首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Peroxynitrite, the product of the radical-radical reaction between nitric oxide and superoxide anion, is a potent oxidant involved in tissue damage in neurodegenerative disorders. We investigated the modifications induced by peroxynitrite in tyrosine residues of proteins from synaptosomes. Peroxynitrite treatment (> or =50 microM) induced tyrosine nitration and increased tyrosine phosphorylation. Synaptophysin was identified as one of the major nitrated proteins and pp60src kinase as one of the major phosphorylated substrates. Further fractionation of synaptosomes revealed nitrated synaptophysin in the synaptic vesicles, whereas phosphorylated pp60src was enriched in the postsynaptic density fraction. Tyrosine phosphorylation was increased by treatment with 50-500 microM peroxynitrite and decreased by higher concentrations, suggesting a possible activation/inactivation of kinases. Immunocomplex kinase assay proved that peroxynitrite treatment of synaptosomes modulated the pp60src autophosphorylation activity. The addition of bicarbonate (CO2 1.3 mM) produced a moderate enhancing effect on some nitrated proteins but significantly protected the activity of pp60src against peroxynitrite-mediated inhibition so that at 1 mM peroxynitrite, the kinase was still more active than in untreated synaptosomes. The phosphotyrosine phosphatase activity of synaptosomes was inhibited by peroxynitrite (> or =50 microM) but significantly protected by CO2. Thus, the increase of phosphorylation cannot be attributed to peroxynitrite-mediated inhibition of phosphatases. We suggest that peroxynitrite may regulate the posttranslational modification of tyrosine residues in pre- and postsynaptic proteins. Identification of the major protein targets gives insight into the pathways possibly involved in neuronal degeneration associated with peroxynitrite overproduction.  相似文献   

2.
Peroxynitrite is a potent oxidant generated by the reaction of nitric oxide (*NO) and superoxide anion (O2*-), and both can be produced in inflammatory tissues. In the present studies, we analyzed the effects of peroxynitrite treatment on the GTP-binding activity of Rac2, a low molecular weight GTP-binding protein important in regulating a number of cellular functions. Using a fluorescent analog of GTP (methylanthraniloyl guanosine triphosphate or mant-GTP) as a reporter group, we found that treatment of Rac2 with peroxynitrite inhibited the binding of mant-GTP to Rac2 in a dose-dependent manner. Peroxynitrite was also able to react directly with free mant-GTP, resulting in a significant decrease in mant-GTP fluorescence; however, the mechanism of peroxynitrite-mediated damage to mant-GTP was different than with Rac2. In the case of mant-GTP, protection from peroxynitrite-mediated oxidation was observed in the presence of the free radical scavengers, mannitol and DMTU. In contrast, DMTU was unable to prevent peroxynitrite-mediated inhibition of mant-GTP binding to Rac2. Instead, our data demonstrates a role for peroxynitrite-mediated tyrosine modification in the inhibition of mant-GTP binding to Rac2, and we were able to demonstrate the formation of a significant level of nitrotyrosine formation in Rac2 exposed to peroxynitrite. Thus, our studies support the premise that oxidative modification of key cellular proteins, such as Rac2, plays an important role in the cytotoxic effects observed for peroxynitrite and other reactive oxidants.  相似文献   

3.
Peroxynitrite is a potent reactive oxygen species that is believed to mediate deleterious protein modifications in a wide variety of neurodegenerative disorders. In this study, we have analysed the effects of oxidative damage induced by peroxynitrite on a cysteine-free mutant of dihydrofolate reductase (SE-DHFR), from a functional and a structural point of view. The peroxynitrite-mediated oxidation results in the inhibition, concentration-dependent, of the catalytic activity. This effect is strongly influenced by the HCO(3)(-)/CO(2) buffering system, that we observed to significantly affect the yield of protein oxidation by modulating the peroxynitrite-induced modification of aromatic residues. Because of this effect, in presence of bicarbonate system, we have observed a protection of enzymatic activity of SE-DHFR with regard to peroxynitrite. The thermodynamic stability of the oxidized protein has been studied in comparison with the non-oxidized protein by differential scanning calorimetry. The thermodynamic parameters obtained showed a decrease of stability of SE-DHFR upon oxidation, evaluated in terms of Gibbs free energy of about 1.25 kcal/mol at 25 degrees C, with respect to the non-oxidized protein. Together, these data indicate that structural and functional alterations induced by peroxynitrite may play a direct role in compromising DHFR function in multiple pathological conditions.  相似文献   

4.
Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in φX-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1. Moreover, the consumption of oxygen caused by 250 μM SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25-2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin.  相似文献   

5.
Human serum albumin (SA) is best known for its extraordinary ligand-binding capacity. Here, kinetics of peroxynitrite-mediated oxidation of SA-heme(II)-NO is reported. Peroxynitrite reacts with SA-heme(II)-NO leading to SA-heme(III) and ()NO by way of the transient SA-heme(III)-NO species. Abacavir facilitates peroxynitrite-mediated oxidation of SA-heme(II)-NO, in the absence and presence of CO2. Values of the second order rate constant for peroxynitrite-mediated oxidation of SA-heme(II)-NO are (6.5+/-0.9) x 10(3) M(-1) s(-1) in the absence of CO2 and abacavir, (1.3+/-0.2) x 10(5) M(-1) s(-1) in the presence of CO2, (2.2+/-0.2) x 10(4) M(-1) s(-1) in the presence of abacavir, and (3.6+/-0.3) x 10(5) M(-1) s(-1) in the presence of both CO2 and abacavir. The value of the first-order rate constant for *NO dissociation from the SA-heme(III)-NO complex (=(1.8+/-0.3) x 10(-1) s(-1)) is CO2- and abacavir-independent, representing the rate-limiting step. Present data represent the first evidence for the allosteric modulation of SA-heme reactivity by heterotropic interaction(s).  相似文献   

6.
The iron chelating agent desferrioxamine inhibits peroxynitrite-mediated oxidations and attenuates nitric oxide and oxygen radical-dependent oxidative damage both in vitro and in vivo. The mechanism of protection is independent of iron chelation and has remained elusive over the past decade. Herein, stopped-flow studies revealed that desferrioxamine does not react directly with peroxynitrite. However, addition of peroxynitrite to desferrioxamine in both the absence and the presence of physiological concentrations of CO2 and under excess nitrite led to the formation of a one-electron oxidation product, the desferrioxamine nitroxide radical, consistent with desferrioxamine reacting with the peroxynitrite-derived species carbonate (CO3*-) and nitrogen dioxide (*NO2) radicals. Desferrioxamine inhibited peroxynitrite-dependent free radical-mediated processes, including tyrosine dimerization and nitration, oxyhemoglobin oxidation in the presence of CO2, and peroxynitrite plus carbonate-dependent chemiluminescence. The direct two-electron oxidation of glutathione by peroxynitrite was unaffected by desferrioxamine. The reactions of desferrioxamine with CO3*- and *NO2 were unambiguously confirmed by pulse radiolysis studies, which yielded second-order rate constants of 1.7 x 10(9) and 7.6 x 10(6) M(-1) s(-1), respectively. Desferrioxamine also reacts with tyrosyl radicals with k = 6.3 x 10(6) M(-1) s(-1). However, radical/radical combination reactions between tyrosyl radicals or of tyrosyl radical with *NO2 outcompete the reaction with desferrioxamine and computer-assisted simulations indicate that the inhibition of tyrosine oxidation can be fully explained by scavenging of the peroxynitrite-derived radicals. The results shown herein provide an alternative mechanism to account for some of the biochemical and pharmacological actions of desferrioxamine via reactions with CO3*- and *NO2 radicals.  相似文献   

7.
NAD(P)H acts as a two-electron reductant in physiological, enzyme-controlled processes. Under nonenzymatic conditions, a couple of one-electron oxidants easily oxidize NADH to the NAD(.) radical. This radical reduces molecular oxygen to the superoxide radical (O-(2)) at a near to the diffusion-controlled rate, thereby subsequently forming hydrogen peroxide (H(2)O(2)). Because peroxynitrite can act as a one-electron oxidant, the reaction of NAD(P)H with both authentic peroxynitrite and the nitric oxide ((. )NO) and O-(2) releasing compound 3-morpholinosydnonimine N-ethylcarbamide (SIN-1) was studied. Authentic peroxynitrite oxidized NADH with an efficiency of approximately 25 and 8% in the absence and presence of bicarbonate/carbon dioxide (HCO(3)(-)/CO(2)), respectively. NADH reacted 5-100 times faster with peroxynitrite than do the known peroxynitrite scavengers glutathione, cysteine, and tryptophan. Furthermore, NADH was found to be highly effective in suppressing peroxynitrite-mediated nitration reactions even in the presence of HCO(3)(-)/CO(2). Reaction of NADH with authentic peroxynitrite resulted in the formation of NAD(+) and O-(2) and, thus, of H(2)O(2) with yields of about 3 and 10% relative to the added amounts of peroxynitrite and NADH, respectively. Peroxynitrite generated in situ from SIN-1 gave virtually the same results; however, two remarkable exceptions were recognized. First, the efficiency of NADH oxidation increased to 60-90% regardless of the presence of HCO(3)(-)/CO(2), along with an increase of H(2)O(2) formation to about 23 and 35% relative to the amounts of added SIN-1 and NADH. Second, and more interesting, the peroxynitrite scavenger glutathione (GSH) was needed in a 75-fold surplus to inhibit the SIN-1-dependent oxidation of NADH half-maximal in the presence of HCO(3)(-)/CO(2). Similar results were obtained with NADPH. Hence, peroxynitrite or radicals derived from it (such as, e.g. the bicarbonate radical or nitrogen dioxide) indeed oxidize NADH, leading to the formation of NAD(+) and, via O-(2), of H(2)O(2). When peroxynitrite is generated in situ in the presence of HCO(3)(-)/CO(2), i.e. under conditions mimicking the in vivo situation, NAD(P)H effectively competes with other known scavengers of peroxynitrite.  相似文献   

8.
Herold S  Shivashankar K 《Biochemistry》2003,42(47):14036-14046
Hemoproteins, in particular, myoglobin and hemoglobin, are among the major targets of peroxynitrite in vivo. The oxygenated forms of these proteins are oxidized by peroxynitrite to their corresponding iron(iii) forms (metMb and metHb). This reaction has previously been shown to proceed via the corresponding oxoiron(iv) forms of the proteins. In this paper, we have conclusively shown that metMb and metHb catalyze the isomerization of peroxynitrite to nitrate. The catalytic rate constants were determined by stopped-flow spectroscopy in the presence and absence of 1.2 mM CO(2) at 20 and 37 degrees C. The values obtained for metMb and metHb, with no added CO(2) at pH 7.0 and 20 degrees C, are (7.7 +/- 0.1) x 10(4) and (3.9 +/- 0.2) x 10(4) M(-1) s(-1), respectively. The pH-dependence of the catalytic rate constants indicates that HOONO is the species that reacts with the iron(iii) center of the proteins. In the presence of 1.2 mM CO(2), metMb and metHb also accelerate the decay of peroxynitrite in a concentration-dependent way. However, experiments carried out at pH 8.3 in the presence of 10 mM CO(2) suggest that ONOOCO(2)(-), the species generated from the reaction of ONOO(-) with CO(2), does not react with the iron(iii) center of Mb and Hb. Finally, we showed that different forms of Mb and Hb protect free tyrosine from peroxynitrite-mediated nitration. The order of efficiency is metMbCN < apoMb < metHb < metMb < ferrylMb < oxyHb < deoxyHb < oxyMb. Taken together, our data show that myoglobin is always a better scavenger than hemoglobin. Moreover, the globin offers very little protection, as the heme-free (apoMb) and heme-blocked (metMbCN) forms only partly prevent nitration of free tyrosine.  相似文献   

9.
Mycobacterium leprae GlbO has been proposed to represent merging of both O(2) uptake/transport and scavenging of nitrogen reactive species. Peroxynitrite reacts with M. leprae GlbO(II)-NO leading to GlbO(III) via the GlbO(III)-NO species. The value of the second order rate constant for GlbO(III)-NO formation is >1x10(8)M(-1)s(-1) in the absence and presence of CO(2) (1.2x10(-3)M). The CO(2)-independent value of the first order rate constant for GlbO(III)-NO denitrosylation is (2.5+/-0.4)x10(1)s(-1). Furthermore, peroxynitrite reacts with GlbO(II)-O(2) leading to GlbO(III) via the GlbO(IV)O species. Values of the second order rate constant for GlbO(IV)O formation are (4.8+/-0.5)x10(4) and (6.3+/-0.7)x10(5)M(-1)s(-1) in the absence and presence of CO(2) (=1.2x10(-3)M), respectively. The value of the second order rate constant for the peroxynitrite-mediated GlbO(IV)O reduction (= (1.5+/-0.2)x10(4)M(-1)s(-1)) is CO(2)-independent. These data argue for a role of GlbO in the defense of M. leprae against nitrosative stress.  相似文献   

10.
Protein tyrosine phosphatases (PTPs) contain an essential thiol in the active site which may be susceptible to attack by nitric oxide-derived biological oxidants. We assessed the effects of peroxynitrite, nitric oxide, and S-nitrosoglutathione on the activity of three human tyrosine phosphatases in vitro. The receptor-like T-cell tyrosine phosphatase (CD45), the non-receptor-like tyrosine phosphatase PTP1B, and leukocyte-antigen-related (LAR) phosphatase were all irreversibly inactivated by peroxynitrite in less than 1 s with IC(50) values of 相似文献   

11.
Peroxynitrite (ONOO(((-)))/ONOOH) is expected in vivo to react predominantly with CO(2), thereby yielding NO(2)(.) and CO(3) radicals. We studied the inhibitory effects of ascorbate on both NADH and dihydrorhodamine 123 (DHR) oxidation by peroxynitrite generated in situ from 3-morpholinosydnonimine N-ethylcarbamide (SIN-1). SIN-1 (150 micrometer)-mediated oxidation of NADH (200 micrometer) was half-maximally inhibited by low ascorbate concentrations (61-75 micrometer), both in the absence and presence of CO(2). Control experiments performed with thiols indicated both the very high antioxidative efficiency of ascorbate and that in the presence of CO(2) in situ-generated peroxynitrite exclusively oxidized NADH via the CO(3) radical. This fact is attributed to the formation of peroxynitrate (O(2)NOO(-)/O(2)NOOH) from reaction of NO(2)(.) with O(2), which is formed from reaction of CO(3) with NADH. SIN-1 (25 micrometer)-derived oxidation of DHR was half-maximally inhibited by surprisingly low ascorbate concentrations (6-7 micrometer), irrespective of the presence of CO(2). Control experiments performed with authentic peroxynitrite revealed that ascorbate was in regard to both thiols and selenocompounds much more effective to protect DHR. The present results demonstrate that ascorbate is highly effective to counteract the oxidizing properties of peroxynitrite in the absence and presence of CO(2) by both terminating CO(3)/HO( small middle dot) reactions and by its repair function. Ascorbate is therefore expected to act intracellulary as a major peroxynitrite antagonist. In addition, a novel, ascorbate-independent protection pathway exists: scavenging of NO(2)(.) by O(2) to yield O(2)NOO(-), which further decomposes into NO(2)(-) and O(2).  相似文献   

12.
We assessed whether reactive oxygen-nitrogen intermediates generated by alveolar macrophages (AMs) oxidized and nitrated human surfactant protein (SP) A. SP-A was exposed to lipopolysaccharide (100 ng/ml)-activated AMs in 15 mM HEPES (pH 7.4) for 30 min in the presence and absence of 1.2 mM CO(2). In the presence of CO(2), lipopolysaccharide-stimulated AMs had significantly higher nitric oxide synthase (NOS) activity (as quantified by the conversion of L-[U-(14)C]arginine to L-[U-(14)C]citrulline) and secreted threefold higher levels of nitrate plus nitrite in the medium [28 +/- 3 vs. 6 +/- 1 (SE) nmol. 6.5 h(-1). 10(6) AMs(-1)]. Western blotting studies of immunoprecipitated SP-A indicated that CO(2) enhanced SP-A nitration by AMs and decreased carbonyl formation. CO(2) (0-1.2 mM) also augmented peroxynitrite (0.5 mM)-induced SP-A nitration in a dose-dependent fashion. Peroxynitrite decreased the ability of SP-A to aggregate lipids, and this inhibition was augmented by 1.2 mM CO(2). Mass spectrometry analysis of chymotryptic fragments of peroxynitrite-exposed SP-A showed nitration of two tyrosines (Tyr(164) and Tyr(166)) in the absence of CO(2) and three tyrosines (Tyr(164), Tyr(166), and Tyr(161)) in the presence of 1.2 mM CO(2). These findings indicate that physiological levels of peroxynitrite, produced by activated AMs, nitrate SP-A and that CO(2) increased nitration, at least partially, by enhancing enzymatic nitric oxide production.  相似文献   

13.
Peroxynitrite, the reactive species formed in vivo by the reaction of nitric oxide with superoxide anion, is capable of diffusing across erythrocyte membranes via anion channels and passive diffusion (A. Denicola, J. M. Souza, and R. Radi, Proc. Natl. Acad. Sci. USA 95, 3566-3571, 1998). However, peroxynitrite diffusion could be limited by extracellular targets, with the reaction with CO(2) (k(2) = 4.6 x 10(4) at 37 degrees C and pH 7.4) the most relevant. Herein, we studied the influence of physiological concentrations of CO(2) on peroxynitrite diffusion across intact red blood cells. The presence of CO(2) inhibited the oxidation of intracellular oxyhemoglobin by externally added peroxynitrite. However, the inhibition by CO(2) decreased at increasing red blood cell densities. At 45% hematocrit, 1.3 mM CO(2) (in equilibrium with 24 mM bicarbonate, at pH 7.4 and 25 degrees C) only inhibited 30% of intracellular oxyhemoglobin oxidation. This partial inhibition was also observed in red blood cells pretreated with the anion exchanger inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, ruling out a competition between peroxynitrite and bicarbonate for the transport through the anion channel. A theoretical model was developed to estimate the diffusion distance and half-life of extracellular peroxynitrite before reacting with intracellular oxyhemoglobin, at different red blood cell densities, and in the presence or absence of CO(2). The theoretical model correlated well with the experimental data. Our results indicate that, even in the presence of CO(2), peroxynitrite is able to diffuse and reach the inside of the erythrocyte.  相似文献   

14.
Bactericidal activity of peroxynitrite.   总被引:17,自引:0,他引:17  
Peroxynitrite is a strong oxidant formed by macrophages and potentially by other cells that produce nitric oxide and superoxide. Peroxynitrite was highly bactericidal, killing Escherichia coli in direct proportion to its concentration with an LD50 of 250 microM at 37 degrees C in potassium phosphate, pH 7.4. The apparent bactericidal activity of a given concentration peroxynitrite at acidic pH was less than that at neutral and alkaline pH. However, after taking the rapid pH-dependent decomposition of peroxynitrite into account, the rate of the killing was not significantly different at pH 5 compared to pH 7.4. Metal chelators did not decrease peroxynitrite-mediated killing, indicating that exogenous transition metals were not required for toxicity. The hydroxyl radical scavengers mannitol, ethanol, and benzoate did not significantly affect toxicity while dimethyl sulfoxide enhanced peroxynitrite-mediated killing. Dimethyl sulfoxide is a more efficient hydroxyl radical scavenger than the other three scavengers and increased the formation of nitrogen dioxide from peroxynitrite. In the presence of 100 mM dimethyl sulfoxide, 60.0 +/- 0.3 microM nitrogen dioxide was formed from 250 microM peroxynitrite as compared to 2.0 +/- 0.1 microM in buffer alone. Thus, formation of nitrogen dioxide may have enhanced the toxicity of peroxynitrite decomposing in the presence of dimethyl sulfoxide.  相似文献   

15.
Peroxynitrite, a cytotoxic oxidant formed in the reaction of superoxide and nitric oxide is known to cause programmed cell death. However, the mechanisms of peroxynitrite-induced apoptosis are poorly defined. The present study was designed to characterize the molecular mechanisms by which peroxynitrite induces apoptosis in HL-60 cells, with special emphasis on the role of caspases. Peroxynitrite induced the activation of apopain/caspase-3, but not ICE/caspase-1 as measured by the cleavage of fluorogenic peptides. Considering the short half-life of peroxynitrite and the kinetics of caspase-3 activation (starting 3–4 h after peroxynitrite treatment), the enzyme is not likely to become activated directly by the oxidant. Caspase-3 activation proved to be essential for DNA fragmentation, because pretreatment of the cells with the specific tetrapeptide inhibitor DEVD-fmk completely blocked peroxynitrite-induced DNA fragmentation. Peroxynitrite-induced cytotoxicity was also significantly altered by the inhibition of caspase-3, whereas phosphatidylserine exposure was unaffected by DEVD-fmk treatment. Because many of the effects of peroxynitrite are mediated by poly(ADP-ribose) synthetase (PARS) activation, we have also investigated the effect of PARS-inhibition on peroxynitrite-induced apoptosis. We have found that PARS-inhibition modulates peroxynitrite-induced apoptotic DNA fragmentation in the HL-60 cells. The effect of the PARS inhibitors, 3-aminobenzamide and 5-iodo-6-amino-1,2-benzopyrone were dependent on the concentration of peroxynitrite used. While PARS-inhibition resulted in increased DNA-fragmentation at low doses (15 μM) of peroxynitrite, a decreased DNA-fragmentation was found at high doses (60 μM) of peroxynitrite. PARS inhibition negatively affected viability as determined by flow cytometry. These data demonstrate the crucial role of caspase-3 in mediating apoptotic DNA fragmentation in HL-60 cells exposed to peroxynitrite.  相似文献   

16.
Peroxynitrite is implicated in many diseases. Hence, there is considerable interest in potential therapeutic peroxynitrite scavengers. Diet-derived phenolics have been claimed to be powerful peroxynitrite scavengers. However, the reactivity of peroxynitrite can be significantly modified by bicarbonate and this has not been considered in evaluations of the scavenging activity of phenols. Bicarbonate (25 mM) significantly decreased the ability of several phenolic compounds (caffeic acid, o- and p-coumaric acid, gallic acid, ferulic acid) but not others (catechin and epicatechin) to inhibit peroxynitrite-mediated tyrosine nitration. Bicarbonate (25 mM) also decreased the ability of catechin, epicatechin, quercetin and ferulic acid but not chlorogenic acid, gallic acid, caffeic acid and o-coumaric acid to inhibit peroxynitrite-mediated alpha(1)-antiproteinase inactivation. These results show that physiological concentrations of bicarbonate substantially modify the ability of dietary phenolics to prevent peroxynitrite-mediated reactions. When assessing compounds for peroxynitrite scavenging, experiments should be conducted in the presence of bicarbonate to avoid misleading results.  相似文献   

17.
Peroxynitrite, a biological oxidant formed from the reaction of nitric oxide with the superoxide radical, is associated with many pathologies, including neurodegenerative diseases, such as multiple sclerosis (MS). Gout (hyperuricemic) and MS are almost mutually exclusive, and uric acid has therapeutic effects in mice with experimental allergic encephalomyelitis, an animal disease that models MS. This evidence suggests that uric acid may scavenge peroxynitrite and/or peroxynitrite-derived reactive species. Therefore, we studied the kinetics of the reactions of peroxynitrite with uric acid from pH 6.9 to 8.0. The data indicate that peroxynitrous acid (HOONO) reacts with the uric acid monoanion with k = 155 M(-1) s(-1) (T = 37 degrees C, pH 7.4) giving a pseudo-first-order rate constant in blood plasma k(U(rate))(/plasma) = 0.05 s(-1) (T = 37 degrees C, pH 7.4; assuming [uric acid](plasma) = 0.3 mM). Among the biological molecules in human plasma whose rates of reaction with peroxynitrite have been reported, CO(2) is one of the fastest with a pseudo-first-order rate constant k(CO(2))(/plasma) = 46 s(-1) (T = 37 degrees C, pH 7.4; assuming [CO(2)](plasma) = 1 mM). Thus peroxynitrite reacts with CO(2) in human blood plasma nearly 920 times faster than with uric acid. Therefore, uric acid does not directly scavenge peroxynitrite because uric acid can not compete for peroxynitrite with CO(2). The therapeutic effects of uric acid may be related to the scavenging of the radicals CO(*-)(3) and NO(*)(2) that are formed from the reaction of peroxynitrite with CO(2). We suggest that trapping secondary radicals that result from the fast reaction of peroxynitrite with CO(2) may represent a new and viable approach for ameliorating the adverse effects associated with peroxynitrite in many diseases.  相似文献   

18.
The clotting activity of human fibrinogen was fully inhibited in vitro by peroxynitrite. The decrease of activity followed an exponential function and the concentration of peroxynitrite needed to inhibit 50% of fibrinogen clotting was 22 microM at 25 degrees C. The oxidative modification(s) induced by the peroxynitrite system (i.e. ONOO-, ONOOH and ONOOH*) appeared specifically to affect fibrin clot formation (through the inhibition of fibrinogen polymerization) since the interaction of peroxynitrite-modified fibrinogen with thrombin appeared to be unaffected. The addition of NaHCO3 decreased the peroxynitrite effect on fibrinogen clotting, suggesting that the reactive species formed by the reaction of CO2 with peroxynitrite are less efficient oxidants of peroxynitrite itself. Similar effects were observed after addition of bilirubin, which also exerted a significant protection against peroxynitrite-mediated modification of fibrinogen.  相似文献   

19.
Ribonucleotide reductase activity is rate-limiting for DNA synthesis, and inhibition of this enzyme supports cytostatic antitumor effects of inducible NO synthase. The small R2 subunit of class I ribonucleotide reductases contains a stable free radical tyrosine residue required for activity. This radical is destroyed by peroxynitrite, which also inactivates the protein and induces nitration of tyrosine residues. In this report, nitrated residues in the E. coli R2 protein were identified by UV-visible spectroscopy, mass spectrometry (ESI-MS), and tryptic peptide sequencing. Mass analysis allowed the detection of protein R2 as a native dimer with two iron clusters per subunit. The measured mass was 87 032 Da, compared to a calculated value of 87 028 Da. Peroxynitrite treatment preserved the non-heme iron center and the dimeric form of the protein. A mean of two nitrotyrosines per E. coli protein R2 dimer were obtained at 400 microM peroxynitrite. Only 3 out of the 16 tyrosines were nitrated, including the free radical Tyr122. Despite its radical state, that should favor nitration, the buried Tyr122 was not nitrated with a high yield, probably owing to its restricted accessibility. Dose-response curves for Tyr122 nitration and loss of the free radical were superimposed. However, protein R2 inactivation was higher than nitration of Tyr122, suggesting that nitration of the nonconserved Tyr62 and Tyr289 might be also of importance for peroxynitrite-mediated inhibition of E. coli protein R2.  相似文献   

20.
Resveratrol (3,4′,5-trihydroxystilbene) is a phytochemical believed to be partly responsible for the cardioprotective effects of red wine due to its numerous biological activities. Here, we studied biochemical pathways underlying peroxynitrite-mediated apoptosis in endothelial cells and potential mechanisms responsible for resveratrol cytoprotective action. Peroxynitrite triggered endothelial cell apoptosis through caspases-8, -9 and -3 activation implying both mitochondrial and death receptor apoptotic pathways. Resveratrol was able to prevent peroxynitrite-induced caspases-3 and -9 activation, but not caspase-8 activation. Additionally, peroxynitrite increased intracellular levels of Bax without affecting those of Bcl-2, increasing consequently the Bax/Bcl-2 ratio. This ratio decreased when cells where pre-incubated with 10 and 50 μM resveratrol, mainly due to resveratrol ability per se to increase Bcl-2 intracellular levels without affecting Bax intracellular levels. These results propose an additional mechanism whereby resveratrol may exert its cardioprotective effects and suggest a key role for Bcl-2 in the resveratrol anti-apoptotic action, especially in disrupting peroxynitrite-triggered mitochondrial pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号