首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxygen-evolving complex (OEC) of photosystem II (PS II) consists of at least three extrinsic membrane-associated protein subunits, OE33, OE23, and OE17, with associated Mn2+, Ca2+, and Cl- ions. These subunits are bound to the lumen side of PS II core proteins embedded in the thylakoid membrane. Our experiments reveal that a significant fraction of each subunit is normally present in unassembled pools within the thylakoid lumen. This conclusion was supported by immunological detection of free subunits after freshly isolated pea thylakoids were fractionated with low levels of Triton X-100. Plastocyanin, a soluble lumen protein, was completely released from the lumen by 0.04% Triton X-100. This gentle detergent treatment also caused the release from the thylakoids of between 10 and 20%, 40 and 60%, and 15 and 50% of OE33, OE23, and OE17, respectively. Measurements of the rates of oxygen evolution from Triton-treated thylakoids, both in the presence and absence of Ca2+, and before and after incubation with hydroquinone, demonstrated that the OEC was not dissociated by the detergent treatment. Thylakoids isolated from spinach released similar amounts of extrinsic proteins after Triton treatment. These data demonstrate that physiologically active chloroplasts contain significant pools of unassembled extrinsic OEC polypeptide subunits free in the lumen of the thylakoids.  相似文献   

2.
T. Hayakawa  S. Kanematsu  K. Asada 《Planta》1985,166(1):111-116
Thylakoid-bound superoxide dismutase (SOD; EC 1.15.1.1) was solubilized by Triton X-100 from spinach and purified to a homogeneous state. The molecular weight of thylakoid-bound SOD was 52000; the enzyme was composed of two equal subunits. Its activity was not sensitive to cyanide and hydrogen peroxide, and the isolated SOD contained Mn, but neither Fe nor Cu. Thus, the thylakoid-bound SOD is a Mn-containing enzyme. The subunit molecular weight of thylakoid Mn-SOD is the highest among Mn-SODs isolated so far, a fact which might reflect its binding to the membranes.  相似文献   

3.
Membrane-bound ribosomes of chloroplasts, isolated from pea seedlings during grana formation, can be partially liberated by 0.5 M KCl and 0.001 M puromycin. In case of mature chloroplasts, after the completion of grana formation process these agents are inefficient, and liberation of ribosomes and polyribosomes may be achieved only after solubilization of thylakoid membranes by 1% Triton X-100. Electron microscopic study of the heavy membrane fraction of young chloroplasts reveals electron-transparent membranes, containing rings and discs of thylakoids with a diameter of about 2 mum. These rings are liberated together with ribosomes under the action of 0.5 M KCl; Triton X-100 liberates equally-sized annular polyribosomes. The rings detected in chloroplast membranes at early stages of development are regarded as structures, precursor grana thylakoids, and the annular polyribosomes included into them as immediate participants of thylakoid morphogenesis.  相似文献   

4.
Metal-dependent superoxide dismutases (SOD; EC 1.15.1.1) are present in many cell compartments (mitochondria, plastids, nuclei, peroxisomes, endoplasmic reticulum, cell wall and cytosol). We have established that SOD is also localized in the central vacuole. Cyanide-sensitive Cu, Zn-SOD was found in the fraction of isolated vacuoles of red beet roots (Beta vulgaris L.). The enzyme was represented by three isoforms. Comparison of isoenzyme composition and the level of SOD activity in vacuoles, nuclei, plastids and mitochondria isolated from root cells has shown that Cu, Zn-SOD is present in vacuoles and nuclei, two SOD forms (Cu, Zn- and Fe-SOD) are present in plastids, and two SOD forms (Cu, Zn- and Mn-SOD) are present in mitochondria. Cu, Zn-SOD of organelles, unlike vacuolar Cu, Zn-SOD, had only one isoform. The level of enzyme activity from the vacuolar fraction was twice higher than the level of SOD activity from the fractions of isolated organelles. Previously it has been suggested that Cu, Zn-SOD may be localized on the vacuolar membrane or in the near-membrane space from the side of cytoplasm. Our tests have revealed the Cu, Zn-SOD activity in water-soluble extracts of isolated vacuole fractions in the absence of detergent, which may confirm localization of the enzyme inside the organelles.  相似文献   

5.
The subcellular localization of Cu,Zn-type superoxide dismutase (Cu,Zn-SOD) was investigated in rat tissues and cultured human fibroblasts. Subcellular fractionation, Nycodenz gradient centrifugation, and immunoblot analysis using specific antibodies showed that Cu,Zn-SOD was localized in cytosol, mitochondria, and peroxisomes of rat liver and brain. Treatment of highly purified mitochondria from rat liver with either Chaps or Triton X-100 released the bound Cu,Zn-SOD into supernatant fraction. Depolarization of mitochondria by inorganic phosphate and Ca(2+) released both Cu,Zn-SOD and cytochrome c from mitochondria. Digitonin also released Cu,Zn-SOD but not cytochrome c from mitochondria. Confocal immunofluorescence microscopy revealed that anti-Cu,Zn-SOD antibody in cultured human fibroblasts was found to colocalize with antibodies to Mn-SOD and PMP-70, markers of mitochondria and peroxisomes, respectively. Incubation of human Cu,Zn-SOD with purified mitochondria resulted in their association. These results indicate that Cu,Zn-SOD associates with mitochondria and peroxisomes in various cell types such as those in brain, liver, and skin.  相似文献   

6.
Progressive solubilization of spinach chloroplast thylakoids by Triton X-100 was employed to investigate the domain organization of the electron transport complexes in the thylakoid membrane. Triton/chlorophyll ratios of 1:1 were sufficient to disrupt fully the continuity of the thylakoid membrane network, but not sufficient to solubilize either photosystem I (PSI), photosystem II (PSII) or the cytochrome b6-f(Cyt b6-f) complex. Progressive with the Triton concentration increase (Triton/Chl greater than 1:1), a differential solubilization of the three electron transport complexes was observed. Solubilization of the Cyt b6-f complex from the thylakoid membrane preceded that of PSI and apparently occurred early in the solubilization of stroma-exposed segments of the chloroplast lamellae. The initial removal of chlorophyll (up to 40% of the total) occurred upon solubilization of PSI from the stroma-exposed lamella regions in which PSI is localized. The tightly appressed membrane of the grana partition regions was markedly resistant to solubilization by Triton X-100. Thus, solubilization of PSII from this membrane region was initiated only after all Cyt b6-f and PSI complexes were removed from the chloroplast lamellae. The results support the notion of extreme lateral heterogeneity in the organization of the electron transport complexes in higher plant chloroplasts and suggest a Cyt b6-f localization in the membrane of the narrow fret regions which serve as a continuum between the grana and stroma lamellae.  相似文献   

7.
Intact chloroplasts were isolated from developing first leaves of spinach. The chloroplasts were broken and separated into an extensively washed membrane (thylakoid) fraction and a soluble (stroma) fraction. The membrane fraction contained polyribosomes with properties similar to those of thylakoid-bound polyribosomes of other organisms. The distribution of mRNA for large-subunit ribulosebisphosphate carboxylase (LS) was determined by translating RNA from chloroplasts, thylakoids, and stroma in a wheat germ cell-free translation system. LS translation product was identified by immunoprecipitation with antibody to LS from spinach, electrophoresis of the immunoprecipitated product, and fluorography. At least 44% of translatable chloroplast LS-mRNA was in the washed thylakoid fraction. Thylakoid-bound LS-mRNA was in polyribosomes since LS was produced by thylakoids in an Escherichia coli cell-free translation system under conditions where initiation did not take place. Our results demonstrate that membrane-bound polyribosomes can synthesize the stroma-localized polypeptide LS, and suggest that the thylakoids may be an important site of its synthesis.  相似文献   

8.
Monospecific rabbit antibodies against the ferredoxin-NADP+ reductase binding protein of spinach thylakoids were obtained and characterized. The immunoglobulin G (IgG) fraction gave single precipitation arcs with the purified antigen or with Triton X-100 extracts of thylakoids or the reductase binding protein complex. Antibodies against the flavoprotein behave similarly. Both antibodies agglutinated thylakoids and precipitated the diaphorase activity of a Triton X-100 extract of these membranes. Isolated Fab fragments of the IgG anti-binding protein inhibited NADP+ photoreduction in a time- and Fab concentration-dependent manner. The presence of ferredoxin diminished the rate of inhibition. In the light, the inactivation rate was higher than in dark and this effect was abolished in the presence of uncouplers. These results suggest that the binding protein is protruding from the thylakoids and could be sensing the proton gradient.  相似文献   

9.
The effect in vivo of high nutrient levels of copper (240 micromolar) on the activity of different metalloenzymes containing Cu, Mn, Fe, and Zn, distributed in chloroplasts, peroxisomes, and mitochondria, was studied in leaves of two varieties of Pisum sativum L. plants with different sensitivity to copper. The metalloenzymes studied were: cytochrome c oxidase, Mn-superoxide dismutase (Mn-SOD) and Cu,Zn-superoxide dismutase I (Cu,Zn-SOD I), for mitochondria; catalase and Mn-SOD, for peroxisomes; and isozyme Cu,Zn-SOD II for chloroplasts. The activity of mitochondrial SOD isozymes (Mn-SOD and Cu,Zn-SOD I) was very similar in Cu-tolerant and Cu-sensitive plants, whereas cytochrome c oxidase was lower in Cu-sensitive plants. Chloroplastid Cu,Zn-SOD activity was the same in the two plant varieties. In contrast, the peroxisomal Mn-SOD activity was considerably higher in Cu-tolerant than in Cu-sensitive plants, and the activity of catalase was also increased in peroxisomes of Cu-tolerant plants. The higher activities of these peroxisomal active oxygen-related enzymes in Cu-tolerant plants suggest the involvement of reactive oxygen intermediates (O2, OH) in the mechanism of Cu lethality, and also imply a function for peroxisomal Mn-SOD in the molecular mechanisms of plant tolerance to Cu in Pisum sativum L.  相似文献   

10.
The subcellular localization of superoxide dismutase (SOD; EC. 1.15.1.1) was studied in leaves of two ureide-producing leguminous plants ( Phaseolus vulgaris L. cv. Contender and Vigna unguiculata [L.] Walp). In leaves of Vigna and Phaseolus , three superoxide dismutases were found, an Mn-SOD and two Cu, Zn-containing SODs (I and II). Chloroplasts, mitochondria, and peroxisomes were purified by differential and density-gradient centrifugation using either Percoll or sucrose gradients. The yields obtained in intact chloroplasts and peroxisomes from Vigna were considerably higher than those achieved for Phaseolus . Purified chloroplasts only contained the Cu, Zn-SOD II isozyme, but in mitochondria both Mn-SOD and Cu, Zn-SOD I isozymes were present. In purified peroxisomes no SOD activity was detected. The absence of SOD activity in leaf peroxisomes from Vigna contrasts with results reported for the amide-metabolizing legume Pisum sativum L. where the occurrence of Mn-SOD was demonstrated in leaf peroxisomes (del Río et al. 1983. Planta 158: 216–224; Sandalio et al. 1987. Plant Sci. 51: 1–8). This suggests that in leaf peroxisomes from Vigna plants the generation of O2- radicals under normal conditions probably does not take place.  相似文献   

11.
氯化钠胁迫下嫁接黄瓜叶片SOD和CAT mRNA基因表达及其活性   总被引:1,自引:0,他引:1  
研究了NaCl胁迫下嫁接和自根黄瓜叶片Cu/Zn-SOD、Mn-SOD和CAT mRNA的表达与其酶活性变化及其MDA含量和电解质渗漏率变化.结果表明:在NaCl胁迫条件下,嫁接黄瓜叶片Cu/Zn-SOD mRNA、Mn-SOD mRNA和CAT mRNA的相对表达量均高于自根黄瓜,SOD、Cu/Zn-SOD、Mn-SOD和CAT活性也均高于自根黄瓜,说明与自根黄瓜相比,嫁接黄瓜叶片较高的Cu/Zn-SOD mRNA、Mn-SOD mRNA和CAT mRNA相对表达量是其维持较高Cu/Zn-SOD、Mn-SOD和CAT活性的重要原因;随着NaCl胁迫时间的延长,嫁接和自根黄瓜叶片Cu/Zn-SOD- mRNA、Mn-SOD mRNA和CAT mRNA的相对表达量均呈上升趋势,但其酶活性变化并不完全一致,说明还有其他因素参与相关酶活性的调控;嫁接黄瓜叶片MDA含量和电解质渗漏率均低于自根黄瓜,说明嫁接黄瓜具有较高的活性氧清除系统,可以减少活性氧物质的危害,提高其耐盐性.  相似文献   

12.
The proteins present in the thylakoid lumen of higher plant chloroplasts have not been rigorously examined. In this communication we present a simple and rapid procedure for the isolation of the soluble proteins and extrinsic membrane proteins present in the thylakoid lumen from spinach. Our procedure involves extensive washing of the thylakoid membranes followed by Triton X-114 phase partitioning. When analyzed by one-dimensional polyacrylamide gel electrophoresis (PAGE), we obtain results which are very similar to those obtained by Kieselbach et al. using more classical methods [T. Kieselbach, A. Hagman, B. Andersson, W.P. Schroder, J. Biol. Chem. 273 (1998) 6710-6716]. About 25 major proteins are observed upon Coomassie blue staining. Upon two-dimensional isoelectric focusing-sodium dodecyl sulfate-PAGE and either Coomassie blue or silver staining, however, numerous other protein components are resolved. Our findings indicate that the total number of proteins (soluble and extrinsic membrane) present in the lumen may exceed 150.  相似文献   

13.
Rat liver was homogenized in isotonic buffer, fractionated by differential centrifugation, and then subfractionated by equilibrium sedimentation in Nycodenz gradients. Fractions were assayed for both Cu,Zn-superoxide dismutase (SOD) and Mn-SOD by exploiting the cyanide sensitivity of the former activity and by the use of specific antibodies. As expected, the cytosol and lysosomal fractions contained Cu,Zn-SOD; while the mitochondrial matrix contained Mn-SOD. In mitochondria, Cu,Zn-SOD was found in the intermembrane space and Mn-SOD in the matrix and also on the inner membrane. The Mn-SOD associated with the inner membrane was solubilized by 0.5 m NaCl. Surprisingly the intracellular membrane fraction (microsomes) contained bound Cu,Zn-SOD that could be solubilized with a detergent, and to lesser degree with 0.5 m NaCl. Both the cytosolic and mitochondrial Cu,Zn-SODs were isolated and compared. They have identical molecular mass, cyanide sensitivity, SDS sensitivity, heat stability, and chloroform + ethanol stability. Tissue from Cu,Zn-SOD knockout mice was entirely devoid of Cu,Zn-SOD; indicating that the cytosolic and the intermembrane space Cu,Zn-SODs are coded for by the same gene. The significance of this distribution of the SODs is discussed.  相似文献   

14.
The syntheses of copper, zinc-superoxide dismutase (Cu,Zn-SOD) and manganese-superoxide dismutase (Mn-SOD) in vitro were studied. Both Cu,Zn-SOD and Mn-SOD were preferentially synthesized by free polysomes. Mn-SOD was synthesized as a large precursor (26,000 daltons), which was processed to the mature size (22,500 daltons) by in vitro incubation with a rat liver mitochondrial fraction. On the other hand, Cu,Zn-SOD was synthesized as the mature size product. It was shown that Cu,Zn-SOD and Mn-SOD synthesized in vitro represented 0.018% and 0.016% of the total translation products of free polysomes, respectively.  相似文献   

15.
Nitroxyl (NO(-)) may be produced by nitric-oxide synthase and by the reduction of NO by reduced Cu,Zn-SOD. The ability of NO(-) to cause oxidations and of SOD to inhibit such oxidations was therefore explored. The decomposition of Angeli's salt (AS) produces NO(-) and that in turn caused the aerobic oxidation of NADPH, directly or indirectly. O(2) was produced concomitant with the aerobic oxidation of NADPH by AS, as evidenced by the SOD-inhibitable reduction of cytochrome c. Both Cu,Zn-SOD and Mn-SOD inhibited the aerobic oxidation of NADPH by AS, but the amounts required were approximately 100-fold greater than those needed to inhibit the reduction of cytochrome c. This inhibition was not due to a nonspecific protein effect or to an effect of those large amounts of the SODs on the rate of decomposition of AS. NO(-) caused the reduction of the Cu(II) of Cu,Zn-SOD, and in the presence of O(2), SOD could catalyze the oxidation of NO(-) to NO. The reverse reaction, i.e. the reduction of NO to NO(-) by Cu(I),Zn-SOD, followed by the reaction of NO(-) with O(2) would yield ONOO(-) and that could explain the oxidation of dichlorofluorescin (DCF) by Cu(I),Zn-SOD plus NO. Cu,Zn-SOD plus H(2)O(2) caused the HCO(3)(-)-dependent oxidation of DCF, casting doubt on the validity of using DCF oxidation as a reliable measure of intracellular H(2)O(2) production.  相似文献   

16.
研究了低温胁迫下嫁接和自根黄瓜叶片Mn-SOD、Cu/Zn-SOD和CAT mRNA基因表达和酶活性变化及其与抗冷性的关系.结果表明:低温胁迫下,嫁接与自根黄瓜叶片Cu/Zn-SOD、Mn-SOD mRNA基因相对表达量变化分别与其Cu/Zn-SOD、Mn-SOD活性变化相吻合,而CATmRNA相对表达量变化与其CAT活性变化并不一致;嫁接黄瓜叶片Cu/Zn-SOD和Mn-SOD mRNA相对表达量及SOD、Cu/Zn-SOD和Mn-SOD活性均高于自根黄瓜,MDA含量和电解质渗漏率均低于自根黄瓜,嫁接黄瓜较高的SOD基因表达量调控的较高SOD活性是其抗冷性强于自根黄瓜的主要因素;嫁接黄瓜的功能叶CAT mRNA相对表达量略高于自根黄瓜,而幼叶CAT mRNA相对表达量低于后者,但两者CAT活性差异不大,说明低温胁迫对嫁接黄瓜叶片CAT mRNA相对表达量及CAT活性的影响不大.  相似文献   

17.
Assays for superoxide dismutases (SODs) were performed using cell-free extracts of the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal (emend Trench and Blank) after separation in undenatured polyacrylamide gels. Using appropriate inhibitors (KCN and H2O2) we detected the presence of Cu/Zn-, Mn-, and Fe-SODs. In immunoblot assays, polyclonal antibodies against Fe-SOD from Escherichia coli B cross-reacted with two major polypeptides in the water-soluble fraction and one polypeptide in the Triton X-100-solubilized pellet fraction. The polypeptide common to both fractions, with a relative molecular mass of 43.5 kDa, was identified as Mn-SOD. In S. microadriaticum, FeSOD, found only in the water-soluble fraction, appears to be monomeric, with a relative molecular mass of 49.5 kDa.  相似文献   

18.
19.
The photoinduced currents in whole chloroplasts of Peperomia metallica were studied using suction electrodes and single-turnover flashes. The kinetic profile of the photocurrent contained a minor outward component (rise time, 100 micros). Local application (from the inside of the pipette) of a photosystem 2 inhibitor, DCMU, rapidly suppressed the outward current; conversely, addition of DCMU to the outer medium produced a transient stimulation of the outward component. Permeabilization of the tip-located membrane fragments with Triton X-100 eliminated the outward current, but had no significant influence on the inward current. The data suggest that the outward current originated in the tip-located nonruptured portions of the thylakoid membrane. Different involvement of two photosystems in the generation of the outward current indicates that granal thylakoids enriched with photosystem 2 are less susceptible to the rupture in the pipette tip as compared with stromal thylakoids.  相似文献   

20.
In situ location of phytoene desaturase, a key enzyme in the carotenoid biosynthesis pathway, has been investigated in chloroplasts from higher plants. For this purpose, an antiserum has been raised against the phytoene desaturase from the cyanobacterium Synechococcus PCC 7942 overexpressed in E. coli . The specifity of this antiserum was demonstrated by inhibition of the enzymatic desaturation reaction in vitro. The antiserum was further purified and immunoabsorbed with E. coli proteins. The resulting IgG-fraction was tested by western blotting against membrane proteins from chloroplasts of tobacco ( Nicotiana tabacum L. cv. Samsun) and spinach ( Spinacia oleracea L. cv. Atlanta). Apparent molecular masses of immunoreactive proteins were 62 and 64 kDa. A western blot of different membrane fractions of spinach chloroplasts (inner and outer envelopes, and thylakoids) indicated a localization of the phytoene desaturase in thylakoids. A post embedding immunogold microscopy procedure was employed. In these experiments the main labelling (79%) was associated with thylakoid membranes of tobacco chloroplasts. Of the counted colloidal gold particles, 16% were found in the stroma. Only 5% were detected in the envelope membranes. These results give clear evidence that at least the majority of phytoene desaturase molecules is localized within thylakoid membranes of higher plant chloroplasts and that the presence of the enzyme in the envelope is of minor significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号