首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Idiopathic basal ganglia calcification (IBGC) is a neurodegenerative syndrome that is associated with a variety of movement disorders and neurobehavioral and cognitive manifestations. Despite numerous clinical, pathological, and biochemical investigations, its etiology remains unknown. We have identified a multigenerational family with dominantly inherited IBGC and, in 24 members of this family, performed a whole-genome scan using polymorphic microsatellite markers to identify the first chromosomal locus for this disorder (IBGC1). A maximum two-point LOD score of 3.37 was obtained at marker D14S1014, and a maximum multipoint LOD score of 4.95 was obtained between D14S75 and D14S306. The minimal haplotype shared by affected patients extended over a 17.1-cM region bounded by D14S70 and D14S66, which is potentially further narrowed to a 13.3-cM region by a recombination observed in a patient with probable affected status. The age at onset appeared to be decreasing by an average of >20 years with each transmission, which is consistent with genetic anticipation.  相似文献   

2.
A family with a (1;11)(q42;q14.3) translocation significantly linked to a clinical phenotype that includes schizophrenia and affective disorders is described. This translocation generates a LOD score of 3.6 when the disease phenotype is restricted to schizophrenia, of 4.5 when the disease phenotype is restricted to affective disorders, of 7.1 when relatives with recurrent major depression, with bipolar disorder, or with schizophrenia are all classed as affected. This evidence for linkage is among the strongest reported for a psychiatric disorder. Family members showed no distinctive features by which the psychiatric phenotype could be distinguished from unrelated cases of either schizophrenia or affective disorders, and no physical, neurological, or dysmorphic conditions co-occurred with psychiatric symptoms. Translocation carriers and noncarriers had the same mean intelligence quotient. Translocation carriers were similar to subjects with schizophrenia and different from noncarriers and controls, in showing a significant reduction in the amplitude of the P300 event-related potential (ERP). Furthermore, P300 amplitude reduction and latency prolongation were measured in some carriers of the translocation who had no psychiatric symptoms-a pattern found in other families with multiple members with schizophrenia, in which amplitude of and latency of P300 appear to be trait markers of risk. The results of karyotypic, clinical, and ERP investigations of this family suggest that the recently described genes DISC1 and DISC2, which are directly disrupted by the breakpoint on chromosome 1, may have a role in the development of a disease phenotype that includes schizophrenia as well as unipolar and bipolar affective disorders.  相似文献   

3.
Hypotheses of single major locus transmission (autosomal and X chromosome) of major affective disorder (i.e., bipolar, unipolar, and schizoaffective) are tested using the Elston-Stewart likelihood method of pedigree segregation analysis. The sample consists of families of varying size ascertained through patients treated at the National Institute of Mental Health in Bethesda, Maryland. We test hypotheses on subsamples of families according to: (1) diagnosis of proband (75 bipolar I, 22 bipolar II, 18 unipolar, and six schizoaffective); (2) extreme value of a biological trait in the proband ("low" monoamine oxidase, "low" cerebrospinal fluid serotonin metabolite 5-HIAA); and (3) positive response to lithium in the proband. We cannot find evidence for single major locus transmission of major affective disorder from segregation analysis in any subsample of family even when the diagnostic classification of ill phenotypes is widened to include possible affective "spectrum" diagnoses. In addition, linkage studies of 21 autosomal markers do not provide evidence for single major locus transmission of illness. The maximum lod score, found for 30 families at the MNS locus, was 1.39 at 20% recombination.  相似文献   

4.
A significant portion of patients with 22q11 deletion syndrome (22q11DS) develop psychiatric disorders, including schizophrenia and other psychotic and affective symptoms, and the responsible gene/s are assumed to also play a significant role in the etiology of nonsyndromic psychiatric disease. The most common psychiatric diagnosis among patients with 22q11DS is schizophrenia, thought to result from neurotransmitter imbalances and also from disturbed brain development. Several genes in the 22q11 region with known or suspected roles in neurotransmitter metabolism have been analyzed in patients with isolated schizophrenia; however, their contribution to the disease remains controversial. Haploinsufficiency of the TBX1 gene has been shown to be sufficient to cause the core physical malformations associated with 22q11DS in mice and humans and via abnormal brain development could contribute to 22q11DS-related and isolated psychiatric disease. 22q11DS populations also have increased rates of psychiatric conditions other than schizophrenia, including mood disorders. We therefore analyzed variations at the TBX1 locus in a cohort of 446 white patients with psychiatric disorders relevant to 22q11DS and 436 ethnically matched controls. The main diagnoses included schizophrenia (n = 226), schizoaffective disorder (n = 67), bipolar disorder (n = 82), and major depressive disorder (n = 29). We genotyped nine tag SNPs in this sample but did not observe significant differences in allele or haplotype frequencies in any of the analyzed groups (all affected, schizophrenia and schizoaffective disorder, schizophrenia alone, and bipolar disorder and major depressive disorder) compared with the control group. Based on these results we conclude that TBX1 variation does not make a strong contribution to the genetic etiology of nonsyndromic forms of psychiatric disorders commonly seen in patients with 22q11DS.  相似文献   

5.
The therapeutic effect of lithium in bipolar affective disorder may be connected with decreasing intracellular Ca(2+) concentrations. Several linkage studies have identified a potential bipolar affective disorder susceptibility locus within chromosomal region 21q22.3. This locus contains two genes expressed in the brain - ADARB1 and TRPM2 - involved in regulating intracellular Ca(2+) concentrations. The aim of this study was an identification of mutations in the coding sequences of ADARB1 and TRPM2 and their association with bipolar affective disorder. For that purpose we screened 60 patients with bipolar affective disorder and a control group of 66 subjects using single strand conformation polymorphism and sequence analysis. For rapid screening we performed restriction fragment length polymorphism analysis. Screening of bipolar affective disorder patients for mutations in TRPM2 led to identification of three novel and four known transitions. Two transitions resulted in the substitutions: R755C and A890V. Screening of the coding sequence of ADARB1 did not reveal any mutations except one already known transition. A comparison of the transition frequency in patients and controls does not support association of the detected mutations with bipolar affective disorder. According to our results, bipolar affective disorder may not be caused by mutations in ADARB1. However, this study does not exclude TRPM2 as a candidate gene since we have screened only about 30 per cent of the entire coding sequence of this large gene.  相似文献   

6.
7.
Schizophrenia, schizoaffective disorder, and bipolar disorder are common psychiatric disorders with high heritabilities and variable phenotypes. The Disrupted in Schizophrenia 1 (DISC1) gene, on chromosome 1q42, was originally discovered and linked to schizophrenia in a Scottish kindred carrying a balanced translocation that disrupts DISC1 and DISC2. More recently, DISC1 was linked to schizophrenia, broadly defined, in the general Finnish population, through the undertransmission to affected women of a common haplotype from the region of intron 1/exon 2. We present data from a case-control study of a North American white population, confirming the underrepresentation of a common haplotype of the intron 1/exon 2 region in individuals with schizoaffective disorder. Multiple haplotypes contained within four haplotype blocks extending between exon 1 and exon 9 are associated with schizophrenia, schizoaffective disorder, and bipolar disorder. We also find overrepresentation of the exon 9 missense allele Phe607 in schizoaffective disorder. These data support the idea that these apparently distinct disorders have at least a partially convergent etiology and that variation at the DISC1 locus predisposes individuals to a variety of psychiatric disorders.  相似文献   

8.

Background

Impairments in cognitive functions are common in patients suffering from psychiatric disorders, such as schizophrenia and bipolar disorder. Cognitive traits have been proposed as useful for understanding the biological and genetic mechanisms implicated in cognitive function in healthy individuals and in the dysfunction observed in psychiatric disorders.

Methods

Sets of genes associated with a range of cognitive functions often impaired in schizophrenia and bipolar disorder were generated from a genome-wide association study (GWAS) on a sample comprising 670 healthy Norwegian adults who were phenotyped for a broad battery of cognitive tests. These gene sets were then tested for enrichment of association in GWASs of schizophrenia and bipolar disorder. The GWAS data was derived from three independent single-centre schizophrenia samples, three independent single-centre bipolar disorder samples, and the multi-centre schizophrenia and bipolar disorder samples from the Psychiatric Genomics Consortium.

Results

The strongest enrichments were observed for visuospatial attention and verbal abilities sets in bipolar disorder. Delayed verbal memory was also enriched in one sample of bipolar disorder. For schizophrenia, the strongest evidence of enrichment was observed for the sets of genes associated with performance in a colour-word interference test and for sets associated with memory learning slope.

Conclusions

Our results are consistent with the increasing evidence that cognitive functions share genetic factors with schizophrenia and bipolar disorder. Our data provides evidence that genetic studies using polygenic and pleiotropic models can be used to link specific cognitive functions with psychiatric disorders.  相似文献   

9.
Idiopathic basal ganglia calcification (IBGC) is a rare neuropsychiatric disorder characterized by bilateral and symmetric cerebral calcifications. Recently, SLC20A2 was identified as a causative gene for familial IBGC, and three mutations were reported in a northern Chinese population. Here, we aimed to explore the mutation spectrum of SLC20A2 in a southern Chinese population. Sanger sequencing was employed to screen mutations within SLC20A2 in two IBGC families and 14 sporadic IBGC cases from a southern Han Chinese population. Four novel mutations (c.82G > A p.D28N, c.185T > C p.L62P, c.1470_1478delGCAGGTCCT p.Q491_L493del and c.935-1G > A) were identified in two families and two sporadic cases, respectively; none were detected in 200 unrelated controls. No mutation was found in the remaining 12 patients. Different mutations may result in varied phenotypes, including brain calcification and clinical manifestations. Our study supports the hypothesis that SLC20A2 is a causative gene of IBGC and expands the mutation spectrum of SLC20A2, which facilitates the understanding of the genotype–phenotype correlation of IBGC.  相似文献   

10.
Abnormalities of the serotonergic system have classically been associated with the origin of affective disorders through the biochemical action of therapeutic agents and their role in affective and perceptual states. In the present study, we hypothesized that genetic variation in the 5-hydroxytryptamine (serotonin) type 2A (5-HT2A ) receptor gene (HTR2A) might have an effect on the aetiology of bipolar affective disorder. Four different polymorphisms in the HTR2A gene were studied in 88 patients with bipolar affective disorder and 113 healthy controls, all of Spanish origin. No significant association was observed between any of the four polymorphisms at the HTR2A locus, whether tested individually or as haplotypes, and bipolar affective disorder. The lack of association suggests that HTR2A is not a major risk factor for bipolar affective disorder. Received: 4 December 1996 / Accepted: 15 April 1997  相似文献   

11.
Bipolar disorder is characterized by a functional imbalance between hyperactive ventral/limbic areas and hypoactive dorsal/cognitive brain regions potentially contributing to affective and cognitive symptoms. Resting-state studies in bipolar disorder have identified abnormal functional connectivity between these brain regions. However, most of these studies used a seed-based approach, thus restricting the number of regions that were analyzed. Using data-driven approaches, researchers identified resting state networks whose spatial maps overlap with frontolimbic areas such as the default mode network, the frontoparietal networks, the salient network, and the meso/paralimbic network. These networks are specifically engaged during affective and cognitive tasks and preliminary evidence suggests that functional connectivity within and between some of these networks is impaired in bipolar disorder. The present study used independent component analysis and functional network connectivity approaches to investigate functional connectivity within and between these resting state networks in bipolar disorder. We compared 30 euthymic bipolar I disorder patients and 35 age- and gender-matched healthy controls. Inter-network connectivity analysis revealed increased functional connectivity between the meso/paralimbic and the right frontoparietal network in bipolar disorder. This abnormal connectivity pattern did not correlate with variables related to the clinical course of the disease. The present finding may reflect abnormal integration of affective and cognitive information in ventral-emotional and dorsal-cognitive networks in euthymic bipolar patients. Furthermore, the results provide novel insights into the role of the meso/paralimbic network in bipolar disorder.  相似文献   

12.
Doublecortin and calmodulin like kinase 1 (DCLK1) is implicated in synaptic plasticity and neurodevelopment. Genetic variants in DCLK1 are associated with cognitive traits, specifically verbal memory and general cognition. We investigated the role of DCLK1 variants in three psychiatric disorders that have neuro-cognitive dysfunctions: schizophrenia (SCZ), bipolar affective disorder (BP) and attention deficit/hyperactivity disorder (ADHD). We mined six genome wide association studies (GWASs) that were available publically or through collaboration; three for BP, two for SCZ and one for ADHD. We also genotyped the DCLK1 region in additional samples of cases with SCZ, BP or ADHD and controls that had not been whole-genome typed. In total, 9895 subjects were analysed, including 5308 normal controls and 4,587 patients (1,125 with SCZ, 2,496 with BP and 966 with ADHD). Several DCLK1 variants were associated with disease phenotypes in the different samples. The main effect was observed for rs7989807 in intron 3, which was strongly associated with SCZ alone and even more so when cases with SCZ and ADHD were combined (P-value = 4 × 10(-5) and 4 × 10(-6), respectively). Associations were also observed with additional markers in intron 3 (combination of SCZ, ADHD and BP), intron 19 (SCZ+BP) and the 3'UTR (SCZ+BP). Our results suggest that genetic variants in DCLK1 are associated with SCZ and, to a lesser extent, with ADHD and BP. Interestingly the association is strongest when SCZ and ADHD are considered together, suggesting common genetic susceptibility. Given that DCLK1 variants were previously found to be associated with cognitive traits, these results are consistent with the role of DCLK1 in neurodevelopment and synaptic plasticity.  相似文献   

13.
Phospholipids make up about 60% of the brain's dry weight. In spite of this, phospholipid metabolism has received relatively little attention from those seeking genetic factors involved in psychiatric and neurological disorders. However, there is now increasing evidence from many quarters that abnormal phospholipid and related fatty acid metabolism may contribute to illnesses such as schizophrenia, bipolar disorder, depression and attention deficit hyperactivity disorder. To date the possible specific proteins and genes involved have been relatively ill-defined. This paper reviews the main pathways of phospholipid metabolism, emphasizing the roles of phospholipases of the A2 and C series in signal transduction processes. It identifies some likely protein candidates for involvement in psychiatric and neurological disorders. It also reviews the chromosomal locations of regions likely to be involved in these disorders, and relates these to the known locations of genes directly or indirectly involved in phospholipid and fatty acid metabolism.  相似文献   

14.
Previously, we have described the clinical and molecular characterization of a de novo 14q13.1-q21.1 microdeletion, less than 3.5 Mb in size, in a patient with severe microcephaly, psychomotor retardation, and other clinical anomalies. Here we report the characterization of the genomic structure of the human tuberin-like protein gene 1 (TULIP1; approved gene symbol GARNL1), a CpGisland-associated, brain-expressed candidate gene for the neurological findings in our patient, and its murine homologue. The human TULIP1 gene was mapped to chromosome band 14q13.2 by fluorescence in situ hybridization of BAC clone RP11-355C3 (GenBank Accession No. AL160231), containing the 3' region of the gene. TULIP1 spans about 271 kb of human genomic DNA and is divided into 41 exons. An untranscribed, processed pseudogene of TULIP1 was found on human chromosome band 9q31.1. The active locus TULIP1, encoding a predicted protein of 2036 amino acids, is expressed ubiquitously in pre- and postnatal human tissues. The murine homologue Tulip1 spans about 220 kb of mouse genomic DNA and is also divided into 41 exons, encoding a predicted protein of 2035 amino acids. No pseudogene could be found in the available mouse sequence data. Several splicing variants were found. Considering the location, expression profile, and predicted function, TULIP1 is a strong candidate for several neurological features seen in 14q deletion patients. Additionally we searched for mutations in the coding region of TULIP1 in subjects from a family with idiopathic basal ganglia calcification (IBGC; Fahr disease), previously linked to chromosome 14q. We identified two novel SNPs in the intron-exon boundaries; however, they did not segregate only with affected subjects in the predicted model of an autosomal dominant disease such as IBGC.  相似文献   

15.
Abnormal expansion of genes with trinucleotide repeat (TNR) polymorphism has been found in a number of neuropsychiatric disorders. These disorders and the major psychoses, schizophrenia and bipolar affective disorder, appear to share an interesting phenomenon: genetic anticipation. Because TNR expansion correlates with anticipation, these unstable DNA sites are considered important candidate loci for the major psychoses. We investigated genes with TNR polymorphisms, includingB1, B33, B37, and theN-cadherin gene, in unrelated Caucasian North American and Italian schizophrenics (n = 53 to 74), and matched controls. Also, unrelated Caucasian North American patients with bipolar I affective disorder were screened for the B33 andN-cadherin genes (n = 49 and 63, respectively). No unusually long alleles that would suggest abnormal expansion of the TNR were observed for any of these genes. Also, no statistically significant results were found in tests for genetic association between any of these genes and schizophrenia. For B37, a trend toward a difference in allele counts between schizophrenics and controls was observed. However, no clear evidence for a role of these TNR-containing genes in schizophrenia or bipolar affective disorders was found.  相似文献   

16.

Background

The high co-occurrence between borderline personality disorder and affective disorders has led many to believe that borderline personality disorder should be considered as part of an affective spectrum. The aim of the present study was to examine whether the prevalence of affective disorders are higher for patients with borderline personality disorder than for patients with other personality disorders.

Methods

In a national cross-sectional study of patients receiving mental health treatment in Norway (N = 36 773), we determined whether psychiatric outpatients with borderline personality disorder (N = 1 043) had a higher prevalence of affective disorder in general, and whether they had an increased prevalence of depression, bipolar disorder or dysthymia specifically. They were compared to patients with paranoid, schizoid, dissocial, histrionic, obsessive-compulsive, avoidant, dependent, or unspecified personality disorder, as well as an aggregated group of patients with personality disorders other than the borderline type (N = 2 636). Odds ratios were computed for the borderline personality disorder group comparing it to the mixed sample of other personality disorders. Diagnostic assessments were conducted in routine clinical practice.

Results

More subjects with borderline personality disorder suffered from unipolar than bipolar disorders. Nevertheless, borderline personality disorder had a lower rate of depression and dysthymia than several other personality disorder groups, whereas the rate of bipolar disorder tended to be higher. Odds ratios showed 34% lower risk for unipolar depression, 70% lower risk for dysthymia and 66% higher risk for bipolar disorder in patients with borderline personality disorder compared to the aggregated group of other personality disorders.

Conclusions

The results suggest that borderline personality disorder has a stronger association with affective disorders in the bipolar spectrum than disorders in the unipolar spectrum. This association may reflect an etiological relationship or diagnostic overlapping criteria.  相似文献   

17.
The validity of the classification of non‐affective and affective psychoses as distinct entities has been disputed, but, despite calls for alternative approaches to defining psychosis syndromes, there is a dearth of empirical efforts to identify transdiagnostic phenotypes of psychosis. We aimed to investigate the validity and utility of general and specific symptom dimensions of psychosis cutting across schizophrenia, schizoaffective disorder and bipolar I disorder with psychosis. Multidimensional item‐response modeling was conducted on symptom ratings of the Positive and Negative Syndrome Scale, Young Mania Rating Scale, and Montgomery‐Åsberg Depression Rating Scale in the multicentre Bipolar‐Schizophrenia Network on Intermediate Phenotypes (B‐SNIP) consortium, which included 933 patients with a diagnosis of schizophrenia (N=397), schizoaffective disorder (N=224), or bipolar I disorder with psychosis (N=312). A bifactor model with one general symptom dimension, two distinct dimensions of non‐affective and affective psychosis, and five specific symptom dimensions of positive, negative, disorganized, manic and depressive symptoms provided the best model fit. There was further evidence on the utility of symptom dimensions for predicting B‐SNIP psychosis biotypes with greater accuracy than categorical DSM diagnoses. General, positive, negative and disorganized symptom dimension scores were higher in African American vs. Caucasian patients. Symptom dimensions accurately classified patients into categorical DSM diagnoses. This study provides evidence on the validity and utility of transdiagnostic symptom dimensions of psychosis that transcend traditional diagnostic boundaries of psychotic disorders. Findings further show promising avenues for research at the interface of dimensional psychopathological phenotypes and basic neurobiological dimensions of psychopathology.  相似文献   

18.
A high level of Interleukin-1beta (IL1B), a key mediator of inflammation, is expressed in the brain, particularly in the hippocampus, which plays a pivotal role in memory and mood regulation. In the brain, IL1B exerts a myriad of effects such as neuronal proliferation, differentiation, apoptosis, and long-term potentiation. Considering its pleiotropic effects in the brain, IL1B has been implicated in the pathogenesis of various psychiatric disorders as well as cognitive function in normal individuals. Thus, IL1B has been considered a candidate gene for the study of psychiatric diseases as well as brain function in normal individuals. The polymorphisms of IL1B have been described in relation to various expression levels in response to stimulation. This review describes previous studies on the genetic effects of IL1B, which relate it to psychiatric diseases such as major depressive disorder, bipolar disorder, schizophrenia, and Alzheimer’s disease, as well as cognitive function in normal individuals. Although many reports have indicated a possible role of the genetic effects of IL1B or its phenotypes in psychiatric diseases, some reports were unable to confirm these findings. IL1B release is mediated by an inflammatory response or psychological stress, leading to a cascade of immune reactions involving numerous immune components. To further explore the genetic effects of IL1B on mental diseases and brain function, gene–gene and gene–environment interactions should also be considered.  相似文献   

19.
《PloS one》2014,9(8)
Bipolar disorder is one of the most common and devastating psychiatric disorders whose mechanisms remain largely unknown. Despite a strong genetic contribution demonstrated by twin and adoption studies, a polygenic background influences this multifactorial and heterogeneous psychiatric disorder. To identify susceptibility genes on a severe and more familial sub-form of the disease, we conducted a genome-wide association study focused on 211 patients of French origin with an early age at onset and 1,719 controls, and then replicated our data on a German sample of 159 patients with early-onset bipolar disorder and 998 controls. Replication study and subsequent meta-analysis revealed two genes encoding proteins involved in phosphoinositide signalling pathway (PLEKHA5 and PLCXD3). We performed additional replication studies in two datasets from the WTCCC (764 patients and 2,938 controls) and the GAIN-TGen cohorts (1,524 patients and 1,436 controls) and found nominal P-values both in the PLCXD3 and PLEKHA5 loci with the WTCCC sample. In addition, we identified in the French cohort one affected individual with a deletion at the PLCXD3 locus and another one carrying a missense variation in PLCXD3 (p.R93H), both supporting a role of the phosphatidylinositol pathway in early-onset bipolar disorder vulnerability. Although the current nominally significant findings should be interpreted with caution and need replication in independent cohorts, this study supports the strategy to combine genetic approaches to determine the molecular mechanisms underlying bipolar disorder.  相似文献   

20.
Discovering drugs that efficiently treat brain diseases has been challenging. Genetic variants that modulate the expression of potential drug targets can be utilized to assess the efficacy of therapeutic interventions. We therefore employed Mendelian Randomization (MR) on gene expression measured in brain tissue to identify drug targets involved in neurological and psychiatric diseases. We conducted a two-sample MR using cis-acting brain-derived expression quantitative trait loci (eQTLs) from the Accelerating Medicines Partnership for Alzheimer’s Disease consortium (AMP-AD) and the CommonMind Consortium (CMC) meta-analysis study (n = 1,286) as genetic instruments to predict the effects of 7,137 genes on 12 neurological and psychiatric disorders. We conducted Bayesian colocalization analysis on the top MR findings (using P<6x10-7 as evidence threshold, Bonferroni-corrected for 80,557 MR tests) to confirm sharing of the same causal variants between gene expression and trait in each genomic region. We then intersected the colocalized genes with known monogenic disease genes recorded in Online Mendelian Inheritance in Man (OMIM) and with genes annotated as drug targets in the Open Targets platform to identify promising drug targets. 80 eQTLs showed MR evidence of a causal effect, from which we prioritised 47 genes based on colocalization with the trait. We causally linked the expression of 23 genes with schizophrenia and a single gene each with anorexia, bipolar disorder and major depressive disorder within the psychiatric diseases and 9 genes with Alzheimer’s disease, 6 genes with Parkinson’s disease, 4 genes with multiple sclerosis and two genes with amyotrophic lateral sclerosis within the neurological diseases we tested. From these we identified five genes (ACE, GPNMB, KCNQ5, RERE and SUOX) as attractive drug targets that may warrant follow-up in functional studies and clinical trials, demonstrating the value of this study design for discovering drug targets in neuropsychiatric diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号