluated. The data presented allow a risk evaluation on the safety of this new sterilization modality for biopharmaceutical applications. It is demonstrated that the extractables profile of a polymer is not affected by the type of irradiation used for sterilization.  相似文献   

2.
In this work CdTe/ZnSe core/shell quantum dots (QDs) were synthesized via a simple, rapid and room temperature photochemical approach. Optical properties of aqueous prepared CdTe/ZnSe QDs were studied systematically under gamma irradiation with dose range of 0 Gy to 20 kGy. The obtained results showed a regular red shift behavior versus gamma irradiation dose, in photoluminescence peak and absorption edge of the CdTe/ZnSe QDs. Structural properties of CdTe/ZnSe QDs before and after gamma irradiation were characterized by means of X-ray diffraction (XRD), Raman and Fourier-transform infrared (FT-IR) analyses. The obtained results showed that the crystalline structure of CdTe/ZnSe core/shell QDs did not change after gamma irradiation. Concentration and shell thickness as two important factors on the sensitivity of CdTe/ZnSe QDs in front of gamma irradiation have been investigated. Based on this study, CdTe/ZnSe QDs are suggested as good candidates for gamma dosimeter.  相似文献   

3.
Phacilitate held a Special Interest Group workshop event in Edinburgh, UK, in May 2017. The event brought together leading stakeholders in the cell therapy bioprocessing field to identify present and future challenges and propose potential solutions to automation in cell therapy bioprocessing. Here, we review and summarize discussions from the event. Deep biological understanding of a product, its mechanism of action and indication pathogenesis underpin many factors relating to bioprocessing and automation. To fully exploit the opportunities of bioprocess automation, therapeutics developers must closely consider whether an automation strategy is applicable, how to design an ‘automatable’ bioprocess and how to implement process modifications with minimal disruption. Major decisions around bioprocess automation strategy should involve all relevant stakeholders; communication between technical and business strategy decision-makers is of particular importance. Developers should leverage automation to implement in-process testing, in turn applicable to process optimization, quality assurance (QA)/ quality control (QC), batch failure control, adaptive manufacturing and regulatory demands, but a lack of precedent and technical opportunities can complicate such efforts. Sparse standardization across product characterization, hardware components and software platforms is perceived to complicate efforts to implement automation. The use of advanced algorithmic approaches such as machine learning may have application to bioprocess and supply chain optimization. Automation can substantially de-risk the wider supply chain, including tracking and traceability, cryopreservation and thawing and logistics. The regulatory implications of automation are currently unclear because few hardware options exist and novel solutions require case-by-case validation, but automation can present attractive regulatory incentives.  相似文献   

4.
The development of bio-resorbable implant materials is rapidly going on. Sterilization of those materials is inevitable to assure the hygienic requirements for critical medical devices according to the medical device directive (MDD, 93/42/EG). Biopolymer-containing biomaterials are often highly sensitive towards classical sterilization procedures like steam, ethylene oxide treatment or gamma irradiation. Supercritical CO2 (scCO2) treatment is a promising strategy for the terminal sterilization of sensitive biomaterials at low temperature. In combination with low amounts of additives scCO2 treatment effectively inactivates microorganisms including bacterial spores. We established a scCO2 sterilization procedure under addition of 0.25% water, 0.15% hydrogen peroxide and 0.5% acetic anhydride. The procedure was successfully tested for the inactivation of a wide panel of microorganisms including endospores of different bacterial species, vegetative cells of gram positive and negative bacteria including mycobacteria, fungi including yeast, and bacteriophages. For robust testing of the sterilization effect with regard to later application of implant materials sterilization all microorganisms were embedded in alginate/agarose cylinders that were used as Process Challenge Devices (PCD). These PCD served as surrogate models for bioresorbable 3D scaffolds. Furthermore, the impact of scCO2 sterilization on mechanical properties of polysaccharide-based hydrogels and collagen-based scaffolds was analyzed. The procedure was shown to be less compromising on mechanical and rheological properties compared to established low-temperature sterilization methods like gamma irradiation and ethylene oxide exposure as well as conventional steam sterilization. Cytocompatibility of alginate gels and scaffolds from mineralized collagen was compared after sterilization with ethylene oxide, gamma irradiation, steam sterilization and scCO2 treatment. Human mesenchymal stem cell viability and proliferation were not compromised by scCO2 treatment of these materials and scaffolds. We conclude that scCO2 sterilization under addition of water, hydrogen peroxide and acetic anhydride is a very effective, gentle, non-cytotoxic and thus a promising alternative sterilization method especially for biomaterials.  相似文献   

5.

Effects of gamma and X-ray treatments were studied on three varieties of Coffea arabica (Kent, Mundo Novo and Geisha) to determine their radiosensitivity and relative biological effects. The coffee varieties seeds were subjected to 0, 50, 100, 150, 200 and 400 Gy of gamma and X-rays from Cobalt 60 (60Co) source irradiation. The irradiated seeds were pre-germinated in Petri dishes placed in a germination chamber, whilst some were sown in the greenhouse for germination studies. Data were collected on germination date and rate, root and hypocotyl length to determine the relative biological effectiveness of treatments and the optimum dose. The results showed varieties responding differently to the irradiations and doses. There was a decrease in germination with increasing doses of the irradiation. The X-ray-treated seeds had less germination percentage and seedling vigour measured at 28 days after treatment compared to the gamma-irradiated seeds. The irradiation effects on germination suggest that lower doses of X-rays give the same Relative Biological Effects as higher gamma doses for both growth chamber and greenhouse germination for Geisha at LD50, where the effects were similar for the two irradiations. Whereas 50–100 Gy stimulated germination and seedling vigour, 150 Gy adversely affected germination and no germination occurred at 200–400 Gy. The study concluded that all the coffee varieties evaluated are sensitive to gamma and X-ray irradiation in terms of germination, seedling vigour and biological effects with an optimum dose of 50–100 Gy. Therefore, both gamma and X-rays could be utilized in a future mutational breeding programme for coffee seedlings.

  相似文献   

6.
Gamma irradiation is a nonthermal processing technology that has been used for the preservation of a variety of food products. This technology has been shown to effectively inactivate bacterial pathogens. Currently, the FDA has approved doses of up to 4.0 kGy to control food-borne pathogens in fresh iceberg lettuce and spinach. However, whether this dose range effectively inactivates food-borne viruses is less understood. We have performed a systematic study on the inactivation of a human norovirus surrogate (murine norovirus 1 [MNV-1]), human norovirus virus-like particles (VLPs), and vesicular stomatitis virus (VSV) by gamma irradiation. We demonstrated that MNV-1 and human norovirus VLPs were resistant to gamma irradiation. For MNV-1, only a 1.7- to 2.4-log virus reduction in fresh produce at the dose of 5.6 kGy was observed. However, VSV was more susceptible to gamma irradiation, and a 3.3-log virus reduction at a dose of 5.6 kGy in Dulbecco's modified Eagle medium (DMEM) was achieved. We further demonstrated that gamma irradiation disrupted virion structure and degraded viral proteins and genomic RNA, which resulted in virus inactivation. Using human norovirus VLPs as a model, we provide the first evidence that the capsid of human norovirus has stability similar to that of MNV-1 after exposure to gamma irradiation. Overall, our results suggest that viruses are much more resistant to irradiation than bacterial pathogens. Although gamma irradiation used to eliminate the virus contaminants in fresh produce by the FDA-approved irradiation dose limits seems impractical, this technology may be practical to inactivate viruses for other purposes, such as sterilization of medical equipment.  相似文献   

7.
Techno-economic analysis connects R&D, engineering, and business. By linking process parameters to financial metrics, it allows researchers to understand the factors controlling the potential success of their technologies. In particular, metabolic and bioprocess engineering, as disciplines, are aimed at engineering cells to synthesize products with an ultimate goal of commercial deployment. As a result it is critical to be able to understand the potential impact of strain engineering strategies and lab scale results on commercial potential. To date, while numerous techno-economic models have been developed for a wide variety of bioprocesses, they have either required process engineering expertise to adapt and/or use or do not directly connect financial outcomes to potential strain engineering results. Despite the clear value of techno-economic analysis, these challenges have made it inaccessible to many researchers. I have developed this online calculator (https://bioprocesstea.com OR http://bioprocess-tea-calculator.herokuapp.com/) to make the basic capabilities of early-stage techno-economic analysis of bioprocesses readily accessible. The tool, currently focused on aerobic fermentation processes, can be used to understand the impact of fermentation level metrics on the commercial potential of a bioprocess for the production of a wide variety of organic molecules. Using the calculator, I review the commercially relevant targets for an aerobic bioprocess for the production of diethyl malonate.  相似文献   

8.
Metallic nanoparticles (MeNPs) are widely used in many areas such as biomedicine, packaging, cosmetics, colourants, agriculture, antimicrobial agents, cleaning products, as components of electronic devices and nutritional supplements. In addition, some MeNPs exhibit quantum properties, making them suitable materials in the photonics, electronic and energy industries. Through the lens of technology, microbes can be considered nanofactories capable of producing enzymes, metabolites and capping materials involved in the synthesis, assembly and stabilization of MeNPs. This bioprocess is considered more ecofriendly and less energy intensive than the current chemical synthesis routes. However, microbial synthesis of MeNPs as an alternative method to the chemical synthesis of nanomaterials still faces some challenges that need to be solved. Some of these challenges are described in this Editorial.  相似文献   

9.
Microscale techniques have been applied to biological assays for nearly two decades, but haven't been widely integrated as common tools in biological laboratories. The significant differences between several physical phenomena at the microscale versus the macroscale have been exploited to provide a variety of new types of assays (such as gradient production or spatial cell patterning). However, the use of these devices by biologists seems to be limited by issues regarding biological validation, ease of use, and the limited available readouts for assays done using microtechnology. Critical validation work has been done recently that highlights the current challenges for microfluidic methods and suggest ways in which future devices might be improved to better integrate with biological assays. With more validation and improved designs, microscale techniques hold immense promise as a platform to study aspects of cell biology that are not possible using current macroscale techniques.  相似文献   

10.
To evaluate the effects of different gamma irradiation doses on PEGd,lPLA and PEG-PLGA multiblock copolymers. The behaviour of the multiblock copolymers to irradiation was compared to that of PLA, PLGA polymers. PEGd,lPLA, PEG-PLGA, PLA and PLGA polymers were irradiated by using a 60Co irradiation source at 5, 15, 25 and 50 kGy total dose. Characterization was performed on all samples before and after irradiation, by nuclear magnetic resonance (NMR), infrared absorption spectrophotometry (FTIR) and gel permeation chromatography (GPC). The effect of gamma irradiation on polymer stability was also evaluated. Results of NMR and FTIR suggest an increase in -OH and -COOH groups, attributed to scission reactions induced by irradiation treatment. Data of GPC analysis showed that the weight average molecular weight (Mw) of polymer samples decreased with increasing irradiation dose. The extent of Mw degradation expressed as percentage of Mw reduction was more prominent for polymers with high molecular weight as PEGd,lPLA and PLA. The dominant effect of gamma-irradiation on both polymer samples was chain scission. The multiblock copolymer PEGd,lPLA presented higher sensitivity to irradiation treatment with respect to PLA, likely due to the presence of PEG in the matrix. The effect of gamma irradiation continues over a much longer period of time after gamma irradiation has been performed. It is suggested that the material reacts with oxygen to form peroxyl free radicals, which may further undergo degradation reactions during storage after irradiation.  相似文献   

11.
Bioprocess engineering: now and beyond 2000   总被引:1,自引:0,他引:1  
Abstract: Bioprocess engineering may be defined as the translation of life-science discoveries into practical products, processes, or systems capable of serving the needs of society. It is a critical link from discovery to commercialization. Current bioprocess engineering is primarily focused on biopharmaceutical products of high dollar value per gram such as erythropoietin or growth hormones. However, other products of current interest include ethanol, amino acids, organic acids, antibiotics, and specialty chemicals. Current challenges for increased use of bioprocesses for producing bulk and semi-bulk chemicals include both technical and infrastructural barriers. Technical barriers are easy to identify and at times can be overcome by engineering improvements or changes brought about radical developments in science (e.g. recombinant DNA). Infrastructural barriers, such as raw-material substitutions or educational limitations are more difficult to define and change. Recently the National Academy of Sciences examined barriers to bioprocess engineering and issued a report entitled: "Putting Biotechnology to Work: Bioprocess Engineering". A key recommendation was the establishment of a coordinated long-range plan of research, development, training and education in bioprocess engineering involving participation by industry, academe and the federal government. The report was the first national analysis devoted entirely to bioprocess engineering and covered new topics such as space bioprocess engineering. Other topics covered by the author include the current state of the US chemical industry and future directions in three promising areas of bioprocess engineering environmental bioprocess engineering, marine bioprocess engineering and microsystem bioprocess engineering.  相似文献   

12.
Events of viral contaminations occurring during the production of biopharmaceuticals have been publicly reported by the biopharmaceutical industry. Upstream raw materials were often identified as the potential source of contamination. Viral contamination risk can be mitigated by inactivating or eliminating potential viruses of cell culture media and feed solutions. Different methods can be used alone or in combination on raw materials, cell culture media, or feed solutions such as viral inactivation technologies consisting mainly of high temperature short time, ultraviolet irradiation, and gamma radiation technologies or such as viral removal technology for instance nanofiltration. The aim of this review is to present the principle, the advantages, and the challenges of high temperature short time (HTST) technology. Here, we reviewed effectiveness of HTST treatment and its impact on media (filterability of media, degradation of components), on process performance (cell growth, cell metabolism, productivity), and product quality based on knowledge shared in the literature.  相似文献   

13.
Progress in biomedical research is largely driven by improvements, innovations, and breakthroughs in technology, accelerating the research process, and an increasingly complex collaboration of both clinical and basic science. This increasing sophistication has driven the need for centralized shared resource cores (“cores”) to serve the scientific community. From a biomedical research enterprise perspective, centralized resource cores are essential to increased scientific, operational, and cost effectiveness; however, the concentration of instrumentation and resources in the cores may render them highly vulnerable to damage from severe weather and other disasters. As such, protection of these assets and the ability to recover from a disaster is increasingly critical to the mission and success of the institution. Therefore, cores should develop and implement both disaster and business continuity plans and be an integral part of the institution’s overall plans. Here we provide an overview of key elements required for core disaster and business continuity plans, guidance, and tools for developing these plans, and real-life lessons learned at a large research institution in the aftermath of Superstorm Sandy.  相似文献   

14.
The availability of material for experimental studies is a key constraint in the development of full-scale bioprocesses. This is especially true for the later stages in a bioprocess sequence such as purification and formulation, where the product is at a relatively high concentration and traditional scale-down models can require significant volumes. Using a combination of critical flow regime analysis, bioprocess modelling, and experimentation, ultra scale-down (USD) methods can yield bioprocess information using only millilitre quantities before embarking on highly demanding full-scale studies. In this study the performance of a pilot-scale tangential flow filtration (TFF) system based on a membrane flat-sheet cassette using pumped flow was predicted by devising an USD device comprising a stirred cell using a rotating disc. The USD device operates with just 2.1 cm2 of membrane area and, for example, just 1.7 mL of feed for diafiltration studies. The novel features of the design involve optimisation of the disc location and the membrane configuration to yield an approximately uniform shear rate. This is characterised using computational fluid dynamics for a defined layer above the membrane surface. A pilot-scale TFF device operating at ~500-fold larger feed volume and membrane area was characterised in terms of the shear rate derived from flow rate-pressure drop relationships for the cassette. Good agreement was achieved between the USD and TFF devices for the flux and resistance values at equivalent average shear rates for a monoclonal antibody diafiltration stage.  相似文献   

15.
PurposeA novel position-sensitive mega-size polycarbonate (MSPC) dosimeter is introduced. It provides photoneutron (PN) dose equivalent matrix of positions in and out of a beam of a high energy X-ray medical accelerator under a single exposure.MethodsA novel position-sensitive MSPC dosimeter was developed and applied. It has an effective etched area of 50 × 50 cm2, as used in this study, processed in a mega-size electrochemical etching chamber to amplify PN-induced-recoil tracks to a point viewed by the unaided eyes. Using such dosimeters, PN dose equivalents, dose equivalent profiles and isodose equivalent distribution of positions in and out of beams for different X-ray doses and field sizes were determined in a Siemens ONCOR Linac.ResultsThe PN dose equivalent at each position versus X-ray dose was linear up to 20 Gy studied. As the field size increased, the PN dose equivalent in the beam was also increased but it remained constant at positions out of the beam up to 20 cm away from the beam edge. The jaws and MLCs due to material differences and locations relative to the target produce different PN contributions.ConclusionsThe MSPC dosimeter introduced in this study is a perfect candidate for PN dosimetry with unique characteristics such as simplicity, efficiency, dose equivalent response, large size, flexibility to be bent, resembling the patient’s skin, highly position-sensitive with high spatial resolution, highly insensitive to X-rays, continuity in measurements and need to a single dosimeter to obtain PN dose equivalent matrix data under a single X-ray exposure.  相似文献   

16.
Enzyme technology and bioprocess engineering   总被引:4,自引:0,他引:4  
The impact of directed evolution and site-specific mutagenesis on the industrial utility of enzymatic catalysis through the modification of enzyme structure and function is clearly an important area of research in bioprocess engineering. High-throughput screening for novel or improved enzyme activities, both by more efficiently exploring nature's diversity and by creating new diversity in the test tube, allows new bioprocesses to be developed. Similarly, innovations in enzyme technology that address novel ways to apply enzymes in bioprocesses also have an impact on bioprocess engineering. Several recent developments have been made in this latter aspect of bioprocess engineering.  相似文献   

17.
Single‐use bioprocessing bags and bioreactors gained significant importance in the industry as they offer a number of advantages over traditional stainless steel solutions. However, there is continued concern that the plastic materials might release potentially toxic substances negatively impacting cell growth and product titers, or even compromise drug safety when using single‐use bags for intermediate or drug substance storage. In this study, we have focused on the in vitro detection of potentially cytotoxic leachables originating from the recently developed new polyethylene (PE) multilayer film called S80. This new film was developed to guarantee biocompatibility for multiple bioprocess applications, for example, storage of process fluids, mixing, and cell culture bioreactors. For this purpose, we examined a protein‐free cell culture medium that had been used to extract leachables from freshly gamma‐irradiated sample bags in a standardized cell culture assay. We investigated sample bags from films generated to establish the operating ranges of the film extrusion process. Further, we studied sample bags of different age after gamma‐irradiation and finally, we performed extended media extraction trials at cold room conditions using sample bags. In contrast to a nonoptimized film formulation, our data demonstrate no cytotoxic effect of the S80 polymer film formulation under any of the investigated conditions. The S80 film formulation is based on an optimized PE polymer composition and additive package. Full traceability alongside specifications and controls of all critical raw materials, and process controls of the manufacturing process, that is, film extrusion and gamma‐irradiation, have been established to ensure lot‐to‐lot consistency. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 30:1171–1176, 2014  相似文献   

18.
Despite rapid progress in the field, scalable high-yield production of adeno-associated virus (AAV) is still one of the critical bottlenecks the manufacturing sector is facing. The insect cell-baculovirus expression vector system (IC-BEVS) has emerged as a mainstream platform for the scalable production of recombinant proteins with clinically approved products for human use. In this review, we provide a detailed overview of the advancements in IC-BEVS for rAAV production. Since the first report of baculovirus-induced production of rAAV vector in insect cells in 2002, this platform has undergone significant improvements, including enhanced stability of Bac-vector expression and a reduced number of baculovirus-coinfections. The latter streamlining strategy led to the eventual development of the Two-Bac, One-Bac, and Mono-Bac systems. The one baculovirus system consisting of an inducible packaging insect cell line was further improved to enhance the AAV vector quality and potency. In parallel, the implementation of advanced manufacturing approaches and control of critical processing parameters have demonstrated promising results with process validation in large-scale bioreactor runs. Moreover, optimization of the molecular design of vectors to enable higher cell-specific yields of functional AAV particles combined with bioprocess intensification strategies may also contribute to addressing current and future manufacturing challenges.  相似文献   

19.
《Trends in biotechnology》2023,41(6):817-835
Fostered by novel analytical techniques, digitalization, and automation, modern bioprocess development provides large amounts of heterogeneous experimental data, containing valuable process information. In this context, data-driven methods like machine learning (ML) approaches have great potential to rationally explore large design spaces while exploiting experimental facilities most efficiently. Herein we demonstrate how ML methods have been applied so far in bioprocess development, especially in strain engineering and selection, bioprocess optimization, scale-up, monitoring, and control of bioprocesses. For each topic, we will highlight successful application cases, current challenges, and point out domains that can potentially benefit from technology transfer and further progress in the field of ML.  相似文献   

20.
Cell cloning and subsequent process development activities are on the critical path directly impacting the timeline for advancement of next generation therapies to patients with unmet medical needs. The use of stable cell pools for early stage material generation and process development activities is an enabling technology to reduce timelines. To successfully use stable pools during development, it is important that bioprocess performance and requisite product quality attributes be comparable to those observed from clonally derived cell lines. To better understand the relationship between pool and clone derived cell lines, we compared data across recent first in human (FIH) programs at Amgen including both mAb and Fc‐fusion modalities. We compared expression and phenotypic stability, bioprocess performance, and product quality attributes between material derived from stable pools and clonally derived cells. Overall, our results indicated the feasibility of matching bioprocess performance and product quality attributes between stable pools and subsequently derived clones. These findings support the use of stable pools to accelerate the advancement of novel biologics to the clinic. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1476–1482, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号