首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王芸  李正  李健  牛津  王珺  黄忠  林黑着 《生态学报》2013,33(18):5704-5713
对绿原酸调节凡纳滨对虾(Litopenaeus vannamei)血淋巴抗氧化系统功能及抗低盐度胁迫的效果进行了评价。360尾凡纳滨对虾随机分为4组,分别投喂含有0、100、200和400 mg/kg绿原酸的饲料28 d,随后将对虾从盐度为32的天然海水直接转入至盐度为10的水中胁迫72 h。结果表明,在正常养殖条件下,绿原酸对凡纳滨对虾的成活率、血淋巴总抗氧化能力(Total antioxidative capacity, T-AOC)、超氧化物歧化酶(Superoxide dismutase, SOD)及过氧化氢酶(Catalase, CAT)活力均无明显影响,然而投喂含有绿原酸的饲料14 d,对虾血淋巴谷胱甘肽过氧化物酶(Glutathione peroxidase, GPx)活性和血淋巴细胞GPxCAT基因表达水平均显著高于对照组(P<0.05);低盐度胁迫24 h,绿原酸组凡纳滨对虾的存活率较对照组提高10%,但各组之间无显著性差异(P>0.05);低盐度胁迫24 h,各组凡纳滨对虾血淋巴T-AOC、SOD和GPx活性与胁迫前相比均显著增加,说明低盐度胁迫条件下机体产生了抗氧化胁迫反应,同时绿原酸组对虾血淋巴GPx、CAT活性均显著高于对照组(P<0.05);低盐度胁迫72 h,绿原酸组对虾血淋巴T-AOC、GPx和CAT活性和血淋巴细胞GPxCAT基因表达水平均明显高于对照组。上述结果表明绿原酸可有效调节凡纳滨对虾的抗氧化系统功能,增强对虾对于低盐度胁迫下的适应能力。  相似文献   

2.
3.
The nutritional properties of seaweeds are incompletely known, and studies on nutrient bioavailability are scarce, although such information is required to evaluate seaweed as a foodstuff. In the present study, samples of wakame (Undaria pinnatifida) and nori (Porphyra purpurea) were analysed to determine their chemical composition. To evaluate the algae as dietary supplements, the effects on rats of the inclusion of these seaweeds in a standard rodent diet were investigated. The control rats were fed a diet containing 100 % standard rodent diet. The wakame diet was obtained by mixing 10 % dried wakame with 90 % standard rodent diet, and the nori diet was obtained by mixing 10 % dried nori with 80 % standard rodent diet and 10 % starch. Food intake and the body weight were measured. Nitrogen ingested and excreted were determined to calculate true digestibility, biological value, net protein utilization and nitrogen balance. Biochemical determinations were made on serum blood samples. The protein content was high (16.8 % for wakame and 33.2 % for nori), the fat content was low (1 % for wakame and 2.8 % for nori) and the carbohydrates comprised 37 % for both seaweeds. The fibre and ash contents in wakame were 16.9 and 28.3 %, respectively, and in nori, they were 7.5 and 21.3 %, respectively. Both seaweeds contain high concentrations of calcium, sodium, potassium, iron and magnesium, and the most abundant vitamin was vitamin A. Few changes were observed in the nutritional parameters, but LDL cholesterol levels were significantly lower in rats fed with seaweed-supplemented diets than in the control rats. Wakame and nori are excellent sources of nutrients and are well accepted by experimental animals.  相似文献   

4.
The present study was aimed to explore the effect of black pepper (Piper nigrum L.) on tissue lipid peroxidation, enzymic and non-enzymic antioxidants in rats fed a high-fat diet. Thirty male Wistar rats (95-115 g) were divided into 5 groups. They were fed standard pellet diet, high-fat diet (20% coconut oil, 2% cholesterol and 0.125% bile salts), high-fat diet plus black pepper (0.25 g or 0.5 g/kg body weight), high-fat diet plus piperine (0.02 g/kg body weight) for a period of 10 weeks. Significantly elevated levels of thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD) and significantly lowered activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) in the liver, heart, kidney, intestine and aorta were observed in rats fed the high fat diet as compared to the control rats. Simultaneous supplementation with black pepper or piperine lowered TBARS and CD levels and maintained SOD, CAT, GPx, GST, and GSH levels to near those of control rats. The data indicate that supplementation with black pepper or the active principle of black pepper, piperine, can reduce high-fat diet induced oxidative stress to the cells.  相似文献   

5.
In the present study, we investigated the relationship between early life protein malnutrition‐induced redox imbalance, and reduced glucose‐stimulated insulin secretion. After weaning, male Wistar rats were submitted to a normal‐protein‐diet (17%‐protein, NP) or to a low‐protein‐diet (6%‐protein, LP) for 60 days. Pancreatic islets were isolated and hydrogen peroxide (H2O2), oxidized (GSSG) and reduced (GSH) glutathione content, CuZn‐superoxide dismutase (SOD1), glutathione peroxidase (GPx1) and catalase (CAT) gene expression, as well as enzymatic antioxidant activities were quantified. Islets that were pre‐incubated with H2O2 and/or N‐acetylcysteine, were subsequently incubated with glucose for insulin secretion measurement. Protein malnutrition increased CAT mRNA content by 100%. LP group SOD1 and CAT activities were 50% increased and reduced, respectively. H2O2 production was more than 50% increased whereas GSH/GSSG ratio was near 60% lower in LP group. Insulin secretion was, in most conditions, approximately 50% lower in LP rat islets. When islets were pre‐incubated with H2O2 (100 μM), and incubated with glucose (33 mM), LP rats showed significant decrease of insulin secretion. This effect was attenuated when LP islets were exposed to N‐acetylcysteine.  相似文献   

6.
This study evaluated the effects of the association between obesity and chronic stress on the temporal pattern of serum levels of biochemical and hormonal markers. Obesity model was achieved by hypercaloric diet exposure. Wistar rats were divided into four groups: standard chow (C), hypercaloric diet (HD), stress + standard chow (S), and stress + hypercaloric diet (SHD) and analysed at three time points: ZT0, ZT12 and ZT18. Chronic stress was performed 1 h/per day, 5 days/per week, during 80 days. The presence of temporal pattern in naïve animals’ insulin release was accomplished. Hypercaloric diet induced obesity, increasing rats’ insulin and glucose levels; while chronic stress reduced insulin levels. There were interactions between chronic stress and obesity in serum insulin and glucose levels; and between time points and obesity in insulin levels. In conclusion, long exposure to hypercaloric diet and chronic stress were able to desynchronize temporal pattern of insulin release, contributing to the pathophysiology of obesity and its complications.  相似文献   

7.

Background

Pork is an essential component of the diet that has been linked with major degenerative diseases and development of non-alcoholic steatohepatitis (NASH). Previous studies have. Previous studies have demonstrated the in vitro antioxidant activity of silicon (Si). Furthermore, when Si is added to restructured pork (RP) strongly counterbalances the negative effect of high-cholesterol-ingestion, acting as an active hypocholesterolemic and hypolipemic dietary ingredient in aged rats.

Objective

This study was designed to evaluate the effects of Si vs hydroxytyrosol (HxT) RP on liver antioxidant defense in aged rats fed cholesterol-enriched high saturated/high cholesterol diets as a NASH model.

Methods

Four diets were prepared: Control RP diet (C) with non-added cholesterol; Cholesterol-enriched high-saturated/high-cholesterol control RP diet (CHOL-C) with added cholesterol and cholic acid; Si- or HxT-RP cholesterol-enriched high-saturated/high-cholesterol diets (CHOL-Si and CHOL-HxT). Groups of six male Wistar rats (1-yr old) were fed these modified diets for eight weeks. Total cholesterol, hepatosomatic index, liver Nrf2 and antioxidant (CAT, SOD, GSH, GSSG, GR, GPx) markers were determined.

Results

Both CHOL-Si and CHOL-HxT diets enhanced the liver antioxidant status, reduced hepatosomatic index and increased SOD actvity. Hydrogen peroxide removal seemed to be involved, explaining that the value of redox index was even lower than C without changing the CAT activity. CHOL-Si results were quite better than CHOL-HxT in most measured parameters.

Conclusions

Our study suggests that Si incorporated into RP matrix was able to counterbalance, more efficiently than HxT, the deleterious effect of consuming a high-saturated/high-cholesterol diet, by improving the liver antioxidant defenses in the context of NASH.  相似文献   

8.
Seventy-two piglets (6.0 kg BW) were randomly distributed within six different dietary treatments to evaluate the effect of deoxynivalenol (DON) and the potential of four antioxidant feed additives in mitigating the adverse effects of DON on growth performances and oxidative status. Dietary treatments were as follows: control diet 0.8 mg/kg DON; contaminated diet (DON-contaminated diet) 3.1 mg/kg DON; and four contaminated diets, each supplemented with a different antioxidant feed additive, DON + vitamins, DON + organic selenium (Se)/glutathione (GSH), DON + quercetin, and DON + COMB (vitamins + Se/GSH + quercetin from the other treatments). Although DON was the main mycotoxin in the contaminated diet, this diet also contained 1.8 mg/kg of zearalenone (ZEN). The “mycotoxin” effects therefore included the combined effect of these two mycotoxins, DON, and ZEN. The DON-ZEN ingestion did not affect growth performances, average daily gain (ADG), average daily feed intake (ADFI), and feed efficiency (G:F ratio), but partially induced oxidative stress in weaned pigs as shown by increased malondialdehyde (MDA) content in the plasma and superoxide dismutase (SOD) activity in liver (P?<?0.05). However, no change in the activity of other antioxidant enzymes or GSH concentrations was observed in plasma and liver of piglets fed the DON-contaminated diet (P?>?0.05). Supplementation with individual antioxidant feed additive had a limited effect in weaned pigs fed DON-ZEN-contaminated diets. Combination of antioxidants (vitamins A, C, and E, quercetin, and organic Se/GSH) reduced plasma and liver MDA content and SOD activity in liver (P?<?0.05) of piglets fed DON-ZEN-contaminated diets. Furthermore, this combination also reduced MDA content in the ileum (P?<?0.05), although activity of glutathione peroxidases (GPx), SOD or catalase (CAT) in the ileum was not affected by DON-ZEN contamination or antioxidant supplements. In conclusion, DON-ZEN contamination induced oxidative stress in weaned pigs and combination of antioxidant feed additives restored partially the oxidative status. Further studies will be necessary to assess whether the effects of antioxidant feed additives on oxidative status are specific when feed is contaminated with DON-ZEN.  相似文献   

9.
The involvement of oxidative stress in the pathogenesis of alcoholic diseases in the liver has been repeatedly confirmed. Resveratrol, a natural phytoalexin present in grape skin and red wine possesses a variety of biological activities including antioxidant. This study was conducted to evaluate whether resveratrol has a preventive effect on the main indicators of hepatic oxidative status as an expression of the cellular damage caused by free radicals, and on antioxidant defence mechanism during chronic ethanol treatment. Wistar rats were treated daily with 35% ethanol solution (3 g/kg/day i.p.) during 6 weeks and fed basal diet or basal diet containing 5 g/kg resveratrol. Control rats were treated with i.p. saline and fed basal diet. Experimentally, chronic ethanol administration leads to hepatotoxicity as monitored by the increase in the level of hepatic marker enzymes and the appearance of fatty change, necrosis, fibrosis and inflammation in liver sections. Ethanol also enhanced the formation of MDA in the liver indicating an increase in lipid peroxidation, a major end-point of oxidative damage, and caused drastic alterations in antioxidant defence systems. Particularly the activities of hepatic superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were found reduced by ethanol treatment while glutathione reductase (GR) activity was unchanged. Dietary supplementation with resveratrol during ethanol treatment inhibited hepatic lipid peroxidation and ameliorated SOD, GPx and CAT activities in the liver. Conclusively, we can suggest that resveratrol could have a beneficial effect in inhibiting the oxidative damage induced by chronic ethanol administration, which was proved by the experiments that we conducted on rats.  相似文献   

10.
Oxidative stress may contribute to the pathogenesis of diabetic nephropathy (DN), although the detailed mechanism of reactive oxygen species (ROS) regulation is still unclear. This study examined the effect of high-salt diet on ROS production and expression of antioxidant enzymes in control and experimentally diabetic rats. Wistar fatty rats (WFR) as a type 2 diabetes mellitus model and Wistar lean rats (WLR) as a control were fed a normal-salt diet (NS) and high-salt diet (HS) from the age of 6 to 14 weeks. We then examined the blood pressure, urinary albumin excretion (UAE), and urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels. The expression of antioxidant enzymes including α-catalase (CAT), Cu-Zn superoxide dismutase (SOD), Mn SOD, and glutathione peroxidase (GPx) were analyzed in the glomeruli of the rats using Western blotting. The expression of NAD(P)H oxidase p47phox and NFκB p65 was evaluated using immunohistochemical staining. By 14 weeks of age, the WFR-HS group exhibited hypertension and markedly increased UAE. The level of 8-OHdG, a marker of oxidative damage, in the WFR-HS group was also higher than that in the WLR groups or WFR-NS group. The expression of α-CAT and Mn SOD proteins was significantly decreased in isolated glomeruli in the WFR-HS group. GPx and Cu-Zn SOD expression did not differ between the WFR and WLR groups. High expression of ROS and decreases in antioxidants were seen in the glomeruli of diabetic rats with hypertension, suggesting that oxidative stress may be involved in the development of DN.  相似文献   

11.
12.
13.
The main aim of this study was to investigate the beneficial effects of hydro-alcoholic extract of Caralluma fimbriata (CFE) on the effects of high-fat diet feeding on insulin resistance and oxidative stress in Wistar rats. High-fat diet (60 % of fat) and CFE (200 mg/kg body weight/day) were given concurrently to the rats for a period of 90 days. Feeding with high-fat diet resulted in the development of hyperglycemia, hyperinsulinemia, hyperleptinemia, and hypertriglyceridemia and impaired insulin sensitivity (P?<?0.05). Administration of CFE to high-fat diet-fed rats for 90 days resulted in a significant improvement in plasma glucose, insulin, leptin, and triglycerides. Regarding liver antioxidant status, high-fat fed rats showed higher levels of lipid peroxidation, protein oxidation and lower GSH levels and lower activities of enzymatic antioxidants, while CFE treatment prevented all these observed abnormalities. In conclusion, intake of CFE may be beneficial for the suppression of high-fat diet-induced insulin resistance and oxidative stress.  相似文献   

14.
AimsThe aim of this study was to investigate the effect of iron or/and zinc supplementation and termination of this treatment on the antioxidant defence of the male reproductive system and sperm viability in rats.MethodsThe study consisted of 3 stages: I) 4-week adaptation to the diets (C-control or D-iron deficient); II) 4-week iron and/or zinc supplementation (10-times more than in the C diet of iron: CSFe, DSFe; zinc: CSZn, DSZn; or iron and zinc: CSFeZn, DSFeZn; and III) 2-week post-supplementation period (the same diets as during stage I). Parameters of antioxidant status (total antioxidant capacity and SOD, GPx, and CAT activiy), oxidative damage (lipid and protein peroxidation), and sperm viability were measured.ResultsSimultaneous iron and zinc supplementation compared to iron supplementation (CSFeZn vs CSFe) increased SOD activity in the testes and decreased the level of malondialdehyde in the epididymis after stage II, and increased the percentage of live sperm after stage III. After discontinuation of the iron and zinc supplementation and a return to the control diet, the following was observed a decrease of SOD activity in the testes and GPx activity in the epididymis, and a increase malondialdehyde concentration in prostates. After stage III, in DSFeZn vs DSFe rats, an increase of SOD and CAT activity in the epididymis was found.ConclusionZinc supplementation simultaneous with iron may protect the male reproductive system against oxidative damage induced by high doses of iron and may have a beneficial effect on sperm viability. The effect of this supplementation was observed even two weeks after the termination of the intervention.  相似文献   

15.
Clinical research has confirmed the efficacy of several plant extracts in the modulation of oxidative stress associated with hyperlipidemia and hyperglycemia induced by obesity and diabetes. Findings indicate that obtusifolin has antioxidant properties. The aim of this study was to evaluate the possible protective effects of obtusifolin against oxidative damage in diabetic hyperlipidemia and hyperglycemia. In this study, the rats were divided into the following groups with eight animals in each: control, untreated diabetic, three obtusifolin (10, 30, and 90 mg/kg/day)-treated diabetic groups. Diabetes was induced by streptozotocin (STZ) in rats. STZ was injected intraperitoneally at a single dose of 60 mg/kg for diabetes induction. Obtusifolin (intraperitoneal injection) was administered 3 days after STZ administration; these injections were continued to the end of the study (4 weeks). At the end of the 4-week period, blood was drawn for biochemical assays. In order to determine the changes of cellular antioxidant defense systems, antioxidant enzymes including glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) activities were measured in serum. Moreover, we also measured serum nitric oxide (NO) and serum malondialdehyde (MDA) levels, markers of lipid peroxidation. STZ-induced diabetes caused an elevation (P < 0.001) of blood glucose, MDA, NO, total lipids, triglycerides and cholesterol, with reduction of GSH level and CAT and SOD activities. The results indicated that the significant elevation in the blood glucose, MDA, NO, total lipids, triglycerides and cholesterol; also the reduction of glutathione level and CAT and SOD activity were ameliorated in the obtusifolin-treated diabetic groups compared with the untreated groups, in a dose-dependent manner (P < 0.05, P < 0.01, P < 0.001). These results suggest that obtusifolin has antioxidant properties and improves chemically induced diabetes and its complications by modulation of oxidative stress.  相似文献   

16.
17.
Resveratrol (RSV), a natural compound, is known for its effects on energy homeostasis. Here we investigated the effects of RSV and possible mechanism in insulin secretion of high-fat diet rats. Rats were randomly divided into three groups as follows: NC group (animals were fed ad libitum with normal chow for 8 weeks), HF group (animals were fed ad libitum with high-fat diet for 8 weeks), and HFR group (animals were treated with high-fat diet and administered with RSV for 8 weeks). Insulin secretion ability of rats was assessed by hyperglycemic clamp. Mitochondrial biogenesis genes, mitochondrial respiratory chain activities, reactive oxidative species (ROS), and several mitochondrial antioxidant enzyme activities were evaluated in islet. We found that HF group rats clearly showed low insulin secretion and mitochondrial complex dysfunction. Expression of silent mating type information regulation 2 homolog- 1 (SIRT1) and related mitochondrial biogenesis were significantly decreased. However, RSV administration group (HFR) showed a marked potentiation of glucose-stimulated insulin secretion. This effect was associated with elevated SIRT1 protein expression and antioxidant enzyme activities, resulting in increased mitochondrial respiratory chain activities and decreased ROS level. This study suggests that RSV may increase islet mitochondrial complex activities and antioxidant function to restore insulin secretion dysfunction induced by high-fat diet.  相似文献   

18.
Insulin resistance leads to memory impairment. Cinnamon (CN) improves peripheral insulin resistance but its effects in the brain are not known. Changes in behavior, insulin signaling and Alzheimer-associated mRNA expression in the brain were measured in male Wistar rats fed a high fat/high fructose (HF/HFr) diet to induce insulin resistance, with or without CN, for 12 weeks. There was a decrease in insulin sensitivity associated with the HF/HFr diet that was reversed by CN. The CN fed rats were more active in a Y maze test than rats fed the control and HF/HFr diets. The HF/HFr diet fed rats showed greater anxiety in an elevated plus maze test that was lessened by feeding CN. The HF/HFr diet also led to a down regulation of the mRNA coding for GLUT1 and GLUT3 that was reversed by CN in the hippocampus and cortex. There were increases in Insr, Irs1 and Irs2 mRNA in the hippocampus and cortex due to the HF/HFr diet that were not reversed by CN. Increased peripheral insulin sensitivity was also associated with increased glycogen synthase in both hippocampus and cortex in the control and HF/HFr diet animals fed CN. The HF/HFr diet induced increases in mRNA associated with Alzheimers including PTEN, Tau and amyloid precursor protein (App) were also alleviated by CN. In conclusion, these data suggest that the negative effects of a HF/HFr diet on behavior, brain insulin signaling and Alzheimer-associated changes were alleviated by CN suggesting that neuroprotective effects of CN are associated with improved whole body insulin sensitivity and related changes in the brain.  相似文献   

19.
Fetuin-A is synthesized in the liver and is secreted into the bloodstream. Clinical studies suggest involvement of fetuin-A in metabolic disorders such as visceral obesity, insulin resistance, diabetes, and fatty liver. Curcumin is extracted from the rhizome Curcuma longa and has been shown to possess potent antioxidant, anticarcinogenic, anti-inflammatory, and hypoglycemic properties. In this study, we investigated the effect of curcumin treatment on serum fetuin-A levels as well as hepatic lipids and prooxidant–antioxidant status in rats fed a high-fat diet (HFD). Male Sprague–Dawley rats were divided into six groups. Group 1 was fed control diet (10 % of total calories from fat). Groups 2 and 3 were given curcumin (100 and 400 mg/kg bw/day, respectively ) by gavage for 8 weeks and were fed control diet. Group 4 was fed with HFD (60 % of total calories from fat). Groups 5 and 6 received HFD together with the two doses of curcumin, respectively. Curcumin treatment appeared to be effective in reducing liver triglycerides and serum fetuin-A levels. These findings suggest that the reduction of fetuin-A may contribute to the beneficial effects of curcumin in the pathogenesis of obesity.  相似文献   

20.
The hepatoprotective activity of flavonoid rhamnocitrin 4′-β-d-galactopyranoside (RGP) obtained from leaves of Astragalus hamosus L. against N-diethylnitrosamine (DENA)-induced hepatic cancer in Wistar albino rats was evaluated. Hepatic cancer in rats was induced by single-dose intraperitoneal administration of DENA (200 mg/kg). Induction of hepatic cancer was confirmed after 7 days of DENA administration by measurement of elevated level of serum α-feto protein (AFP). Administration of DENA in a single dose lofted the levels of serum biochemical parameters like alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, total protein and AFP. Antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and lipid per oxidation (LPO) were annealed significantly by administration of RGP in a dose-dependant manner. The histopathological examination of rat liver section was found to reinforce the biochemical observations significantly. It was observed that a substantial and dose-dependent reversal of DENA-diminished activity of antioxidant enzymes like SOD, CAT, GPx, GST and the reduced DENA-elevated level of LPO with a marked change. Any elevation in the levels of serum markers along with suppression of free radical formation by scavenging the hydroxyl radicals is significantly prevented by RGP. It also modulates the levels of LPO and perceptibly increases the endogenous antioxidant enzymes level in DENA-induced hepatocellular carcinogenesis. The findings suggest that RGP prevents hepatocellular carcinoma by suppressing the marked increase in the levels of serum marker enzymes, and suppresses the free radical by scavenging hydroxyl radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号