首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A strain of Kocuria rosea with keratinolytic activity was studied. In batch culture, the optimum temperature for feather degradation, bacterial growth and protease secretion was at 40 °C. A specific growth rate of 0.17 h−1 was attained in basal medium with feathers as fermentation substrate. Under these conditions, after 36 h of incubation, biomass and caseinolytic activity reached 3.2 g/l and 0.15 U/ml, respectively. Extracellular protease secretion was associated with the exponential growth phase. In batch fermentation, feather degradation up to 51% in 72 h was obtained with a conversion yield in biomass of 0.32 g/g. No organic acids were detected in the fermentation broth in significant amount. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The production of a protease was investigated under conditions of high salinity by the moderately halophilic bacterium Halobacillus karajensis strain MA-2 in a basal medium containing peptone, beef extract, maltose and NaCl when the culture reached the stationary growth phase. Effect of various temperatures, initial pH, salt and different nutrient sources on protease production revealed that the maximum secretion occurred at 34°C, pH 8.0–8.5, and in the presence of gelatin. Replacement of NaCl by various concentrations of sodium nitrate in the basal medium also increased the protease production. The secreted protease was purified 24-fold with 68% recovery by a simple approach including a combination of acetone precipitation and Q-Sepharose ion exchange chromatography. The enzyme revealed a monomeric structure with a relative molecular mass of 36 kDa by running on SDS-PAGE. Maximum caseinolytic activity of the enzyme was observed at 50°C, pH 9.0 and 0.5 M NaCl, although at higher salinities (up to 3 M) activity still remained. The maximum enzyme activity was obtained at a broad pH range of 8.0–10.0, with 55 and 50% activity remaining at pH 6 and 11, respectively. Moreover, the enzyme activity was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), Pefabloc SC and EDTA; indicating that it probably belongs to the subclass of serine metalloproteases. These findings suggest that the protease secreted by Halobacillus karajensis has a potential for biotechnological applications from its haloalkaline properties point of view.  相似文献   

3.
An extremely halophilic Chromohalobacter sp. TVSP101 was isolated from solar salterns and screened for the production of extracellular halothermophilic protease. Identification of the bacterium was done based upon biochemical tests and the 16S rRNA sequence. The partially purified enzyme displayed maximum activity at pH 8 and required 4.5 M of NaCl for optimum proteolytic activity. In addition, this enzyme was thermophilic and active in broad range of temperature 60–80°C with 80°C as optimum. The Chromohalobacter sp. required 4 M NaCl for its optimum growth and protease secretion and no growth was observed below 1 M of NaCl. The initial pH of the medium for growth and enzyme production was in the range 7.0–8.0 with optimum at pH 7.2. Various cations at 1 mM concentration in the growth medium had no significant effect in enhancing the growth and enzyme production but 0.5 M MgCl2 concentration enhanced enzyme production. Casein or skim milk powder 1% (w/v) along with 1% peptone proved to be the best nitrogen sources for maximum biomass and enzyme production. The carbon sources glucose and glycerol repressed the protease secretion. Immobilization of whole cells in absence of NaCl proved to be useful for continuous production of halophilic protease.  相似文献   

4.
An obligatory alkalophilic Bacillus sp. P-2, which produced a thermostable alkaline protease was isolated by selective screening from water samples. Protease production at 30 °C in static conditions was highest (66 U/ml) when glucose (1% w/v) was used with combination of yeast extract and peptone (0.25% w/v, each), in the basal medium. Protease production by Bacillus sp. P-2 was suppressed up to 90% when inorganic nitrogen sources were supplemented in the production medium. Among the various agro-byproducts used in different growth systems (solid state, submerged fermentation and biphasic system), wheat bran was found to be the best in terms of maximum enhancement of protease yield as compared to rice bran and sunflower seed cake. The protease was optimally active at pH 9.6, retaining more than 80% of its activity in the pH range of 7–10. The optimum temperature for maximum protease activity was 90 °C. The enzyme was stable at 90 °C for more than 1h and retained 95 and 37% of its activity at 99 °C and 121 °C, respectively, after 1 h. The half-life of protease at 121 °C was 47 min.  相似文献   

5.
Summary Haloalkaliphilic, gram positive, aerobic, coccoid Bacillus sp. Po2 was isolated from a seawater sample in Gujarat, India. On the basis of 16s rRNA gene homology, Po2 was 95% related to Bacillus pseudofirmus. A substantial level of extracellular alkaline protease was produced by Po2, which corresponded with the growth and reached a maximum level (264 U/ml) during the stationary phase at 24 h. The production thereafter remained nearly static at optimal level till 36 h. Po2 could grow in the range of 0–20% NaCl (w/v) and pH 7–9, optimally at 10% NaCl (w/v) and pH 8. The protease production was salt-dependent and optimum production required 15% NaCl (w/v) and pH 8. Among the organic nitrogen sources, optimum growth and protease production (260 U/ml) were supported by the combination of peptone and yeast extract. However, growth and protease production were highly suppressed by the inorganic nitrogen sources used; with the exception of potassium nitrate, which supported both growth and protease production to limited extent (24 U/ml). Strong inhibition of enzyme production was observed at above 1% glucose (w/v). Wheat flour served as both carbon and nitrogen source supporting growth and protease production.  相似文献   

6.
In this study, we assessed the potential of PMR1-disrupted Pichia pastoris (Pppmr1) expressing human serum albumin and interferon alpha2b fusion protein (HSA-IFN-alpha2b) in large-scale fermentation. The high osmotic pressure of standard basal salts medium (BSM) was detrimental to the growth and viability of Pppmr1. HSA-IFN-alpha2b was secreted into a supernatant with a concentration of up to 112 mg/L after 20 h of induction and then began to decline. In vitro stability tests indicated that the disappearance of HSA-IFN-alpha2b was ascribed to proteolytic degradation. Decreasing the salt concentration of BSM medium to one quarter of the original formula improved the growth and viability of Pppmr1. As a result of reduced cell lysis and protease release, HSA-IFN-alpha2b was stable in the supernatant, which enabled a longer production phase (30 h) and a higher expression level (215 mg/L). Lowering the culture temperature to 20°C increased the cell viability during carbon source transition and alleviated the oxygen and methanol limitation, which extended the production phase to 40 h and increased the expression level to 680 mg/L. The addition of 2% Soytone prolonged the production phase to 60 h and increased the expression level to 1,260 mg/L, which was more than tenfold higher than that of Pppmr1 cultured under the conditions recommended by Invitrogen.  相似文献   

7.
In this study, we isolated and characterized a novel feather-degrading bacterium that shows keratinolytic, antifungal and plant growth-promoting activities. A bacterium S8 was isolated from forest soil and confirmed to belong to Bacillus subtilis by BIOLOG system and 16S rRNA gene analysis. The improved culture conditions for the production of keratinolytic protease were 0.1% (w/v) sorbitol, 0.3% (w/v) KNO3, 0.1% (w/v) K2HPO4, 0.06% (w/v) KH2PO4 and 0.04% (w/v) MgCl2·6H2O (pH 8.0 and 30°C), respectively. In the improved medium containing 0.1% (w/v) feather, keratinolytic protease production was around 53.3 ± 0.3 U/ml at 4 day; this value was 10-fold higher than the yield in the basal feather medium (5.3 ± 0.1 U/ml). After cultivation for 5 days in the improved medium, intact feather was completely degraded. Feather degradation resulted in free –SH group, soluble protein and amino acids production. The concentration of free –SH group in the culture medium was 15.5 ± 0.2 μM at 4 days. Nineteen amino acids including all essential amino acids were produced in the culture medium; the concentration of total amino acid produced was 3360.4 μM. Proline (2809.9 μM), histidine (371.3 μM) and phenylalanine (172.0 μM) were the major amino acids released in the culture medium. B. subtilis S8 showed the properties related to plant growth promotion: hydrolytic enzymes, ammonification, indoleacetic acid (IAA), phosphate solubilization, and broad-spectrum antimicrobial activity. Interestingly, the strain S8 grown in the improved medium produced IAA and antifungal activity, indicating simultaneous production of keratinolytic and antifungal activities and IAA by B. subtilis S8. These results suggest that B. subtilis S8 could be not only used to improve the nutritional value of feather wastes but also is useful in situ biodegradation of feather wastes. Furthermore, it could also be a potential biofertilizer or biocontrol agent applicable to crop plant soil.  相似文献   

8.
We cloned and expressed a gene encoding a thermostable cellobiose dehydrogenase (CDH) from the thermophilic ascomycete Myriococcum thermophilum. The 2904 bp long open reading frame contained six introns located either close to the 5′- or 3′-end of the ORF. The corresponding cDNA of 2487 bp was cloned into the expression vector pPICZαB to achieve inducible heterologous expression and secretion of the recombinant flavocytochrome in the methylotrophic yeast Pichia pastoris. Transformants were selected on media with normal and 10-fold increased zeocin concentration, and selected clones were tested for inducible extracellular production of the recombinant oxidoreductase. The maximally obtained volumetric activity was 0.25 U/ml in YPM (rich) medium and 2.15 U/ml in production stage (minimal) medium in a fed-batch fermentation. Recombinant CDH was purified in two consecutive chromatographic steps leading to a final specific activity of up to 7.4 U/mg protein at 40 °C. Kinetic properties of the recombinant CDH were characterized and the temperature optimum for the recombinant CDH was determined at 63 °C. Certain properties of the sequence of MtCDH are discussed in context with thermal and proteolytic stability.  相似文献   

9.
In this study, Streptomyces sp. Al-Dhabi-49 was isolated from the soil sample of Saudi Arabian environment for the simultaneous production of lipase and protease in submerged fermentation. The process parameters were optimized to enhance enzymes production. The production of protease and lipase was found to be maximum after 5 days of incubation (139.2 ± 2.1 U/ml, 253 ± 4.4 U/ml). Proteolytic enzyme increases with the increase in pH up to 9.0 (147.2 ± 3.6 U/ml) and enzyme production depleted significantly at higher pH values. In the case of lipase, production was maximum in the culture medium containing pH 8.0 (166 ± 1.3 U/ml). The maximum production of protease was observed at 40 °C (174 ± 12.1 U/ml) by Streptomyces sp. Lipase activity was found to be optimum at the range of temperatures (30–50 °C) and maximum production was achieved at 35 °C (168 ± 7.8 U/ml). Among the evaluated carbon sources, maltose significantly influenced on protease production (218 ± 12.8 U/ml). Lipase production was maximum when Streptomyces sp. was cultured in the presence of glucose (162 ± 10.8U/ml). Among various concentrations of peptone, 1.0% (w/v) significantly enhanced protease production. The lipase production was very high in the culture medium containing malt extract as nitrogen source (86 ± 10.2 U/ml). Protease production was maximum in the presence of Ca2+ as ionic source (212 ± 3.8 U/ml) and lipase production was enhanced by the addition of Mg2+ with the fermentation medium (163.7 ± 6.2 U/ml).  相似文献   

10.
In this study, we first tested the capacity for eight different salts as stress-mediated bioprocesses in the production of transglutaminase (TGase). A significant effect on the cell growth and TGase production was obtained with the highest yield of TGase being observed at 96 h of incubation (4.3 U/ml) when the basic medium was supplemented 0.10 M MgCl2, as opposed to that observed with the basic medium control (2.1 U/ml at 120 h). Data from Western blot assays showed that transformation of pro-TGase to its mature enzyme occurred more rapidly in MgCl2 medium. Furthermore, total protease, metalloprotease, and serine protease were also synthesized at a faster rate in the medium containing MgCl2. The results demonstrate that MgCl2 enhanced the production of key proteases involved in the activation of TGase biosynthesis. To explore the mechanism, viability assay was performed. The results show that MgCl2 induced the mycelia differentiation, decreased cell growth rate, and stimulated cell death. We argue that TGase production was promoted by the stimulation of mycelium differentiation induced by MgCl2 stress.  相似文献   

11.

Background  

Many workers have reported halotolerant bacteria from saline conditions capable of protease production. However, antibiotic resistance and heavy metal tolerance pattern of such organisms is not documented very well. Similarly, only a few researchers have reported the pattern of pH change of fermentation medium during the course of protease production. In this study, we have isolated a halotolerant Bacillus cereus SIU1 strain from a non-saline environment and studied its antibiotic and heavy metal resistance pattern. The isolate produces a thermoalkaline protease and changes the medium pH during the course of fermentation. Thermostability of protease was also studied for 30 min.  相似文献   

12.
Protease producing halotolerant bacterium was isolated from saltern pond sediment (Tuticorin) and identified as Bacillus licheniformis (TD4) by 16S rRNA gene sequencing. Protease production was enhanced by optimizing the culture conditions. The nutritional factors such as carbon and nitrogen sources, NaCl and also physical parameters like incubation time, pH, agitation, inoculum size were optimized for the maximum yield of protease. Studies on the effect of different carbon and nitrogen sources revealed that xylose and urea enhances the enzyme production. Thus, with selected C–N sources along with 1 M NaCl the maximum protease production (141.46 U/mg) was obtained in the period of 24 h incubation at pH 8 under 250 rpm compared to the initial enzyme production (89.87 U/mg).  相似文献   

13.
Effect of medium composition and culture conditions on agarase production by Agarivorans albus YKW-34 was investigated in shake flasks. The most suitable carbon source, nitrogen source, and culture temperature were agar, yeast extract, and 25 °C, respectively, for agarase production by one-factor-at-a-time design. The nutritional components of the medium and culture conditions were analyzed by Plackett–Burman design. Among the nine factors studied, agar, yeast extract, and initial pH had significant effects on agarase production (p < 0.05). The optimum levels of these key variables were further determined using a central composite design. The highest agarase production was obtained in the medium consisting of 0.23% agar and 0.27% yeast extract at initial pH 7.81. The whole optimization strategy enhanced the agarase production from 0.23 U/ml to 0.87 U/ml. The economic medium composition and culture condition as well as the dominant occupation of agarase with high activity in culture fluid enlighten the potential application of A. albus YKW-34 for the production of agarase.  相似文献   

14.
The thermoalkalophilic Bacillus halodurans JB 99 cells known for production of novel thermostable alkaline keratinolytic protease were immobilized in calcium alginate matrix. Batch and repeated batch cultivation using calcium alginate immobilized cells were studied for alkaline protease production in submerged fermentation. Immobilized cells with 2.5% alginate and 350 beads/flask of initial cell loading showed enhanced production of alkaline protease by 23.2% (5,275 ± 39.4 U/ml) as compared to free cells (4,280 ± 35.4 U/ml) after 24 h. In the semicontinuous mode of cultivation, immobilized cells under optimized conditions produced an appreciable level of alkaline protease in up to nine cycles and reached a maximal value of 5,975 U/ml after the seventh cycle. The enzyme produced from immobilized cells efficiently degraded chicken feathers in the presence of a reducing agent which can help the poultry industry in the management of keratin-rich waste and obtaining value-added products.  相似文献   

15.
The ability of the ascomycete Morchella esculenta to degrade starch and upgrade nutritional value of cornmeal during solid-state fermentation (SSF) was studied. On the basal medium, α-amylase activity of M. esculenta reached its maximum value of 215 U g−1 of culture on day 20 after inoculation. Supplementation of glucose, yeast extract to the basal medium caused a significant increase in either the degradation rate of starch or the mycelial biomass as compared with control (P < 0.01). Through orthogonal experiments, the theoretical optimum culture medium for SSF of this fungus was the following: 100 g cornmeal, ground to 30-mesh powder, moistened with 67 ml of nutrient salt solution supplemented with 3 g yeast extract and 10 g glucose per liter. Under the optimum culture condition, the degradation rate of starch reached its maximum values of 74.8%; the starch content of the fermented product decreased from 64.5 to 23.5%.  相似文献   

16.
Debaryomyces nepalensis, a halotolerant food-spoiling yeast could grow in complex (YEPD) medium at different pHs ranging between 3.0 and 11.0 in the absence of salt and at pH 3.0–9.0 in the presence of different concentrations of NaCl and KCl. The specific growth rate of D. nepalensis was not affected by the initial pH of the medium in the absence of salts, whereas it was affected in the presence of salts. At 2 M NaCl and KCl, the organism exhibited a synergistic effect on pH and salt stress, which was unique in the Debaryomyces species. Irrespective of the initial pH and salt, the intracellular pH of D. nepalensis was ~7.0. Significant organic acid was produced at neutral and alkaline pH and organic acid production increased with the increase in pH and salt. Very specific organic acids are produced in the presence of NaCl and KCl. Our observation would contribute to a better understanding of the physiological phenomenon of halotolerance in D. nepalensis.  相似文献   

17.
Ramie [Boehmeria nivea (L.) Gaud] is one of the most important perennial fiber crops in China. In vitro tissue culture of ramie could serve as an important means for its improvement through genetic transformation. To improve the regeneration capacity of ramie, the effects on plant regeneration of donor plant age, basal medium, plant growth regulators, and culture conditions were evaluated using explants derived from the cotyledon, hypocotyl, leaf, petiole, and stem of ramie seedlings. Cotyledons and hypocotyls excised from 4-d-old seedlings and leaves and petioles and stems from 15-d-old seedlings were optimal explants. The highest regeneration efficiency was obtained on Murashige and Skoog salts with Gamborg’s B5 vitamins basal medium containing 2.27 μM thidiazuron (TDZ) and 0.054 μM naphthaleneacetic acid (NAA) for the five explant types tested. A photoperiod of 16:8 h (light/dark) was found to be superior than continuous darkness for regeneration of ramie using TDZ. The regenerated shoots were transferred to hormone-free medium for shoot elongation and successfully rooted on half-strength Murashige and Skoog supplemented with 0.134 μM NAA. The rooted plantlets with four to five leaves were transplanted to greenhouse for further growth.  相似文献   

18.
Vanilla planifolia is a tropical orchid mainly known for the aromatic flavor of its cured pods. Callus cultures were initiated from leaf and nodal explants of V. planifolia. Leaf explants showed better callus initiation than the nodal explants with callus biomass production maximal when cultured on Murashige and Skoog (MS) basal medium containing 4.52 mM 2,4-dichlorophenoxy acetic acid and 2.22 mM benzyladenine (BAP). Callus transferred to MS basal medium supplemented with 13.32 μM BAP, and 13.43 μM naphthaleneacetic acid (NAA) showed superior growth response and produced 14.0 ± 1.0 shoots with an average length of 3.6 ± 0.1 cm after 40 d. Subsequent transfer of the proliferated shootlets to MS basal medium supplemented with 8.88 μM BAP and 8.08 μM NAA produced 12.3 ± 0.14 plantlets with an average height of 3.6 cm ± 0.10 cm. All plantlets produced profuse rooting within 35–40 d after transfer to half-strength MS basal medium supplemented with NAA in combination with indole-3-acetic acid. Rooted plantlets were transferred for hardening, with 80% of the plantlets becoming successfully established in the field. Potentially, more than 100,000 plantlets could be produced within eight subcultures from callus obtained from leaf explant through the methods described here.  相似文献   

19.
Two strains of Bacillus, one from a culture collection (B. subtilis ATCC 6633) and a wild type (Bacillus sp. UFLA 817CF) isolated during coffee fermentation in the south of Minas Gerais, Brazil, were evaluated in relation to secretion of alkaline proteases. The strains were grown on nutrient broth, nutrient broth with sodium caseinate and nutrient broth with three different concentrations of cheese whey powder for 72 h. Samples were collected at 24-h intervals to evaluate the proteolytic activity, protein content and cell population. Maximum protease activity was observed after 24-h growth for both the microorganisms, a period that coincided with the end of the exponential phase. The specific activity values were, respectively, 839.8 U/mg for B. subtilis ATCC 6633 and 975.9 U/mg for Bacillus sp. UFLA 817CF. The 60% saturation presented the best results for specific protease activity in all the growth culture media tested with B. sp. UFLA 817CF. Bacillus sp. UFLA 817CF showed highest enzymatic activity at pH 9.0 and 40°C in the three culture media tested. The protease obtained from culture of the wild Bacillus strain presented stability at pH 7.0 and considerable heat stability at 40°C and 50°C, and could be an alternative for the industry to utilize cheese whey to produce proteolytic enzymes.  相似文献   

20.
Bacillus subtilis glutamine synthetase (GS) was highly expressed (about 86% of total protein) as soluble protein in Escherichia coli BL21(DE3) containing pET28a-glnA, which was induced by 0.4 mM IPTG in LB medium, and maximal theanine-forming activity of the recombinant GS induced in LB is 6.4 U/mg at a series concentration (0–100 mM) of Mn2+ at optimal pH 7.5. In order to get GS with high theanine-forming activity, safety, and low cost for food and pharmaceutics industry, M9-A (details are described in “Materials and methods”) and 0.1% (w/v) lactose were selected as culture medium and inducer respectively. Recombinant GS was also highly expressed (84% of total protein) and totally soluble in M9-A and the specific activity of the recombinant GS is 6.2 U/mg which is approximate to that (6.4 U/mg) induced in LB in the presence of 10 mM Mn2+ at optimal pH 7.5. The activity is markedly higher activated by Mn2+ than that by other nine bivalent cations. Furthermore, M9-B (5 μM Mn2+ was added into M9-A) was used to culture the recombinant strain and theanine-forming activity of the recombinant GS induced in M9-B was improved 20% (up to 7.6 U/mg). Finally, theanine production experiment coupled with yeast fermentation system was carried out in a 1.0 ml reaction system with 0.1 mg crude GS from M9-B or M9-A, and the yield of theanine were 15.3 and 13.1 g/L by paper chromatography and HPLC, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号