首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 574 毫秒
1.
Trichloroacetic acid (TCA) is a prominent by-product of the chlorination of drinking water. It induces cell damage by producing free radicals and reactive oxygen species. The present study was carried out to evaluate the potential hepatoprotective role of the aqueous date extract (ADE) against TCA-induced liver injury. Forty-eight male Wistar rats were randomly divided into six groups of eight: group I served as the control; group II was given ADE by gavage; groups III and IV received TCA as drinking water at 0.5 and 2 g/L, respectively; and groups V and VI were treated with ADE by gavage and then received TCA at 0.5 and 2 g/L, respectively, as drinking water. The experiment was performed for 2 months. The hepatotoxicity of TCA administration was revealed by an increase in the levels of hepatic marker enzymes (transaminases, gamma-glutamyl transferase, and lactate dehydrogenase) and conjugated bilirubin and a decrease in albumin level. The TCA administration induced also significant elevation of the malondialdehyde (MDA) level and the antioxidant activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) paralleled with a significant decline in catalase (CAT) activity. These biochemical alterations were accompanied by histological changes marked by the appearance of vacuolization, necrosis, congestion, inflammation, and enlargement of sinusoids in the liver section. Treatment with date palm fruit extract restored the liver damage induced by TCA, as demonstrated by inhibition of hepatic lipid peroxidation; amelioration of SOD, GPx, and CAT activities; and improvement of histopathology changes. These results suggest that ADE has a protective effect over TCA-induced oxidative damage in rat liver.  相似文献   

2.
Cisplatin is one of the most effective chemotherapeutic agents but injury may occur at higher doses. The aim of this study was to investigate the effect of bilberry on cisplatin induced toxic effects in rat ovary. Twenty-one female Wistar–Albino rats were utilized to form three groups: In group 1 (control group), each rat received intraperitoneal injection of 1 mL of 0.9 % NaCl saline solution during 10-days. In group 2 (cisplatin group), a single dose of 7.5 mg/kg b.w. cisplatin was given. In group 3 (cisplatin + bilberry group), a single dose of 7.5 mg/kg cisplatin and bilberry at 200 mg/kg b.w. were given for 10 days. Ovaries were surgically removed in all groups and prepared for biochemical and light microscopic investigations at the examination times. Malondialdehyde (MDA) levels and activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) of tissue samples were measured. Histopathological damages in cisplatin administrated rats were seen such as severe edema, vascular congestion, hemorrhage and follicular degeneration in the ovary tissue. Moderate pathological alterations were observed in rats treated with bilberry plus cisplatin. Cisplatin administration significantly increased MDA production and decreased SOD, CAT, GPx and GST activities in the ovarian tissue when compared to the control group (p < 0.05). Cisplatin + bilberry administration increased antioxidant enzymes activities and reduced MDA levels. Bilberry administration seems to reduce the cisplatin induced ovarian toxicity thus it alleviates free radical damage. But it dose not protect completely rat ovary tissues.  相似文献   

3.
4.
The objective of this work was to evaluate the antihypertensive and antioxidant effect of seaweeds (Ulva linza and Lessonia trabeculata) in rats which were fed a hypercaloric diet. Seaweed at 400 mg kg?1 of body weight was administered for 8 weeks to Wistar rats that were fed with a standard diet or a hypercaloric diet. Intra-abdominal fat, insulin resistance, and lipid profile of the rats were determined. Liver was isolated to determine antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)] activity and gene expression. The administration of seaweed to the rats reduced the levels of intra-abdominal fat, arterial blood pressure, insulin resistance, and cholesterol and triglyceride serum levels. U. linza reduced the GPx activity in control animals but increased it in animals with MS, which could be reduced by using L. trabeculata. Both seaweeds diminished the SOD and GPx expression and increased CAT in control group. Both seaweeds reduced the CAT expression in animals with metabolic syndrome. Combined effects of the different compounds found in the seaweeds explain the regulating effect over different antioxidant enzymes and metabolic pathways that protect the animals fed a hypercaloric diet against the development of hypertension, hyperglycemia, and obesity.  相似文献   

5.
Usually, all newborns demonstrate high serum unconjugated bilirubin (UCB) level. UCB may induce adverse effects in the central nervous system. We aimed to evaluate the cytotoxic effects of UCB and the protective effects of docosahexaenoic acid (DHA) on astrocyte cell cultures. The viability of astrocyte cells decreased after UCB treatment in a dose-dependent manner. Pre-incubation of DHA prevents the cells from UCB-mediated neurotoxicity. Our results shown that UCB leads to inhibition of antioxidant enzymes superoxide dismutase (SOD), catalase and GPx activity and induction of apoptosis. But only 4-h pretreatment of DHA can suppress of UCB-mediated inhibition of antioxidant enzymes SOD, catalase and GPx activity and induction of apoptosis in astrocytes. Our results strongly indicated that DHA has a protective effect on UCB-mediated neurotoxicity through inhibition apoptosis and antioxidant enzymes activity of SOD, CAT and GPx in rat primer astrocyte cell line  相似文献   

6.
In the present study, we investigated the effect of co-exposure to static magnetic field (SMF) and cadmium (Cd) on the biochemical parameters, antioxidant enzymes activity and DNA damage in rat tissues. Animals were treated with cadmium (CdCl2, 40 mg/L, per os) in drinking water during 4 weeks. Cd treatment induced an increase of plasma lactate dehydrogenase (LDH) and transaminases levels. Moreover, Cd treatment increased malondialdehyde (MDA) and 8-oxodGuo levels in rat tissues. However, the antioxidant enzymes activity such as the glutathione peroxidase (GPx), catalase (CAT) and the superoxide dismutase (SOD) were decreased in liver and kidney, while we noted a huge increase of hepatic and renal cadmium content. Interestingly, the combined effect of SMF (128mT, 1 h/day during 30 consecutive days) and Cd (40 mg/L, per os) decreased the GPx and CAT activities in liver compared to cadmium treated group. However, the association between SMF and Cd failed to alter transaminases, MDA and 8-oxodGuo concentration.

Cd treatment altered antioxidant enzymes and DNA in liver and kidney of rats. Moreover, SMF associated to Cd disrupt this antioxidant response in liver compared to Cd-treated rats.  相似文献   


7.
In this study, we report the protective effects of IAA on diethylnitrosamine (DEN)‐induced hepatocarcinogenesis. BALB/c mice received daily IAA at 50 (T50), 250 (T250), and 500 (T500) mg Kg?1 per body mass by gavage for 15 days. At day 15, animals were administered DEN and sacrificed 4 h later. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed in sera. In addition, hepatomorphologic alterations, activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR), gene expression of antioxidant enzymes and DNA integrity were evaluated in the liver. IAA administration did not show any alterations in any of the parameters available, except for a reduction of the gene expression for antioxidant enzymes by 55, 56, 27, and 28% for SOD, CAT, GPx, and GR upon T500, respectively compared with the control. Several hepatic alterations were observed by DEN exposure. Moreover, IAA administration at 3 doses was shown to provide a total prevention of the active reduction of CAT and GR induced by DEN exposure compared with the control. IAA at T500 was shown to give partial protection (87, 71, 57, and 90% for respectively SOD, CAT, GPx, and GR) on the down‐regulation of the enzymes induced by DEN and this auxin showed a partial protection (50%) on DEN‐induced DNA fragmentation for both parameters when compared to DEN alone. This work showed IAA hepatocarcinogenesis protection for the first time by means of a DEN‐protective effect on CAT and GR activity, and by affecting antioxidant gene expression and DNA fragmentation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Clinical research has confirmed the efficacy of several plant extracts in the modulation of oxidative stress associated with hyperlipidemia and hyperglycemia induced by obesity and diabetes. Findings indicate that obtusifolin has antioxidant properties. The aim of this study was to evaluate the possible protective effects of obtusifolin against oxidative damage in diabetic hyperlipidemia and hyperglycemia. In this study, the rats were divided into the following groups with eight animals in each: control, untreated diabetic, three obtusifolin (10, 30, and 90 mg/kg/day)-treated diabetic groups. Diabetes was induced by streptozotocin (STZ) in rats. STZ was injected intraperitoneally at a single dose of 60 mg/kg for diabetes induction. Obtusifolin (intraperitoneal injection) was administered 3 days after STZ administration; these injections were continued to the end of the study (4 weeks). At the end of the 4-week period, blood was drawn for biochemical assays. In order to determine the changes of cellular antioxidant defense systems, antioxidant enzymes including glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) activities were measured in serum. Moreover, we also measured serum nitric oxide (NO) and serum malondialdehyde (MDA) levels, markers of lipid peroxidation. STZ-induced diabetes caused an elevation (P < 0.001) of blood glucose, MDA, NO, total lipids, triglycerides and cholesterol, with reduction of GSH level and CAT and SOD activities. The results indicated that the significant elevation in the blood glucose, MDA, NO, total lipids, triglycerides and cholesterol; also the reduction of glutathione level and CAT and SOD activity were ameliorated in the obtusifolin-treated diabetic groups compared with the untreated groups, in a dose-dependent manner (P < 0.05, P < 0.01, P < 0.001). These results suggest that obtusifolin has antioxidant properties and improves chemically induced diabetes and its complications by modulation of oxidative stress.  相似文献   

9.
10.
The hepatoprotective activity of flavonoid rhamnocitrin 4′-β-d-galactopyranoside (RGP) obtained from leaves of Astragalus hamosus L. against N-diethylnitrosamine (DENA)-induced hepatic cancer in Wistar albino rats was evaluated. Hepatic cancer in rats was induced by single-dose intraperitoneal administration of DENA (200 mg/kg). Induction of hepatic cancer was confirmed after 7 days of DENA administration by measurement of elevated level of serum α-feto protein (AFP). Administration of DENA in a single dose lofted the levels of serum biochemical parameters like alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, total protein and AFP. Antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and lipid per oxidation (LPO) were annealed significantly by administration of RGP in a dose-dependant manner. The histopathological examination of rat liver section was found to reinforce the biochemical observations significantly. It was observed that a substantial and dose-dependent reversal of DENA-diminished activity of antioxidant enzymes like SOD, CAT, GPx, GST and the reduced DENA-elevated level of LPO with a marked change. Any elevation in the levels of serum markers along with suppression of free radical formation by scavenging the hydroxyl radicals is significantly prevented by RGP. It also modulates the levels of LPO and perceptibly increases the endogenous antioxidant enzymes level in DENA-induced hepatocellular carcinogenesis. The findings suggest that RGP prevents hepatocellular carcinoma by suppressing the marked increase in the levels of serum marker enzymes, and suppresses the free radical by scavenging hydroxyl radicals.  相似文献   

11.
Seventy-two piglets (6.0 kg BW) were randomly distributed within six different dietary treatments to evaluate the effect of deoxynivalenol (DON) and the potential of four antioxidant feed additives in mitigating the adverse effects of DON on growth performances and oxidative status. Dietary treatments were as follows: control diet 0.8 mg/kg DON; contaminated diet (DON-contaminated diet) 3.1 mg/kg DON; and four contaminated diets, each supplemented with a different antioxidant feed additive, DON + vitamins, DON + organic selenium (Se)/glutathione (GSH), DON + quercetin, and DON + COMB (vitamins + Se/GSH + quercetin from the other treatments). Although DON was the main mycotoxin in the contaminated diet, this diet also contained 1.8 mg/kg of zearalenone (ZEN). The “mycotoxin” effects therefore included the combined effect of these two mycotoxins, DON, and ZEN. The DON-ZEN ingestion did not affect growth performances, average daily gain (ADG), average daily feed intake (ADFI), and feed efficiency (G:F ratio), but partially induced oxidative stress in weaned pigs as shown by increased malondialdehyde (MDA) content in the plasma and superoxide dismutase (SOD) activity in liver (P?<?0.05). However, no change in the activity of other antioxidant enzymes or GSH concentrations was observed in plasma and liver of piglets fed the DON-contaminated diet (P?>?0.05). Supplementation with individual antioxidant feed additive had a limited effect in weaned pigs fed DON-ZEN-contaminated diets. Combination of antioxidants (vitamins A, C, and E, quercetin, and organic Se/GSH) reduced plasma and liver MDA content and SOD activity in liver (P?<?0.05) of piglets fed DON-ZEN-contaminated diets. Furthermore, this combination also reduced MDA content in the ileum (P?<?0.05), although activity of glutathione peroxidases (GPx), SOD or catalase (CAT) in the ileum was not affected by DON-ZEN contamination or antioxidant supplements. In conclusion, DON-ZEN contamination induced oxidative stress in weaned pigs and combination of antioxidant feed additives restored partially the oxidative status. Further studies will be necessary to assess whether the effects of antioxidant feed additives on oxidative status are specific when feed is contaminated with DON-ZEN.  相似文献   

12.
Researches have reported that reactive oxygen species (ROS)-induced oxidative stress plays an important role in cell cryodamage during cryopreservation. In the current study, pollen from Magnolia denudata and Paeonia lactiflora ‘Zi Feng Chao Yang’ was cryopreserved and incubated with exogenous catalase (CAT) and malate dehydrogenase (MDH) immediately after thawing. The effect of CAT and MDH on the germination of cryopreserved pollen was measured. Based on that, the ROS level, lipid peroxidation and antioxidants activities in fresh pollen, cryopreserved pollen added with or without CAT or MDH were determined to investigate their relationship with oxidative stress. Pollen from Magnolia and Paeonia showed a significant loss of germination, but marked increase of ROS and malondialdehyde (MDA) production after cryostorage. Antioxidant profiles in them were also enhanced. CAT and MDH addition increased the post-LN pollen germination of Magnolia and Paeonia significantly. Their germination rate achieved the highest with 100 IU ml?1 MDH and 400 IU ml?1 CAT application, respectively. Compared to their untreated controls, ROS and MDA accumulation reduced significantly in cryopreserved Magnolia pollen treated with 100 IU ml?1 MDH, while superoxide dismutase (SOD) activity improved markedly. In the case of Paeonia, significantly lower level of ROS and MDA, but higher activity of CAT and SOD were observed in cryopreserved pollen treated with 400 IU ml?1 CAT. In conclusion, pollen deterioration after cryopreservation is associated with ROS-induced oxidative stress. Exogenous CAT and MDH can reduce the oxidative damage through the activity stimulation of antioxidant enzymes, and play a protective role in the pollen during cryopreservation.  相似文献   

13.
Cactus (Opuntia ficus-indica) is a xerophyte plant that belongs to the Cactaceae family. The present study was designed to investigate the possible protective effects of cactus cladodes extract (CCE) on sodium dichromate-induced testis damage in adult male Wistar rats. For this purpose, CCE at a dose of 100 mg/kg was orally administrated, followed by 10 mg/kg sodium dichromate (intraperitoneal injection). After 40 days of treatment, the rats were sacrificed, and the testes were excised for histological, lipid peroxidation (LPO), and antioxidant enzyme analyses. Sodium dichromate treatment significantly (P?<?0.01) decreased the body, testis, and accessory sex organ weights, sperm count and motility, and serum testosterone level. In addition, histological analysis revealed pronounced morphological alterations with tubular necrosis and reduction in the number of gametes in the lumen of the seminiferous tubules of sodium dichromate-intoxicated rats. Furthermore, exposure to sodium dichromate significantly (P?<?0.01) increased LPO level and decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities in testis. Interestingly, pretreatment with CCE significantly (P?<?0.01) restored the serum testosterone level, sperm count, and motility to the levels of the control group. Moreover, CCE administration was capable of reducing the elevated level of LPO and significantly (P?<?0.01) increased SOD, CAT, and GPx activities in testis. Cactus cladodes supplementation minimized oxidative damage and reversed the impairment of spermatogenesis and testosterone production induced by sodium dichromate in the rat testis.  相似文献   

14.
An oxidant/antioxidant imbalance is thought to play an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). We hypothesized that antioxidant capacity reflected by erythrocyte glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) activities, and serum levels of the lipid peroxidation product malondialdehyde (MDA), may be related to the severity of obstructive lung impairment in patients with COPD. Erythrocyte GPx, SOD and CAT activities, and serum levels of MDA were measured in 79 consecutive patients with stable COPD. Pulmonary functional tests were assessed by body plethysmography. Moderate COPD (FEV1 50-80%) was present in 23, and severe COPD (FEV1 < 50%) in 56 patients. Erythrocyte GPx activity was significantly lower, and serum MDA levels were significantly higher in patients with severe COPD compared to patients with moderate COPD (GPx: 43.1+/-1.5 vs. 47.7+/-2.9 U/gHb, p<0.05, MDA: 2.4+/-0.1 vs. 2.1+/-0.1 nmol/ml, p<0.05). Linear regression analysis revealed a significant direct relationship between FEV1 and erythrocyte GPx activity (r = 0.234, p<0.05), and a significant inverse relationship between FEV1 and serum MDA levels (r = -0.239, p<0.05). However, no differences were observed in the erythrocyte SOD and CAT activities between the two groups of patients with different severity of COPD. Findings of the present study suggest that antioxidant capacity reflected by erythrocyte GPx activity and serum levels of the lipid peroxidation product MDA are linked to the severity of COPD.  相似文献   

15.
The present study evaluated the effects of hyperthyroid state on lipid peroxidation and antioxidant enzymes in the crude (CF), post nuclear (PNF) and mitochondrial fractions (MF) of the fish liver. The in vivo injection of T3 (200ng) did not change the lipid peroxidation products, malondialdehyde (MDA) and conjugated dienes (CD), while actinomycin D (10microg), a potent mRNA inhibitor when administered with T3 increased them. The antioxidant enzymes like superoxide dismutase (SOD) and catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) had an increased activity in CF and MF of hyperthyroid group to compete the increased oxidative stress, but actinomycin D partially inhibited the T3-induced activity. SOD and CAT activities in PNF of hyperthyroid group had no change, the glutathione concentration varied depending on the GPx and GR activity. Hyperthyroidism decreased the protein content, while simultaneous administration of actinomycin D inhibited the T3 action of elevating the protein content. The results suggest that the antioxidant defense status in A. testudineus is modulated by thyroid hormone, through an action sensitive to actinomycin D.  相似文献   

16.
Excessive generation of reactive oxygen species (ROS) can induce oxidative damage to vital cellular molecules and structures including DNA, lipids, proteins, and membranes. Recently, melatonin has attracted attention because of their free radical scavenging and antioxidant properties. The aim of this study was to evaluate the possible protective role of melatonin against atrazine-induced oxidative stress in rat erythrocytes in vivo. Adult male albino rats of Wistar strain were randomly divided into four groups. Control group received isotonic saline; melatonin (10 mg/kg bw/day) group; atrazine (300 mg/kg of bw/day) group; atrazine + melatonin group. Oral administration of atrazine and melatonin was given daily for 21 days. Oxidative stress was assessed by determining the glutathione (GSH) and malondialdehyde (MDA) level, and alteration in antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione-S-transferase (GST), and glucose-6-phosphate dehydrogenase (G-6-PD) in the erythrocytes of normal and experimental animals. A significant increase in the MDA levels and decrease in the GSH was observed in the atrazine treated animals (P < 0.05). Also, significant increase in the activities of SOD, CAT, GPx, and GST were observed in atrazine treated group compared to controls (P < 0.05). Moreover, significant decrease in protein, total lipids, cholesterol, and phospholipid content in erythrocyte membrane were demonstrated in atrazine treated rats. Administration of atrazine significantly inhibits the activities of G-6-PD and membrane ATPases such as Na(+)/K(+)-ATPase, Mg(2+)-ATPase, and Ca(2+)-ATPase (P < 0.05). Scanning electron microscopic (SEM) examination of erythrocytes revealed morphological alterations in the erythrocytes of atrazine treated rats. Furthermore, supplementation of melatonin significantly modulates the atrazine-induced changes in LPO level, total lipids, total ATPases, GSH, and antioxidant enzymes in erythrocytes. In conclusion, the increase in oxidative stress markers and the concomitant alterations in antioxidant defense system indicate the role of oxidative stress in erythrocytes of atrazine-induced damage. Moreover, melatonin shows a protective role against atrazine-induced oxidative damage in rat erythrocytes.  相似文献   

17.
18.
The influence of two organic selenocompounds and sodium selenite on oxidant processes in rat brain tissue was investigated. The study was performed on male Wistar rats. The animals were divided into four groups: I—control; II—administered with sodium selenite; III—provided with selenoorganic compound A of chain structure 4-(o-tolyl-)-selenosemicarbazide of 2-chlorobenzoic acid and IV—provided with selenoorganic compound B of ring structure 3-(2-chlorobenzoylamino-)-2-(o-tolylimino-)-4-methyl-4-selenazoline. Rats were treated by stomach tube at a dose of 5 × 10?4 mg of selenium/g of b.w. once a day for a period of 10 days. In brain homogenates total antioxidant status (TAS), activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), concentrations of ascorbic acid (AA) and reduced glutathione (GSH) as well as concentration of malonyl dialdehyde (MDA) were determined. TAS was insignificantly diminished in all selenium-supplemented groups versus control. SOD was not significantly influenced by administration of selenium. GPx was markedly decreased in group III versus control, whereas increased in group IV versus control and group III. Selenosemicarbazide depleted AA in well-marked way versus group II. GSH was significantly depressed in group III versus both control and group II and diminished in group IV versus group II. MDA was significantly decreased in group III versus both control and group II, whereas in group IV increased versus group III. As selenazoline A did not decrease elements of antioxidant barrier and increased GPx activity, it seems to be a promising agent for future studies concerning its possible application as a selenium supplement.  相似文献   

19.
The present study was designed to investigate the possible potential protective role of coenzymeQ10 (CoQ10; 10 mg/kg/day, ip) and/or green tea (GT; 25mg/kg/day, po) against gentamicin (GM) nephrotoxicity. Marked increase in the level of serum urea. creatinine and lipid peroxidation (LPO) content was found after administration of gentamicin (80 mg/kg/day, ip) for eight days along with significant decrease in the antioxidant enzymes, superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT) as well as brush border enzymes (Na+/K+ ATPase, Mg(+2)ATPase and Ca2+ ATPase).Treatment with CoQ10 or green tea alone with GM showed significant decrease in serum urea, creatinine and tissue LPO content and significant increase in antioxidant and membrane bound enzymes. Combined treatment with CoQ10 and green tea was more effective in mitigating adverse effect of GM nephrotoxicity. The present work indicated that CoQ10 and green tea due to their antioxidant activity modified the biochemical changes occurred during gentamicin nephrotoxicity and thus had a potential protective effect.  相似文献   

20.
The aim of the present study was to determine the influence of chicken semen cryopreservation on sperm parameters, lipid peroxidation and antioxidant enzymes activities. Pooled semen from 10 Black Minorca roosters was used in the study. Semen samples were subjected to cryopreservation using the “pellet” method and dimethylacetamide (DMA) as a cryoprotectant. In the fresh and the frozen-thawed semen sperm membrane integrity (SYBR-14/propidium iodide (PI)), acrosomal damage (PNA-Alexa Fluor®488) and mitochondrial activity (Rhodamine 123) were assessed using flow cytometry. Malondialdehyde (MDA) concentration, catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in sperm cells and seminal plasma by spectrophotometry. All sperm characteristics evaluated using flow cytometry were affected by cryopreservation. After freezing-thawing, there was significant (P < 0.01) reduction in sperm membrane integrity, sperm acrosome integrity and mitochondrial activity. Following cryopreservation, MDA concentration significantly increased in chicken seminal plasma and spermatozoa (P < 0.01, P < 0.05). The CAT activity in seminal plasma significantly decreased (P < 0.05), while intracellular activity of this enzyme did not significantly change in frozen-thawed semen. In seminal plasma of frozen-thawed semen the significant increase (P < 0.01) in GPx activity was detected. Whereas GPx activity in spermatozoa remained statistically unchanged after thawing. The SOD activity significantly increased (P < 0.01) in cryopreserved seminal plasma with simultaneous decrease (P < 0.01) of its activity in cells. In conclusion, this is probably the first report describing the level of antioxidant enzymes in frozen-thawed avian semen. The present study showed that the activity of CAT, GPx and SOD in chicken semen was affected by cryopreservation, what increased the intensity of lipid peroxidation (LPO). Catalase appeared to play an important role in the sperm antioxidant defense strategy at cryopreservation since, opposite to SOD and GPx, its content was clearly reduced by the cryopreservation process. Change in the antioxidant defense status of the chicken spermatozoa and surrounding seminal plasma might affect the semen quality and sperm fertilizing ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号