首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aim  Middle East brown bears ( Ursus arctos syriacus Hemprich and Ehrenberg, 1828) are presently on the edge of extinction. However, little is known of their genetic diversity. This study investigates that question as well as that of Middle East brown bear relationships to surrounding populations of the species.
Location  Middle East region of south-western Asia.
Methods  We performed DNA analyses on 27 brown bear individuals. Twenty ancient bone samples (Late Pleistocene to 20th century) from natural populations and seven present-day samples obtained from captive individuals were analysed.
Results  Phylogenetic analyses of the mitochondrial sequences obtained from seven ancient specimens identify three distinct maternal clades, all unrelated to one recently described from North Africa. Brown bears from Iran exhibit striking diversity (three individuals, three haplotypes) and form a unique clade that cannot be linked to any extant one. Individuals from Syria belong to the Holarctic clade now observed in Eastern Europe, Turkey, Japan and North America. Specimens from Lebanon surprisingly appear as tightly linked to the clade of brown bears now in Western Europe. Moreover, we show that U. a. syriacus in captivity still harbour haplotypes closely linked to those found in ancient individuals.
Main conclusion  This study brings important new information on the genetic diversity of brown bear populations at the crossroads of Europe, Asia and Africa. It reveals a high level of diversity in Middle East brown bears and extends the historical distribution of the Western European clade to the East. Our analyses also suggest the value of a specific breeding programme for captive populations.  相似文献   

2.
The cave bear, Ursus spelaeus, represents one of the most frequently found paleontological remains from the Pleistocene in Europe. The species has always been confined to Europe and was contemporary with the brown bear, Ursus arctos. Relationships between the cave bear and the two lineages of brown bears defined in Europe, as well as the origins of the two species, remain controversial, mainly due to the wide morphological diversity of the fossil remains, which makes interpretation difficult [1, 2]. Sequence analysis of ancient DNA is a useful tool for resolving such problems because it provides an independent source of data [3]. We previously amplified a short DNA fragment of the mitochondrial DNA control region (mt control region) of a 40,000-year-old Ursus spelaeus sample [4]. In this paper, we describe the DNA analysis of two mtDNA regions, the control region and the cytochrome b gene. Control region sequences were obtained from ten samples of cave bears ranging from 130,000 to 20,000 years BP, and one particularly well-conserved sample gave a complete cyt b sequence. Our data demonstrate that cave bears split largely before the lineages of brown bears around 1.2 million years ago. Given its abundance, its wide distribution in space and time, and its large morphological diversity, the cave bear is a promising model for direct observation of the evolution of sequences throughout time, extinction periods, and the differentiation of populations shaped by climatic fluctuations during the Pleistocene.  相似文献   

3.
The brown bear has proved a useful model for studying Late Quaternary mammalian phylogeography. However, information is lacking from northern continental Eurasia, which constitutes a large part of the species' current distribution. We analysed mitochondrial DNA sequences (totalling 1943 bp) from 205 bears from northeast Europe and Russia in order to characterize the maternal phylogeography of bears in this region. We also estimated the formation times of the sampled brown bear lineages and those of its extinct relative, the cave bear.
Four closely related haplogroups belonging to a single mitochondrial subclade were identified in northern continental Eurasia. Several haplotypes were found throughout the whole study area, while one haplogroup was restricted to Kamchatka. The haplotype network, estimated divergence times and various statistical tests indicated that bears in northern continental Eurasia recently underwent a sudden expansion, preceded by a severe bottleneck. This brown bear population was therefore most likely founded by a small number of bears that were restricted to a single refuge area during the last glacial maximum. This pattern has been described previously for other mammal species and as such may represent one general model for the phylogeography of Eurasian mammals. Bayesian divergence time estimates are presented for different brown and cave bear clades. Moreover, our results demonstrate the extent of substitution rate variation occurring throughout the phylogenetic tree, highlighting the need for appropriate calibration when estimating divergence times.  相似文献   

4.
In human‐dominated landscapes, connectivity is crucial for maintaining demographically stable mammalian populations. Here, we provide a comprehensive noninvasive genetic study for the brown bear population in the Hellenic Peninsula. We analyze its population structuring and connectivity, estimate its population size throughout its distribution, and describe its phylogeography in detail for the first time. Our results, based on 150 multilocus genotypes and on 244‐bp sequences of the mtDNA control region, show the population is comprised by three highly differentiated genetic clusters, consistent with geographical populations of Pindos, Peristeri, and Rhodope. By detecting two male bears with Rhodopean ancestry in the western demes, we provide strong evidence for the ongoing genetic connectivity of the geographically fragmented eastern and western distributions, which suggests connectivity of the larger East Balkan and Pindos‐Dinara populations. Total effective population size (N e) was estimated to be 199 individuals, and total combined population size (N C) was 499, with each cluster showing a relatively high level of genetic variability, suggesting that migration has been sufficient to counteract genetic erosion. The mtNDA results were congruent with the microsatellite data, and the three genetic clusters were matched predominantly with an equal number of mtDNA haplotypes that belong to the brown bear Western mitochondrial lineage (Clade 1), with two haplotypes being globally new and endemic. The detection of a fourth haplotype that belongs to the Eastern lineage (Clade 3a1) in three bears from the western distribution places the southernmost secondary contact zone between the Eastern and Western lineages in Greece and generates new hypotheses about postglacial maxima migration routes. This work indicates that the genetic composition and diversity of Europe''s low‐latitude fringe population are the outcome of ancient and historical events and highlight its importance for the connectivity and long‐term persistence of the species in the Balkans.  相似文献   

5.
High‐resolution, male‐inherited Y‐chromosomal markers are a useful tool for population genetic analyses of wildlife species, but to date have only been applied in this context to relatively few species besides humans. Using nine Y‐chromosomal STRs and three Y‐chromosomal single nucleotide polymorphism markers (Y‐SNPs), we studied whether male gene flow was important for the recent recovery of the brown bear (Ursus arctos) in Northern Europe, where the species declined dramatically in numbers and geographical distribution during the last centuries but is expanding now. We found 36 haplotypes in 443 male extant brown bears from Sweden, Norway, Finland and northwestern Russia. In 14 individuals from southern Norway from 1780 to 1920, we found two Y chromosome haplotypes present in the extant population as well as four Y chromosome haplotypes not present among the modern samples. Our results suggested major differences in genetic connectivity, diversity and structure between the eastern and the western populations in Northern Europe. In the west, our results indicated that the recovered population originated from only four male lineages, displaying pronounced spatial structuring suggestive of large‐scale population size increase under limited male gene flow within the western subpopulation. In the east, we found a contrasting pattern, with high haplotype diversity and admixture. This first population genetic analysis of male brown bears shows conclusively that male gene flow was not the main force of population recovery.  相似文献   

6.
We analysed 33 brown bears from the Romanian Carpathians and the Italian Apennines at sequences of the mitochondrial control region and nine polymorphic microsatellite loci with regard to genetic variability and haplotype distribution. The Italian brown bears were monomorphic for mtDNA sequences. The Romanian bears yielded the highest variability found so far in this species. Haplotypes of both previously identified mtDNA lineages (western and eastern) were found in Romania. In the eastern part of the Carpathians western and eastern haplotypes occurred sympatrically, the bears from the western part of the mountain range only exhibited western-type sequences. This pattern provides evidence of a mitochondrial phylogeographic break in the distribution of the eastern lineage within the Romanian Carpathians. Conservation implications of this finding are discussed.  相似文献   

7.
An analysis of polymorphism of the fragment of the control region of mitochondrial DNA of 53 tissue samples of the brown bear Ursus arctos from several regions of the eastern part of Russia was carried out. It was found that most of the described haplotypes belong to cluster 3a, the most common in Eurasia, and do not form regionally specific haplogroups. However, among the bears from Western and Eastern Siberia, as well as the island of Kunashir, three haplotypes were identified, which are close to the haplogroup typical of Eastern Hokkaido bears. The assumption was made of the existence in Siberia and the Far East of one or more Pleistocene refugia.  相似文献   

8.
The European brown bear (Ursus arctos) shows a particular phylogeography that has been used to illustrate the model for contraction-expansion dynamics related to glacial refugia in Southern European peninsulas. Recent studies, however, have nuanced the once generally accepted paradigm, indicating the existence of cryptic refugia for some species further north. In this paper we collected available data on chronology and mitochondrial haplotypes from Western European brown bears, adding new sequences from present day individuals from the Cantabrian (North Iberia) area, in order to reconstruct the dynamics of the species in the region. Both genetics and chronology show that the Iberian Pleistocene lineages were not the direct ancestors of the Holocene ones, the latter entering the Peninsula belatedly (around 10,000 years BP) with respect to other areas such as the British Isles. We therefore propose the existence of a cryptic refugium in continental Atlantic Europe, from where the bears would expand as the ice receded. The delay in the recolonization of the Iberian Peninsula could be due to the orographic characteristics of the Pyrenean-Cantabrian region and to the abundant presence of humans in the natural entrance to the Peninsula.  相似文献   

9.
The current phylogeographic pattern of European brown bears (Ursus arctos) has commonly been explained by postglacial recolonization out of geographically distinct refugia in southern Europe, a pattern well in accordance with the expansion/contraction model. Studies of ancient DNA from brown bear remains have questioned this pattern, but have failed to explain the glacial distribution of mitochondrial brown bear clades and their subsequent expansion across the European continent. We here present 136 new mitochondrial sequences generated from 346 remains from Europe, ranging in age between the Late Pleistocene and historical times. The genetic data show a high Late Pleistocene diversity across the continent and challenge the strict confinement of bears to traditional southern refugia during the last glacial maximum (LGM). The mitochondrial data further suggest a genetic turnover just before this time, as well as a steep demographic decline starting in the mid‐Holocene. Levels of stable nitrogen isotopes from the remains confirm a previously proposed shift toward increasing herbivory around the LGM in Europe. Overall, these results suggest that in addition to climate, anthropogenic impact and inter‐specific competition may have had more important effects on the brown bear's ecology, demography, and genetic structure than previously thought.  相似文献   

10.
We used the widely distributed freshwater fish, perch (Perca fluviatilis), to investigate the postglacial colonization routes of freshwater fishes in Europe. Genetic variability within and among drainages was assessed using mitochondrial DNA (mtDNA) D-loop sequencing and RAPD markers from 55 populations all over Europe as well as one Siberian population. High level of structuring for both markers was observed among drainages and regions, while little differentiation was seen within drainages and regions. Phylogeographic relationships among European perch were determined from the distribution of 35 mtDNA haplotypes detected in the samples. In addition to a distinct southern European group, which includes a Greek and a southern Danubian population, three major groups of perch are observed: the western European drainages, the eastern European drainages including the Siberian population, and Norwegian populations from northern Norway, and western side of Oslofjord. Our data suggest that present perch populations in western and northern Europe were colonized from three main refugia, located in southeastern, northeastern and western Europe. In support of this, nested cladistic analysis of mtDNA clade and nested clade distances suggested historical range expansion as the main factor determining geographical distribution of haplotypes. The Baltic Sea has been colonized from all three refugia, and northeastern Europe harbours descendants from both eastern European refugia. In the upper part of the Danube lineages from the western European and the southern European refugia meet. The southern European refugium probably did not contribute to the recolonization of other western and northern European drainages after the last glaciation. However, phylogenetic analyses suggest that the southern European mtDNA lineage is the most ancient, and therefore likely to be the founder of all present perch lineages. The colonization routes used by perch probably also apply to other freshwater species with similar distribution patterns.  相似文献   

11.
1. At the end of the Last Glacial Maximum brown bears Ursus arctos recolonized the glacial landscape of Central and Northern Europe faster than all other carnivorous mammal species of the Holocene fauna. Ursus arctos was recorded in Northern Europe from the beginning of the Late-Glacial. The recolonization of northern Central Europe may have taken place directly after the maximum glaciation. The distribution of the brown bear was restricted to glacial refugia only during the Last Glacial Maximum, for probably no more than 10 000 years. 2. Genetic analyses have suggested three glacial refugia for the brown bear: the Iberian Peninsula, the Italian Peninsula and the Balkans. Subfossil records of Ursus arctos from north-western Moldova as well as reconstructed environmental conditions during the Last Glacial Maximum in this area suggest to us a fourth glacial refuge for the brown bear. Because of its connection to the Carpathians, we designate this as the ‘Carpathian refuge’. 3. Due to the low genetic distance between brown bears of northern Norway, Finland, Estonia, north-eastern Russia and the northern Carpathians (the so-called eastern lineage), the Carpathians were considered the geographical origin of the recolonization of these regions. During the recolonization of northern Europe the brown bear probably reached these areas rapidly from the putative Carpathian refuge.  相似文献   

12.
In stark contrast to other species within the Salmonidae family, phylogeographic information on European grayling, Thymallus thymallus, is virtually nonexistent. In this paper, we utilized mitochondrial DNA polymerase chain reaction-restriction fragment length polymorphism (mtDNA PCR-RFLP) and sequence variation to infer the postglacial dispersal routes of T. thymallus into and within northern Europe, and to locate geographically, potential evolutionarily distinct populations. Mitochondrial analyses revealed a total of 27 T. thymallus haplotypes which clustered into three distinct lineages. Average pairwise interlineage divergence was four and nine times higher than average intralineage divergence for RFLP and sequence data, respectively. Two European grayling individuals from the easternmost sample in Russia exhibited haplotypes more genetically diverged from any T. thymallus haplotype than T. arcticus haplotype, and suggested that hybridization/introgression zone of these two sister species may extend much further west than previously thought. Geographic division of the lineages was generally very clear with northern Europe comprising of two genetically differentiated areas: (i) Finland, Estonia and north-western Russia; and (ii) central Germany, Poland and western Fennoscandia. Average interpopulation divergence in North European T. thymallus was 10 times higher than that observed in a recent mtDNA study of North American T. arcticus. We conclude that (i) North European T. thymallus populations have survived dramatic Pleistocene temperature oscillations and originate from ancient eastern and central European refugia; (ii) genetic divergence of population groups within northern Europe is substantial and geographically distinct; and (iii) the remainder of Europe harbours additional differentiated assemblages that likely descend from a Danubian refugium. These findings should provide useful information for developing appropriate conservation strategies for European grayling and exemplify a case with a clear need for multinational co-operation for managing and conserving biodiversity.  相似文献   

13.

Aim

Brown bear populations in Scandinavia show a strong mitochondrial DNA (mtDNA) phylogeographic structure and low diversity relative to other parts of Europe. Identifying the timing and origins of this mtDNA structure is important for conservation programs aimed at restoring populations to a natural state. Therefore, it is essential to identify whether contemporary genetic structure is linked to post‐glacial recolonisation from divergent source populations or an artefact of demographic impacts during recent population bottlenecks. We employed ancient DNA techniques to investigate the timing and potential causes of these patterns.

Location

Scandinavia and Europe.

Methods

Ancient mtDNA sequences from 20 post‐glacial Scandinavian bears were used to investigate phylogeographic structure and genetic diversity over the last 6000 years. MtDNA from 19 Holocene Norwegian bears was compared with 499 sequences from proximate extant populations in Sweden, Finland, Estonia and western Russia. A single mtDNA sequence from a Holocene Denmark sample was compared with 149 ancient and modern bears from Western Europe.

Results

All nineteen Holocene Norwegian samples are identical to or closely related to the most common mtDNA haplotype found in northern Europe today. MtDNA diversity was low and not significantly different from extant populations in northern Europe. In Denmark, we identified a single mtDNA haplotype that is previously unrecorded from Scandinavia.

Main conclusions

The current discrete phylogeographic structure and lack of mtDNA diversity in Scandinavia is attributed to serial founder effects during post‐glacial recolonisation from divergent source populations rather than an artefact of recent anthropogenic impacts. In contrast to previous interpretations, the recolonisation of southern Scandinavia may not have been limited to bears from a single glacial refugium. Results highlight the importance of conserving the long‐term evolutionary separation between northern and southern populations and identify southern Scandinavia as an important reservoir of mtDNA diversity that is under threat in other parts of Europe.
  相似文献   

14.
Aim We analysed the population genetics of the brown hare (Lepus europaeus) in order to test the hypothesis that this species migrated into central Europe from a number of late glacial refugia, including some in Asia Minor. Location Thirty‐three localities in Greece, Bulgaria, Italy, Croatia, Serbia, Poland, Switzerland, Austria, France, Germany, the Netherlands, Spain, the United Kingdom, Turkey and Israel. Methods In total, 926 brown hares were analysed for mitochondrial DNA (mtDNA) variation by restriction fragment length polymorphism (RFLP) performed on polymerase chain reaction‐amplified products spanning cytochrome b (cyt b)/control region (CR), cytochrome oxidase I (COI) and 12S–16S rRNA. In addition, sequence analysis of the mtDNA CR‐I region was performed on 69 individuals, and the data were compared with 137 mtDNA CR‐I sequences retrieved from GenBank. Results The 112 haplotypes detected were partitioned into five phylogeographically well‐defined major haplogroups, namely the ‘south‐eastern European type haplogroup’ (SEEh), ‘Anatolian/Middle Eastern type haplogroup’ (AMh), ‘European type haplogroup, subgroup A’ (EUh‐A), ‘European type haplogroup, subgroup B’ (EUh‐B) and ‘Intermediate haplogroup’ (INTERh). Sequence data retrieved from GenBank were consistent with the haplogroups determined in this study. In Bulgaria and north‐eastern Greece numerous haplotypes of all five haplogroups were present, forming a large overlap zone. Main conclusions The mtDNA results allow us to infer post‐glacial colonization of large parts of Europe from a late glacial/early Holocene source population in the central or south‐central Balkans. The presence of Anatolian/Middle Eastern haplotypes in the large overlap zone in Bulgaria and north‐eastern Greece reveals gene flow from Anatolia to Europe across the late Pleistocene Bosporus land‐bridge. Although various restocking operations could be partly responsible for the presence of unexpected haplotypes in certain areas, we nevertheless trace a strong phylogeographic signal throughout all regions under study. Throughout Europe, mtDNA results indicate that brown hares are not separated into discernable phyletic groups.  相似文献   

15.
We analyzed mitochondrial DNA polymorphisms to search for evidence of the genetic structure and patterns of admixture in 124 populations (N = 1407 trees) across the distribution of Scots pine in Europe and Asia. The markers revealed only a weak population structure in Central and Eastern Europe and suggested postglacial expansion to middle and northern latitudes from multiple sources. Major mitotype variants include the remnants of Scots pine at the north-western extreme of the distribution in the Scottish Highlands; two main variants (western and central European) that contributed to the contemporary populations in Norway and Sweden; the central-eastern European variant present in the Balkan region, Finland, and Russian Karelia; and a separate one common to most eastern European parts of Russia and western Siberia. We also observe signatures of a distinct refugium located in the northern parts of the Black Sea basin that contributed to the patterns of genetic variation observed in several populations in the Balkans, Ukraine, and western Russia. Some common haplotypes of putative ancient origin were shared among distant populations from Europe and Asia, including the most southern refugial stands that did not participate in postglacial recolonization of northern latitudes. The study indicates different genetic lineages of the species in Europe and provides a set of genetic markers for its finer-scale population history and divergence inference.  相似文献   

16.
Cave bears (Ursus spelaeus) existed in Europe and western Asiauntil the end of the last glaciation some 10,000 years ago.To investigate the genetic diversity, population history, andrelationship among different cave bear populations, we havedetermined mitochondrial DNA sequences from 12 cave bears thatrange in age from about 26,500 to at least 49,000 years andoriginate from nine caves. The samples include one individualfrom the type specimen population, as well as two small-sizedhigh-Alpine bears. The results show that about 49,000 yearsago, the mtDNA diversity among cave bears was about 1.8-foldlower than the current species-wide diversity of brown bears(Ursus arctos). However, the current brown bear mtDNA gene poolconsists of three clades, and cave bear mtDNA diversity is similarto the diversity observed within each of these clades. The resultsalso show that geographically separated populations of the high-Alpinecave bear form were polyphyletic with respect to their mtDNA.This suggests that small size may have been an ancestral traitin cave bears and that large size evolved at least twice independently.  相似文献   

17.
The brown hareLepus europaeus Pallas, 1778 occurs naturally in central Eurasia, but has been introduced to parts of northern Europe, South- and North America, Australia and New Zealand. Brown hares were introduced to Sweden from central Europe for hunting purposes during the 19th century. We investigated how the human--mediated brown hare colonisation of Sweden is reflected in the amount of genetic variation present by assessing variation and composition of mitochondrial DNA (mtDNA) lineages among Swedish brown hares. MtDNA from a total of 40 brown hare specimens from 15 localities were analysed for Restriction Fragment Length Polymorphisms. The haplotype diversity is surprisingly high (0.893 ± 0.002) when compared to the mtDNA diversity among brown hares on the European continent as well as to other mammalian species. Admixture of haplotypes from different source populations combined with a reduced effect of random genetic drift and a relaxed selection pressure due to rapid population growth after introduction are mechanisms that are likely to account for the observed high mtDNA haplotype diversity.  相似文献   

18.
To illustrate phylogeography of red deer (Cervus elaphus) populations of Xinjiang, we determined their mitochondrial DNA (mtDNA) control region sequences, and then investigated geographic variations and phylogenetic relationships between Xinjiang populations and other populations from Asia, Europe, and North America. The C. elaphus mtDNA control region shared different copy numbers of tandem repeats of 38 to 43-bp motifs which clearly distinguished the Western lineage from the Eastern lineage of this species in Eurasia. The western lineage comprised the Tarim populations from southern Xinjiang and the European populations, all of which had four copies of the motifs. By contrast, the Eastern lineage consisted of populations from northern Xinjiang (Tianshan and Altai Mountains), other Asian areas (Alashan, Gansu, Tibet, Mongolia, and northeastern China), and North America, all of which shared six copies of the motifs. MtDNA phylogenetic trees showed that there are two major clusters of haplotypes which referred to the Western and Eastern lineages, and that subgroupings of haplotypes in each cluster were congruent with their geographic distributions. The present study revealed that a boundary separating the Western lineage from the Eastern lineage occurs between Tarim Basin and Tianshan Mountains in Xinjiang. Meanwhile, North American populations were genetically closer to those of northern Xinjiang, northeastern China, and Mongolia, supporting that C. elaphus immigrated from northeastern Eurasia to North America through the glacier-induced land-bridge (Beringia) which had formed between the two continents after Late Pleistocene.  相似文献   

19.
Models for the development of species distribution in Europe typically invoke restriction in three temperate Mediterranean refugia during glaciations, from where recolonization of central and northern Europe occurred. The brown bear, Ursus arctos, is one of the taxa from which this model is derived. Sequence data generated from brown bear fossils show a complex phylogeographical history for western European populations. Long-term isolation in separate refugia is not required to explain our data when considering the palaeontological distribution of brown bears. We propose continuous gene flow across southern Europe, from which brown bear populations expanded after the last glaciation.  相似文献   

20.
Large carnivores were persecuted to near extinction during the last centuries, but have now recovered in some countries. It has been proposed earlier that the recovery of the Northern European brown bear is supported by migration from Russia. We tested this hypothesis by obtaining for the first time continuous sampling of the whole Finnish bear population, which is located centrally between the Russian and Scandinavian bear populations. The Finnish population is assumed to experience high gene flow from Russian Karelia. If so, no or a low degree of genetic differentiation between Finnish and Russian bears could be expected. We have genotyped bears extensively from all over Finland using 12 validated microsatellite markers and compared their genetic composition to bears from Russian Karelia, Sweden, and Norway. Our fine masked investigation identified two overlapping genetic clusters structured by isolation-by-distance in Finland (pairwise FST = 0.025). One cluster included Russian bears, and migration analyses showed a high number of migrants from Russia into Finland, providing evidence of eastern gene flow as an important driver during recovery. In comparison, both clusters excluded bears from Sweden and Norway, and we found no migrants from Finland in either country, indicating that eastern gene flow was probably not important for the population recovery in Scandinavia. Our analyses on different spatial scales suggest a continuous bear population in Finland and Russian Karelia, separated from Scandinavia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号