首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Objective

Recent genome-wide association studies identified novel candidate genes for fasting and 2 h blood glucose and insulin levels in adults. We investigated the role of four of these loci (ADCY5, GIPR, GCKR and VPS13C) in early impairment of glucose and insulin metabolism in children.

Research Design and Methods

We genotyped four variants (rs2877716; rs1260326; rs10423928; rs17271305) in 638 Caucasian children with detailed metabolic testing including an oGTT and assessed associations with measures of glucose and insulin metabolism (including fasting blood glucose, insulin levels and insulin sensitivity/secretion indices) by linear regression analyses adjusted for age, sex, BMI-SDS and pubertal stage.

Results

The major allele (C) of rs2877716 (ADCY5) was nominally associated with decreased fasting plasma insulin (P = 0.008), peak insulin (P = 0.009) and increased QUICKI (P = 0.016) and Matsuda insulin sensitivity index (P = 0.013). rs17271305 (VPS13C) was nominally associated with 2 h blood glucose (P = 0.009), but not with any of the insulin or insulin sensitivity parameters. We found no association of the GIPR and GCKR variants with parameters of glucose and insulin metabolism. None of the variants correlated with anthropometric traits such as height, WHR or BMI-SDS, which excluded potential underlying associations with obesity.

Conclusions

Our data on obese children indicate effects of genetic variation within ADCY5 in early impairment of insulin metabolism and VPS13C in early impairment of blood glucose homeostasis.  相似文献   

2.

Introduction

Recent meta-analyses of genome-wide association studies revealed new genetic loci associated with fasting glycemia. For several of these loci, the mechanism of action in glucose homeostasis is unclear. The objective of the study was to establish metabolic phenotypes for these genetic variants to deliver clues to their pathomechanism.

Methods

In this cross-sectional study 1782 non-diabetic volunteers at increased risk for type 2 diabetes underwent an oral glucose tolerance test. Insulin, C-peptide and proinsulin were measured and genotyping was performed for 12 single nucleotide polymorphisms (SNP) in or near the genes GCK (rs4607517), DGKB (rs2191349), GCKR (rs780094), ADCY5 (rs11708067), MADD (rs7944584), ADRA2A (rs10885122), FADS1 (rs174550), CRY2 (rs11605924), SLC2A2 (rs11920090), PROX1 (rs340874), GLIS3 (rs7034200) and C2CD4B (rs11071657). Parameters of insulin secretion (AUC Insulin0–30/AUC Glucose0–30, AUC C-peptide0–120/AUC Glucose0–120), proinsulin-to-insulin conversion (fasting proinsulin, fasting proinsulin/insulin, AUC Proinsulin0–120/AUCInsulin0–120) and insulin resistance (HOMA-IR, Matsuda-Index) were assessed.

Results

After adjustment for confounding variables, the effect alleles of the ADCY5 and MADD SNPs were associated with an impaired proinsulin-to-insulin conversion (p = 0.002 and p = 0.0001, respectively). GLIS3 was nominally associated with impaired proinsulin-to-insulin conversion and insulin secretion. The diabetogenic alleles of DGKB and PROX1 were nominally associated with reduced insulin secretion. Nominally significant effects on insulin sensitivity could be found for MADD and PROX1.

Discussion

By examining parameters of glucose-stimulated proinsulin-to-insulin conversion during an OGTT, we show that the SNP in ADCY5 is implicated in defective proinsulin-to-insulin conversion. In addition, we confirmed previous findings on the role of a genetic variant in MADD on proinsulin-to-insulin conversion. These effects may also be related to neighboring regions of the genome.  相似文献   

3.

Objective

Increasing plasma glucose levels are associated with increasing risk of vascular disease. We tested the hypothesis that there is a glycaemia-mediated impairment of reverse cholesterol transport (RCT). We studied the influence of plasma glucose on expression and function of a key mediator in RCT, the ATP binding cassette transporter-A1 (ABCA1) and expression of its regulators, liver X receptor-α (LXRα) and peroxisome proliferator-activated receptor–γ (PPARγ).

Methods and Results

Leukocyte ABCA1, LXRα and PPARγ expression was measured by polymerase chain reaction in 63 men with varying degrees of glucose homeostasis. ABCA1 protein concentrations were measured in leukocytes. In a sub-group of 25 men, ABCA1 function was quantified as apolipoprotein-A1-mediated cholesterol efflux from 2–3 week cultured skin fibroblasts. Leukocyte ABCA1 expression correlated negatively with circulating HbA1c and glucose (rho = −0.41, p<0.001; rho = −0.34, p = 0.006 respectively) and was reduced in Type 2 diabetes (T2DM) (p = 0.03). Leukocyte ABCA1 protein was lower in T2DM (p = 0.03) and positively associated with plasma HDL cholesterol (HDL-C) (rho = 0.34, p = 0.02). Apolipoprotein-A1-mediated cholesterol efflux correlated negatively with fasting glucose (rho = −0.50, p = 0.01) and positively with HDL-C (rho = 0.41, p = 0.02). It was reduced in T2DM compared with controls (p = 0.04). These relationships were independent of LXRα and PPARγ expression.

Conclusions

ABCA1 expression and protein concentrations in leukocytes, as well as function in cultured skin fibroblasts, are reduced in T2DM. ABCA1 protein concentration and function are associated with HDL-C levels. These findings indicate a glycaemia- related, persistent disruption of a key component of RCT.  相似文献   

4.
Hu C  Zhang R  Wang C  Wang J  Ma X  Hou X  Lu J  Yu W  Jiang F  Bao Y  Xiang K  Jia W 《PloS one》2010,5(11):e15542

Background

Recent meta-analysis of genome-wide association studies in European descent samples identified novel loci influencing glucose and insulin related traits. In the current study, we aimed to evaluate the association between these loci and traits related to glucose metabolism in the Chinese.

Methods/Principal Findings

We genotyped seventeen single nucleotide polymorphisms (SNPs) from fifteen loci including GIPR, ADCY5, TCF7L2, VPS13C, DGKB, MADD, ADRA2A, FADS1, CRY2, SLC2A2, GLIS3, PROX1, C2CD4B, SLC30A8 and IGF1 in 6,822 Shanghai Chinese Hans comprising 3,410 type 2 diabetic patients and 3,412 normal glucose regulation subjects. MADD rs7944584 showed strong association to type 2 diabetes (p = 3.5×10−6, empirical p = 0.0002) which was not observed in the European descent populations. SNPs from GIPR, TCF7L2, CRY2, GLIS3 and SLC30A8 were also associated with type 2 diabetes (p = 0.0487∼2.0×10−8). Further adjusting age, gender and BMI as confounders found PROX1 rs340874 was associated with type 2 diabetes (p = 0.0391). SNPs from DGKB, MADD and SLC30A8 were associated with fasting glucose while PROX1 rs340874 was significantly associated with OGTT 2-h glucose (p = 0.0392∼0.0014, adjusted for age, gender and BMI), the glucose-raising allele also showed association to lower insulin secretion. IGF1 rs35767 showed significant association to both fasting and 2-h insulin levels as well as insulin secretion and sensitivity indices (p = 0.0160∼0.0035, adjusted for age, gender and BMI).

Conclusions/Significance

Our results indicated that SNPs from GIPR, TCF7L2, DGKB, MADD, CRY2, GLIS3, PROX1, SLC30A8 and IGF1 were associated with traits related to glucose metabolism in the Chinese population.  相似文献   

5.

Background

We recently identified selenoprotein P (SeP) as a liver-derived secretory protein that causes insulin resistance in the liver and skeletal muscle; however, it is unknown whether and, if so, how SeP acts on adipose tissue. The present study tested the hypothesis that SeP is related to hypoadiponectinemia in patients with type 2 diabetes.

Methodology/Principal Findings

We compared serum levels of SeP with those of adiponectin and other clinical parameters in 36 patients with type 2 diabetes. We also measured levels of blood adiponectin in SeP knockout mice. Circulating SeP levels were positively correlated with fasting plasma glucose (r = 0.35, P = 0.037) and negatively associated with both total and high-molecular adiponectin in patients with type 2 diabetes (r = −0.355, P = 0.034; r = −0.367, P = 0.028). SeP was a predictor of both total and high-molecular adiponectin, independently of age, body weight, and quantitative insulin sensitivity index (β = −0.343, P = 0.022; β = −0.357, P = 0.017). SeP knockout mice exhibited an increase in blood adiponectin levels when fed regular chow or a high sucrose, high fat diet.

Conclusions/Significance

These results suggest that overproduction of liver-derived secretory protein SeP is connected with hypoadiponectinemia in patients with type 2 diabetes.  相似文献   

6.
7.

Background

Genome-wide association (GWA) studies identified a series of novel type 2 diabetes risk loci. Most of them were subsequently demonstrated to affect insulin secretion of pancreatic β-cells. Very recently, a meta-analysis of GWA data revealed nine additional risk loci with still undefined roles in the pathogenesis of type 2 diabetes. Using our thoroughly phenotyped cohort of subjects at an increased risk for type 2 diabetes, we assessed the association of the nine latest genetic variants with the predominant prediabetes traits, i.e., obesity, impaired insulin secretion, and insulin resistance.

Methodology/Principal Findings

One thousand five hundred and seventy-eight metabolically characterized non-diabetic German subjects were genotyped for the reported candidate single nucleotide polymorphisms (SNPs) JAZF1 rs864745, CDC123/CAMK1D rs12779790, TSPAN8/LGR5 rs7961581, THADA rs7578597, ADAMTS9 rs4607103, NOTCH2 rs10923931, DCD rs1153188, VEGFA rs9472138, and BCL11A rs10490072. Insulin sensitivity was derived from fasting glucose and insulin concentrations, oral glucose tolerance test (OGTT), and hyperinsulinemic-euglycemic clamp. Insulin secretion was estimated from OGTT data. After appropriate adjustment for confounding variables and Bonferroni correction for multiple comparisons (corrected α-level: p = 0.0014), none of the SNPs was reliably associated with adiposity, insulin sensitivity, or insulin secretion (all p≥0.0117, dominant inheritance model). The risk alleles of ADAMTS9 SNP rs4607103 and VEGFA SNP rs9472138 tended to associate with more than one measure of insulin sensitivity and insulin secretion, respectively, but did not reach formal statistical significance. The study was sufficiently powered (1-β = 0.8) to detect effect sizes of 0.19≤d≤0.25 (α = 0.0014) and 0.13≤d≤0.16 (α = 0.05).

Conclusions/Significance

In contrast to the first series of GWA-derived type 2 diabetes candidate SNPs, we could not detect reliable associations of the novel risk loci with prediabetic phenotypes. Possible weak effects of ADAMTS9 SNP rs4607103 and VEGFA SNP rs9472138 on insulin sensitivity and insulin secretion, respectively, await further confirmation by larger studies.  相似文献   

8.

Objective

The aim of this study was to determine the effect of gestational diabetes mellitus (GDM) on fetal insulin resistance or β-cell function in Chinese pregnant women with GDM.

Measurements

Maternal fasting blood and venous cord blood samples (reflecting fetal condition) were collected in 65 well-controlled Chinese GDM mothers (only given dietary intervention) and 83 control subjects. The insulin, glucose and proinsulin concentrations of both maternal and cord blood samples were measured, and the homeostasis model assessment of insulin resistance (HOMA-IR) and the proinsulin-to-insulin ratios (an indicator of fetal β-cell function) were calculated in maternal and cord blood respectively.

Results

Both maternal and fetal levels of insulin, proinsulin and HOMA-IR but not proinsulin-to-insulin ratios were significantly higher in the GDM group than in the control group (maternal insulin, 24.8 vs. 15.4 µU/mL, P = 0.004, proinsulin, 23.3 vs. 16.2 pmol/L, P = 0.005, and HOMA-IR, 5.5 vs. 3.5, P = 0.041, respectively; fetal: insulin, 15.1 vs. 7.9 µU/mL, P<0.001, proinsulin, 25.8 vs. 15.1 pmol/L, P = 0.015, and HOMA-IR, 2.8 vs. 1.4, P = 0.017, respectively). Fetal HOMA-IR but not proinsulin-to-insulin ratios was significantly correlated to maternal HOMA-IR (r = 0.307, P = 0.019), in the pregnant women with GDM.

Conclusions

Fetal insulin resistance was higher in Chinese pregnant women with GDM than control subjects, and correlated with maternal insulin resistance.  相似文献   

9.

Background/Aims

Cathepsin S, a protein coded by the CTSS gene, is implicated in adipose tissue biology–this protein enhances adipose tissue development. Our hypothesis is that common variants in CTSS play a role in body weight regulation and in the development of obesity and that these effects are influenced by dietary factors–increased by high protein, glycemic index and energy diets.

Methods

Four tag SNPs (rs7511673, rs11576175, rs10888390 and rs1136774) were selected to capture all common variation in the CTSS region. Association between these four SNPs and several adiposity measurements (BMI, waist circumference, waist for given BMI and being a weight gainer–experiencing the greatest degree of unexplained annual weight gain during follow-up or not) given, where applicable, both as baseline values and gain during the study period (6–8 years) were tested in 11,091 European individuals (linear or logistic regression models). We also examined the interaction between the CTSS variants and dietary factors–energy density, protein content (in grams or in % of total energy intake) and glycemic index–on these four adiposity phenotypes.

Results

We found several associations between CTSS polymorphisms and anthropometric traits including baseline BMI (rs11576175 (SNP N°2), p = 0.02, β = −0.2446), and waist change over time (rs7511673 (SNP N°1), p = 0.01, β = −0.0433 and rs10888390 (SNP N°3), p = 0.04, β = −0.0342). In interaction with the percentage of proteins contained in the diet, rs11576175 (SNP N°2) was also associated with the risk of being a weight gainer (pinteraction = 0.01, OR = 1.0526)–the risk of being a weight gainer increased with the percentage of proteins contained in the diet.

Conclusion

CTSS variants seem to be nominally associated to obesity related traits and this association may be modified by dietary protein intake.  相似文献   

10.

Background

Hypertension is an increasing health issue in sub-Saharan Africa where malaria remains common in pregnancy. We established a birth cohort in Nigeria to evaluate the early impact of maternal malaria on newborn blood pressure (BP).

Methods

Anthropometric measurements, BP, blood films for malaria parasites and haematocrit were obtained in 436 mother-baby pairs. Women were grouped to distinguish between the timing of malaria parasitaemia as ‘No Malaria’, ‘Malaria during pregnancy only’ or ‘Malaria at delivery’, and parasite density as low (<1000 parasites/µl of blood) and high (≥1000/µl).

Results

Prevalence of maternal malaria parasitaemia was 48%, associated with younger maternal age (p<0.001), being primigravid (p = 0.022), lower haematocrit (p = 0.028). High parasite density through pregnancy had the largest effect on mean birth indices so that weight, length, head and mid-upper arm circumferences were smaller by 300 g, 1.1 cm, 0.7 cm and 0.4 cm respectively compared with ‘No malaria’ (all p0.005). In babies of mothers who had ‘malaria at delivery’, their SBPs adjusted for other confounders were lower respectively by 4.3 and 5.7 mmHg/kg compared with ‘malaria during pregnancy only’ or ‘none’. In contrast the mean newborn systolic (SBP) and diastolic BPs (DBP) adjusted for birth weight were higher by 1.7 and 1.4 mmHg/kg respectively in babies whose mothers had high compared with low parasitaemia.

Conclusions

As expected, prenatal malarial exposure had a significant impact on fetal growth rates. Malaria at delivery was associated with the lowest newborn BPs while malaria through pregnancy, which may attenuate growth of the vascular network, generated higher newborn BPs adjusted for size. These neonatal findings have potential implications for cardiovascular health in sub-Saharan Africa.  相似文献   

11.

Background

Sleep restriction is associated with development of metabolic ill-health, and hormonal mechanisms may underlie these effects. The aim of this study was to determine the impact of short term sleep restriction on male health, particularly glucose metabolism, by examining adrenocorticotropic hormone (ACTH), cortisol, glucose, insulin, triglycerides, leptin, testosterone, and sex hormone binding globulin (SHBG).

Methodology/Principal Findings

N = 14 healthy men (aged 27.4±3.8, BMI 23.5±2.9) underwent a laboratory-based sleep restriction protocol consisting of 2 baseline nights of 10 h time in bed (TIB) (B1, B2; 22:00–08:00), followed by 5 nights of 4 h TIB (SR1–SR5; 04:00–08:00) and a recovery night of 10 h TIB (R1; 22:00–08:00). Subjects were allowed to move freely inside the laboratory; no strenuous activity was permitted during the study. Food intake was controlled, with subjects consuming an average 2000 kcal/day. Blood was sampled through an indwelling catheter on B1 and SR5, at 09:00 (fasting) and then every 2 hours from 10:00–20:00. On SR5 relative to B1, glucose (F 1,168 = 25.3, p<0.001) and insulin (F 1,168 = 12.2, p<0.001) were increased, triglycerides (F 1,168 = 7.5, p = 0.007) fell and there was no significant change in fasting homeostatic model assessment (HOMA) determined insulin resistance (F 1,168 = 1.3, p = 0.18). Also, cortisol (F 1,168 = 10.2, p = 0.002) and leptin (F 1,168 = 10.7, p = 0.001) increased, sex hormone binding globulin (F 1,167 = 12.1, p<0.001) fell and there were no significant changes in ACTH (F 1,168 = 0.3, p = 0.59) or total testosterone (F 1,168 = 2.8, p = 0.089).

Conclusions/Significance

Sleep restriction impaired glucose, but improved lipid metabolism. This was associated with an increase in afternoon cortisol, without significant changes in ACTH, suggesting enhanced adrenal reactivity. Increased cortisol and reduced sex hormone binding globulin (SHBG) are both consistent with development of insulin resistance, although hepatic insulin resistance calculated from fasting HOMA did not change significantly. Short term sleep curtailment leads to changes in glucose metabolism and adrenal reactivity, which when experienced repeatedly may increase the risk for type 2 diabetes.  相似文献   

12.

Background

To investigate the impact of common variants of FNDC5 on type 2 diabetes and clinical traits related to glucose metabolism in a large Chinese population sample.

Methods

Three tagging single nucleotide polymorphisms within the region of the FNDC5 gene were selected and genotyped in 6822 participants. Detailed clinical investigations and biochemistry measurements were carried out in all of the participants. Subjects without diabetes were classified into normal weight and overweight/obese subgroups according to body mass index (BMI).

Results

None of the SNPs were associated with either the risk of type 2 diabetes in all of the participants or with any of the clinical quantitative traits in the controls with normal glucose regulation. Subgroup analysis showed that in controls with normal weight (BMI <25 kg/m2), the rs16835198 major allele G was significantly associated with fasting insulin levels, and that each additional copy of the allele resulted in a 0.0178 mU/L increment of the values (p = 0.046). Moreover, after adjusting for confounding variables, there were trends towards correlation of rs16835198 with HOMA-insulin resistance (HOMA-IR) (p = 0.057) and low-density lipoprotein cholesterol (LDL-C) levels (p = 0.083). In overweight/obese subjects (BMI ≥25 Kg/m2), we noted rs16835198 showed trends towards association with fasting insulin (p = 0.057) and HOMA-IR levels (p = 0.091), both of which declined with additional copies of the major allele G. Moreover, rs16835198 was significantly associated with high-density lipoprotein cholesterol (HDL-C) levels (p = 0.013), and HOMA-β cell function (p = 0.028) in the overweight/obese subjects. Finally, we observed a significant interaction between BMI-rs16835198 and fasting insulin levels in the control group (p = 0.003).

Conclusions

Our data indicate that the effect of the common FNDC5 SNP rs16835198 on fasting insulin was significantly modified by BMI in the Chinese Han population.  相似文献   

13.

Background

To examine ethnic differences in cardiometabolic risk profile in early age, and explore whether such differences can be explained by differences in body mass index (BMI) or waist circumference (WC).

Method

Anthropometric measurements, blood pressure and (in a subsample) fasting blood were collected during a health check of 2,509 children aged 5–6 years. Four ethnic groups were distinguished: Dutch (n = 2,008; blood n = 1,300), African descent (n = 199; blood n = 105), Turkish (n = 108; blood n = 57) and Moroccan (n = 194; blood n = 94). Ethnic differences in diastolic and systolic blood pressure (DBP/SBP), fasting glucose, low-density lipoprotein (LDL), high-density lipoprotein (HDL) and triglyceride levels were determined and the explanatory role of BMI and WC was examined with regression analysis.

Results

After adjustment for confounders, African descent children showed higher DBP (β2.22 mmHg; 95%CI:1.09–3.36) and HDL levels (β:0.09 mmol/l; 95%CI:0.03–0.16) compared to Dutch children (reference group). Turkish children showed higher SBP (β:1.89 mmHg; 95%CI:0.25–3.54), DBP (β:2.62 mmHg; 95%CI:1.11–4.13), glucose (β:0.12 mmol/L; 95%CI:0.00–0.25) and triglyceride levels (β:0.13 mmol/L; 95%CI:0.02–0.25). Higher BMI values were found in all non–Dutch groups (differences ranged from 0.53–1.03 kg/m2) and higher WC in Turkish (β:1.68 cm; 95%CI:0.99–2.38) and Moroccan (β:1.65 cm; 95%CI:1.11–2.19) children. BMI and WC partly explained the higher SBP/DBP and triglyceride levels in Turkish children.

Conclusion

Ethnic differences in cardiometabolic profile exist early in life and are partly explained by differences in BMI and WC. African children showed favourable HDL levels and Turkish children the most unfavourable overall profile, whereas their Moroccan peers have less increased cardiometabolic risk in spite of their high BMI and WC.  相似文献   

14.
Wang W  Lv L  Pan K  Zhang Y  Zhao JJ  Chen JG  Chen YB  Li YQ  Wang QJ  He J  Chen SP  Zhou ZW  Xia JC 《PloS one》2011,6(9):e24897

Background

This study aims to investigate the expression and prognostic significance of activator protein 2α (AP-2α) in gastric adenocarcinoma.

Methodology/Principal Findings

AP-2α expression was analyzed using real-time quantitative PCR (RT-qPCR), western blotting, and immunohistochemical staining methods on tissue samples from a consecutive series of 481 gastric adenocarcinoma patients who underwent resections between 2003 and 2006. The relationship between AP-2α expression, clinicopathological factors, and patient survival was investigated. RT- qPCR results showed that the expression of AP-2α mRNA was reduced in tumor tissue samples, compared with expression in matched adjacent non-tumor tissue samples (P = 0.009); this finding was confirmed by western blotting analysis (P = 0.012). Immunohistochemical staining data indicated that AP-2α expression was significantly decreased in 196 of 481 (40.7%) gastric adenocarcinoma cases; reduced AP-2α expression was also observed in patients with poorly differentiated tumors (P = 0.001) and total gastric carcinomas (P = 0.002), as well as in patients who underwent palliative tumor resection (P = 0.004). Additionally, reduced expression of AP-2α was more commonly observed in tumors that were staged as T4a/b (P = 0.018), N3 (P = 0.006), and M1 (P = 0.008). Kaplan-Meier survival curves revealed that reduced expression of AP-2α was associated with poor prognosis in gastric adenocarcinoma patients (P<0.001). Multivariate Cox analysis identified AP-2α expression as an independent prognostic factor for overall survival (HR = 1.512, 95% CI = 1.127–2.029, P = 0.006).

Conclusions/Significance

Our data suggest that AP-2α plays an important role in tumor progression and that reduced AP-2α expression independently predicts an unfavorable prognosis in gastric adenocarcinoma patients.  相似文献   

15.
Lu L  Wu Y  Qi Q  Liu C  Gan W  Zhu J  Li H  Lin X 《PloS one》2012,7(4):e34895

Background

Previous studies have identified that variants in peroxisome proliferator-activated receptor PPAR-δ (PPARD), a target gene of vitamin D, were significantly associated with fasting glucose and insulin sensitivity in European populations. This current study sought to determine (1) whether the genetic associations of PPARD variants with type 2 diabetes and its related traits could be replicated in Chinese Han population, and (2) whether the associations would be modified by the effect of vitamin D status.

Methods and Findings

We genotyped 9 tag single nucleotide polymorphisms (SNPs) that cover the gene of PPARD (rs2267664, rs6902123, rs3798343, rs2267665, rs2267668, rs2016520, rs2299869, rs1053049, and rs9658056) and tested their associations with type 2 diabetes risk and its related traits, including fasting glucose, insulin and HbA1c in 3,210 Chinese Hans. Among the 9 PPARD tag SNPs, rs6902123 was significantly associated with risk of type 2 diabetes (odds ratio 1.75 [95%CI 1.22–2.53]; P = 0.0025) and combined type 2 diabetes and impaired fasting glucose (IFG) (odds ratio 1.47 [95%CI 1.12–1.92]; P = 0.0054). The minor C allele of rs6902123 was associated with increased levels of fasting glucose (P = 0.0316) and HbA1c (P = 0.0180). In addition, we observed that vitamin D modified the effect of rs6902123 on HbA1c (P for interaction = 0.0347).

Conclusions/Significance

Our findings demonstrate that common variants in PPARD contribute to the risk of type 2 diabetes in Chinese Hans, and provided suggestive evidence of interaction between 25(OH)D levels and PPARD-rs6902123 on HbA1c.  相似文献   

16.

Background

In type 1 von Willebrand Disease (VWD) patients, von Willebrand Factor (VWF) levels and bleeding symptoms are highly variable. Recently, the association between genetic variations in STXBP5 and STX2 with VWF levels has been discovered in the general population. We assessed the relationship between genetic variations in STXBP5 and STX2, VWF levels, and bleeding phenotype in type 1 VWD patients.

Methods

In 158 patients diagnosed with type 1 VWD according to the current ISTH guidelines, we genotyped three tagging-SNPs in STXBP5 and STX2 and analyzed their relationship with VWF:Ag levels and the severity of the bleeding phenotype, as assessed by the Tosetto bleeding score.

Results

In STX2, rs7978987 was significantly associated with VWF:Ag levels (bèta-coefficient (β) = −0.04 IU/mL per allele, [95%CI −0.07;−0.001], p = 0.04) and VWF:CB activity (β = −0.12 IU/mL per allele, [95%CI −0.17;−0.06], p<0.0001). For rs1039084 in STXBP5 a similar trend with VWF:Ag levels was observed: (β = −0.03 IU/mL per allele [95% CI −0.06;0.003], p = 0.07). In women, homozygous carriers of the minor alleles of both SNPs in STXBP5 had a significantly higher bleeding score than homozygous carriers of the major alleles. (Rs1039084 p = 0.01 and rs9399599 p = 0.02).

Conclusions

Genetic variation in STX2 is associated with VWF:Ag levels in patients diagnosed with type 1 VWD. In addition, genetic variation in STXBP5 is associated with bleeding phenotype in female VWD patients. Our findings may partly explain the variable VWF levels and bleeding phenotype in type 1 VWD patients.  相似文献   

17.

Hypothesis

Serum- and Glucocorticoid-inducible Kinase 1 (SGK1) is involved in the regulation of insulin secretion and may represent a candidate gene for the development of type 2 diabetes mellitus in humans.

Methods

Three independent European populations were analyzed for the association of SGK1 gene (SGK) variations and insulin secretion traits. The German TUEF project provided the screening population (N = 725), and four tagging SNPs (rs1763527, rs1743966, rs1057293, rs9402571) were investigated. EUGENE2 (N = 827) served as a replication cohort for the detected associations. Finally, the detected associations were validated in the METSIM study, providing 3798 non-diabetic and 659 diabetic (type 2) individuals.

Results

Carriers of the minor G allele in rs9402571 had significantly higher C-peptide levels in the 2 h OGTT (+10.8%, p = 0.04; dominant model) and higher AUCC-Peptide/AUCGlc ratios (+7.5%, p = 0.04) compared to homozygous wild type TT carriers in the screening population. As interaction analysis for BMI×rs9402571 was significant (p = 0.04) for the endpoint insulin secretion, we stratified the TUEF cohort for BMI, using a cut off point of BMI = 25. The effect on insulin secretion only remained significant in lean TUEF participants (BMI≤25). This finding was replicated in lean EUGENE2 rs9402571 minor allele carriers, who had a significantly higher AUCIns/AUCGlc (TT: 226±7, XG: 246±9; p = 0.019). Accordingly, the METSIM trial revealed a lower prevalence of type 2 diabetes (OR: 0.85; 95%CI: 0.71–1.01; p = 0.065, dominant model) in rs9402571 minor allele carriers.

Conclusions

The rs9402571 SGK genotype associates with increased insulin secretion in lean non-diabetic TUEF/EUGENE2 participants and with lower diabetes prevalence in METSIM. Our study in three independent European populations supports the conclusion that SGK variability affects diabetes risk.  相似文献   

18.
Low birth weight has been associated with reduced hand grip strength, which is a marker of future physical function and disease risk. The aim of this study was to apply a twin pair approach, using both ‘individual’ data and ‘within-pair’ differences, to investigate the influence of birth weight on hand grip strength and whether this association may be mediated through fat free mass (FFM). Participants from the East Flanders Prospective Twin Survey were included if born without congenital abnormalities, birth weight >500 g and ≥22 weeks of gestation. Follow up in adulthood (age: 18–34 year), included anthropometric measures and hand grip (n = 783 individuals, n = 326 same-sex twin pairs). Birth weight was positively associated with hand grip strength (β = 2.60 kg, 95% CI 1.52, 3.67, p<0.001) and FFM (β = 4.2, 95% CI 3.16, 5.24, p<0.001), adjusted for gestational age, sex and adult age. Using ‘within-pair’ analyses, the birth weight hand grip association was significant in DZ men only (β = 5.82, 95% CI 0.67, 10.97, p = 0.028), which was attenuated following adjustment for FFM. Within-pair birth weight FFM associations were most pronounced in DZ men (β = 11.20, 95% CI 7.18, 15.22, p<0.001). Our ‘individual’ analyses show that higher birth weight is associated with greater adult hand grip strength, which is mediated through greater adult FFM. The ‘within-pair’ analyses confirm this observation and furthermore show that, particularly in men, genetic factors may in part explain this association, as birth weight differences in DZ men result in greater differences in adult strength and FFM.  相似文献   

19.

Background

Single nucleotide polymorphisms (SNPs) in genes encoding the components involved in the hypothalamic pathway may influence weight gain and dietary factors may modify their effects.

Aim

We conducted a case-cohort study to investigate the associations of SNPs in candidate genes with weight change during an average of 6.8 years of follow-up and to examine the potential effect modification by glycemic index (GI) and protein intake.

Methods and Findings

Participants, aged 20–60 years at baseline, came from five European countries. Cases (‘weight gainers’) were selected from the total eligible cohort (n = 50,293) as those with the greatest unexplained annual weight gain (n = 5,584). A random subcohort (n = 6,566) was drawn with the intention to obtain an equal number of cases and noncases (n = 5,507). We genotyped 134 SNPs that captured all common genetic variation across the 15 candidate genes; 123 met the quality control criteria. Each SNP was tested for association with the risk of being a ‘weight gainer’ (logistic regression models) in the case-noncase data and with weight gain (linear regression models) in the random subcohort data. After accounting for multiple testing, none of the SNPs was significantly associated with weight change. Furthermore, we observed no significant effect modification by dietary factors, except for SNP rs7180849 in the neuromedin β gene (NMB). Carriers of the minor allele had a more pronounced weight gain at a higher GI (P = 2×10−7).

Conclusions

We found no evidence of association between SNPs in the studied hypothalamic genes with weight change. The interaction between GI and NMB SNP rs7180849 needs further confirmation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号