首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
NAD(P)H acts as a two-electron reductant in physiological, enzyme-controlled processes. Under nonenzymatic conditions, a couple of one-electron oxidants easily oxidize NADH to the NAD(.) radical. This radical reduces molecular oxygen to the superoxide radical (O-(2)) at a near to the diffusion-controlled rate, thereby subsequently forming hydrogen peroxide (H(2)O(2)). Because peroxynitrite can act as a one-electron oxidant, the reaction of NAD(P)H with both authentic peroxynitrite and the nitric oxide ((. )NO) and O-(2) releasing compound 3-morpholinosydnonimine N-ethylcarbamide (SIN-1) was studied. Authentic peroxynitrite oxidized NADH with an efficiency of approximately 25 and 8% in the absence and presence of bicarbonate/carbon dioxide (HCO(3)(-)/CO(2)), respectively. NADH reacted 5-100 times faster with peroxynitrite than do the known peroxynitrite scavengers glutathione, cysteine, and tryptophan. Furthermore, NADH was found to be highly effective in suppressing peroxynitrite-mediated nitration reactions even in the presence of HCO(3)(-)/CO(2). Reaction of NADH with authentic peroxynitrite resulted in the formation of NAD(+) and O-(2) and, thus, of H(2)O(2) with yields of about 3 and 10% relative to the added amounts of peroxynitrite and NADH, respectively. Peroxynitrite generated in situ from SIN-1 gave virtually the same results; however, two remarkable exceptions were recognized. First, the efficiency of NADH oxidation increased to 60-90% regardless of the presence of HCO(3)(-)/CO(2), along with an increase of H(2)O(2) formation to about 23 and 35% relative to the amounts of added SIN-1 and NADH. Second, and more interesting, the peroxynitrite scavenger glutathione (GSH) was needed in a 75-fold surplus to inhibit the SIN-1-dependent oxidation of NADH half-maximal in the presence of HCO(3)(-)/CO(2). Similar results were obtained with NADPH. Hence, peroxynitrite or radicals derived from it (such as, e.g. the bicarbonate radical or nitrogen dioxide) indeed oxidize NADH, leading to the formation of NAD(+) and, via O-(2), of H(2)O(2). When peroxynitrite is generated in situ in the presence of HCO(3)(-)/CO(2), i.e. under conditions mimicking the in vivo situation, NAD(P)H effectively competes with other known scavengers of peroxynitrite.  相似文献   

2.
Kinetics of the reaction of peroxynitrite with ferric cytochrome c in the absence and presence of bicarbonate was studied. It was found that the heme iron in ferric cytochrome c does not react directly with peroxynitrite. The rates of the absorbance changes in the Soret region of cytochrome c spectrum caused by peroxynitrite or peroxynitrite/bicarbonate were the same as the rate of spontaneous isomerization of peroxynitrite or as the rate of the reaction of peroxynitrite with bicarbonate, respectively. This means that intermediate products of peroxynitrite decomposition, (.)OH/(.)NO(2) or, in the presence of bicarbonate, CO(3)(-)(.)/(.)NO(2), are the species responsible for the absorbance changes in the Soret band of cytochrome c. Modifications of the heme center of cytochrome c by radiolytically produced radicals, (.)OH, (.)NO(2) or CO(3)(-)(.), were also studied. The absorbance changes in the Soret band caused by radiolytically produced (.)OH or CO(3)(-)(.) were much more significant that those observed after peroxynitrite treatment, compared under similar concentrations of radicals. (.)NO(2) produced radiolytically did not interact with the heme center of cytochrome c. Cytochrome c exhibited an increased peroxidase-like activity after reaction with peroxynitrite as well as with radiolytically produced (.)OH, (.)NO(2) or CO(3)(-)(.) radicals. This means that modification of protein structure: oxidation of amino acids and/or tyrosine nitration, facilitates reaction of H(2)O(2) with the heme iron of cytochrome c, followed by reaction with the second substrate.  相似文献   

3.
The primary product of the interaction between nitric oxide (NO) and superoxide () is peroxynitrite (ONOO-), which is capable of either oxidizing or nitrating various biological substrates. However, it has been shown that excess NO or can further react with ONOO- to form species which mediate nitrosation. Subsequently, the controlled equilibrium between nitrosative and oxidative chemistry is critically dependent on the flux of NO and. Since ONOO- reacts not only with NO and but also with CO2, the effects of bicarbonate () on the biphasic oxidation profile of dihydrorhodamine-123 (DHR) and on the nitrosation of both 2,3-diaminonaphthalene and reduced glutathione were examined. Nitric oxide and were formed with DEA/NO [NaEt2NN(O)NO] and xanthine oxidase, respectively. The presence of did not alter either the oxidation profile of DHR with varying radical concentrations or the affinity of DHR for the oxidative species. This suggests that the presence of CO2 does not affect the scavenging of ONOO- by either NO or. However, an increase in the rate of DHR oxidation by ONOO- in the presence of suggests that a CO2-ONOO- adduct does play a role in the interaction of NO or with a product derived from ONOO-. Further examination of the chemistry revealed that the intermediate that reacts with NO is neither ONOO- nor cis-HOONO. It was concluded that NO reacts with both trans-HOONO and a CO2 adduct of ONOO- to form nitrosating species which have similar oxidation chemistry and reactivity with and NO.  相似文献   

4.
After enzymic biotransformation, molsidomine (MO) acts via the metabolite 3-morpholinosydnonimine (SIN-1) through spontaneous liberation of nitric oxide (NO) and superoxide (O(2)(.-)). The aim of this study was to compare the effects of MO and its active metabolite SIN-1 on the redox status of rat erythrocytes and reticulocytes. Rat erythrocyte as well as reticulocyte-rich red blood cell (RBC) suspensions were aerobically incubated (2 h, 37 degrees C) without (control) or in the presence of different concentrations of MO or SIN-1. In rat erythrocytes, biotransformation of MO resulted in the production of NO and nitroxyl (NO(-)). Endogenous superoxide anion (O(2)(.-)) participated in peroxynitrite generation. SIN-1 simultaneously liberated NO and O(2)(.-), which formed peroxynitrite (at least in part), but the liberated NO predominantly reacted with haemoglobin, forming methaemoglobin in erythrocytes. In reticulocytes, MO and SIN-1 caused an increase in the levels of both nitrite and 3-nitrotyrosine (an indicator of peroxynitrite), whereas they decreased the level of O(2)(.-). In reticulocytes, MO was metabolized into SIN-1 which led to the generation of NO, which reacted with O(2)(.-) (endogenous or exogenous) forming reactive nitrogen species. In conclusion, there are two metabolic pathways for MO biotransformation: one causing NO and NO(-) generation predominantly in erythrocytes and the other, via SIN-1 metabolism, in reticulocytes. The main difference between the action of MO and SIN-1 was that the latter caused oxidative damage in RBCs.  相似文献   

5.
Nitrosation is an important reaction elicited by nitric oxide (NO). To better understand how nitrosation occurs in biological systems, we assessed the effect of myeloperoxidase (MPO), a mediator of inflammation, on nitrosation observed during NO autoxidation. Nitrosation of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ; 10 mum) to 2-nitrosoamino-3-methylimidazo[4,5-f]quinoline (N-NO-IQ) was monitored by HPLC. Using the NO donor spermine NONOate at pH 7.4, MPO potentiated N-NO-IQ formation. The minimum effective quantity of necessary components was 8.5 nm MPO, 0.25 mum H(2)O(2)/min, and 0.024 mum NO/min. Autoxidation was only detected at >/=1.2 mum NO/min. MPO potentiation was not affected by a 40-fold excess flux of H(2)O(2) over NO or less than a 2.4-fold excess flux of NO over H(2)O(2). Potentiation was due to an 8.8-fold increased affinity of MPO-derived nitrosating species for IQ. Autoxidation was inhibited by azide, suggesting involvement of the nitrosonium ion, NO(+). MPO potentiation was inhibited by NADH, but not azide, suggesting oxidative nitrosylation with NO(2)(.) or an NO(2)(.)-like species. MPO nonnitrosative oxidation of IQ with 0.3 mm NO(2)(-) at pH 5.5 was inhibited by azide, but not NADH, demonstrating differences between MPO oxidation of IQ with NO compared with NO(2)(-). Using phorbol ester-stimulated human neutrophils, N-NO-IQ formation was increased with superoxide dismutase and inhibited by catalase and NADH, but not NaN(3). This is consistent with nitrosation potentiation by MPO, not peroxynitrite. Increased N-NO-IQ formation was not detected with polymorphonuclear neutrophils from two unrelated MPO-deficient patients. Results suggest that the highly diffusible stable gas NO could initiate nitrosation at sites of neutrophil infiltration.  相似文献   

6.
Low density lipoprotein (LDL) oxidation by peroxynitrite is a complex process, finely modulated by control of peroxynitrite formation, LDL availability and free-radical scavenging by nitric oxide (*NO), ascorbate and alpha-tocopherol (alpha -TOH). In the presence of CO2, lipid targets are spared at the expense of surface constituents. Since surface damage may lead to oxidation-induced LDL aggregation and particle recognition by scavenger receptors, CO2 cannot be considered an inhibitor of peroxynitrite-dependent LDL modifications. Chromanols, urate and ascorbate cannot scavenge peroxynitrite in the vasculature, although intermediates of urate oxidation and high ascorbate concentrations may do soin vitro. Most if not all of the protection against peroxynitrite-induced LDL oxidation afforded by urate, ascorbate, chromanols and also*NO should be considered to depend on their free radical scavenging abilities, including inactivation of lipid peroxyl radicals (LOO),*NO2, and CO3*-; as well as their capacity to reduce high oxidation states of metal centers. Peroxynitrite direct interception by reduced manganese (II) porphyrins is possibly the most powerful although unspecific strategy to inhibit peroxynitrite reactions. In light of the recent demonstration of nitrated bioactive lipids in vivo, renewed interest in the mechanisms of peroxynitrite- and nitric oxide-mediated lipid nitration and nitrosation is guaranteed.  相似文献   

7.
Simultaneously produced superoxide/nitric oxide radicals (O2*-/NO*) could form peroxynitrite (OONO-) which has been found to cause atherogenic, i.e. oxidative modification of LDL. Aromatic hydroxylation and nitration of the aspirin metabolite salicylate by OONO- has been reported. Therefore we tested if salicylate may be able to protect LDL from oxidation by O2*-/NO* by scavenging the OONO reactive decomposition products. When LDL was exposed to simultaneously produced O2*-/NO* using the sydnonimine SIN-1, salicylate exerted an inhibitory effect on LDL oxidation as measured by TBARS and lipid hydroperoxide formation and alteration in electrophoretic mobility of LDL. The cytotoxic effect of SIN-1 pre-oxidised LDL to endothelial cells was also diminished when salicylate was present during SIN-1 treatment of LDL. Spectrophotometric analysis revealed that salicylate was converted to dihydroxybenzoic acid (DHBA) derivatives in the presence of SIN-1. 2,3- and 2,5-DHBA were even more effective to protect LDL from oxidation by O2*-/NO*. Because O2*-/NO* can occur in vivo, the results may indicate that salicylate could act as an efficacious inhibitor of O2*-/NO* initiated atherogenic LDL modification, thus further supporting the rationale of aspirin medication regarding cardiovascular diseases.  相似文献   

8.
CO(2) changes the biochemistry of peroxynitrite basically in two ways: (i) nitrating species is the CO(3)(-) / ()NO(2) radical pair, and (ii) peroxynitrite diffusion distance is significantly reduced. For peroxynitrite generated extracellularly this last effect is particularly dramatic at low cell density because CO(3)(-) and ()NO(2) are short-lived and decay mostly in the extracellular space or at the cell surface/membrane. This study was aimed to distinguish between peroxynitrite-induced extra- and intracellular modifications of red blood cells (RBC). Our results show that at low cell density and in the presence of CO(2) peroxynitrite induced the oxidation of surface thiols, the formation of 3-nitrotyrosine and DMPO-RBC adducts, and the down-regulation of glycophorins A and C (biomarkers of senescence). Reactivation of glycolysis reversed only the oxidation of surface thiols. Without CO(2) peroxynitrite also induced the oxidation of hemoglobin and glutathione, the accumulation of lactate, a decrease in ATP, the clustering of band 3, the externalization of phosphatidylserine, and the activation of caspases 8 and 3 (biomarkers of apoptosis). The latter biomarkers were all reversed by reactivation of glycolysis. We hypothesize that cell senescence could (generally) be derived by irreversible radical-mediated oxidation of membrane targets, while the appearance of apoptotic biomarkers could be bolstered by oxidation of intracellular targets. These results suggest that, depending on extracellular homolysis or diffusion to the intracellular space, peroxynitrite prompts RBCs toward either senescence or apoptosis through different oxidation mechanisms.  相似文献   

9.
The survival of skeletal muscle myoblasts in culture after exposure either to a donor of NO, sodium nitroprusside (SNP), or ethanamine, 2,2'-(hydroxynitrosohydrazono)bis-(DETA NONOate), or to a donor of both NO and O(-)(2), 3-morpholinosydnonimine hydrochloride (SIN-1), was investigated. SIN-1 reduced clonogenic survival markedly but donors of NO alone did not. The injurious effect of SIN-1 was prevented by oxyhemoglobin or by uric acid but not by superoxide dismutase. The exposure of myoblasts to authentic peroxynitrite (ONOO(-)) or to DETA NONOate in the presence of an O(-)(2)-generating system did not reduce their survival. The results show that NO or ONOO(-) alone is not detrimental to myoblast survival and suggest that SIN-1 toxicity is, at least in part, mediated by H(2)O(2) in this myoblast culture system.  相似文献   

10.
Tetrahydrobiopterin (BH4) serves as a critical co-factor for the endothelial nitric-oxide synthase (eNOS). A deficiency of BH4 results in eNOS uncoupling, which is associated with increased superoxide and decreased NO* production. BH4 has been suggested to be a target for oxidation by peroxynitrite (ONOO-), and ascorbate has been shown to preserve BH4 levels and enhance endothelial NO* production; however, the mechanisms underlying these processes remain poorly defined. To gain further insight into these interactions, the reaction of ONOO- with BH4 was studied using electron spin resonance and the spin probe 1-hydroxy-3-carboxy-2,2,5-tetramethyl-pyrrolidine. ONOO- reacted with BH4 6-10 times faster than with ascorbate or thiols. The immediate product of the reaction between ONOO- and BH4 was the trihydrobiopterin radical (BH3.), which was reduced back to BH4 by ascorbate, whereas thiols were not efficient in recycling of BH4. Uncoupling of eNOS caused by peroxynitrite was investigated in cultured bovine aortic endothelial cells (BAECs) by measuring superoxide and NO* using spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine and the NO*-spin trap iron-diethyldithiocarbamate. Bolus ONOO-, the ONOO- donor 3-morpholinosydnonimine, and an inhibitor of BH4 synthesis (2,4-diamino-6-hydroxypyrimidine) uncoupled eNOS, increasing superoxide and decreasing NO* production. Exogenous BH4 supplementation restored endothelial NO* production. Treatment of BAECs with both BH4 and ascorbate prior to ONOO- prevented uncoupling of eNOS by ONOO-. This study demonstrates that endothelial BH4 is a crucial target for oxidation by ONOO- and that the BH4 reaction rate constant exceeds those of thiols or ascorbate. We confirmed that ONOO- uncouples eNOS by oxidation of tetrahydrobiopterin and that ascorbate does not fully protect BH4 from oxidation but recycles BH3. radical back to BH4.  相似文献   

11.
Peroxynitrite (ONOO-) is a transient powerful oxidant produced in vivo as the reaction of nitrogen monoxide (.NO) with superoxide (O2.-). The peroxynitrite reactivity is modulated by carbon dioxide (CO2) which enhances the peroxynitrite-mediated nitration of aromatics and partially impairs the oxidation of thiols. Here, the effect of CO2 on the peroxynitrite-mediated inhibition of human caspase-3, the execution enzyme of the apoptotic cascade, is reported. Peroxynitrite inhibits the catalytic activity of human caspase-3 by oxidizing the Sgamma atom of the Cys catalytic residue. In the absence of CO2, 1.0 equivalent of peroxynitrite inactivates 1.0 equivalent of human caspase-3. In the presence of the physiological concentration of CO2 (=1.3x10(-3) M), 1.0 equivalent of peroxynitrite inactivates only 0.38 equivalents of human caspase-3. Peroxynitrite affects the kcat value of the human caspase-3 catalyzed hydrolysis of N-acetyl-Asp-Glu-Val-Asp-7-amido-4-methylcoumarin, without altering Km. Both in the absence and presence of CO2, the reducing agent dithiothreitol does not prevent human caspase-3 inhibition by peroxynitrite and does not reverse the peroxynitrite-induced inactivation of human caspase-3. These results represent the first evidence for modulation of peroxynitrite-mediated inhibition of cysteine proteinase action by CO2, supporting the role of CO2 in fine tuning of cell processes (e.g., apoptosis).  相似文献   

12.
The nitroxyl anion (NO-) is a highly reactive molecule that may be involved in pathophysiological actions associated with increased formation of reactive nitrogen oxide species. Angeli's salt (Na2N2O3; AS) is a NO- donor that has been shown to exert marked cytotoxicity. However, its decomposition intermediates have not been well characterized. In this study, the chemical reactivity of AS was examined and compared with that of peroxynitrite (ONOO-) and NO/N2O3. Under aerobic conditions, AS and ONOO- exhibited similar and considerably higher affinities for dihydrorhodamine (DHR) than NO/N2O3. Quenching of DHR oxidation by azide and nitrosation of diaminonaphthalene were exclusively observed with NO/N2O3. Additional comparison of ONOO- and AS chemistry demonstrated that ONOO- was a far more potent one-electron oxidant and nitrating agent of hydroxyphenylacetic acid than was AS. However, AS was more effective at hydroxylating benzoic acid than was ONOO-. Taken together, these data indicate that neither NO/N2O3 nor ONOO- is an intermediate of AS decomposition. Evaluation of the stoichiometry of AS decomposition and O2 consumption revealed a 1:1 molar ratio. Indeed, oxidation of DHR mediated by AS proved to be oxygen-dependent. Analysis of the end products of AS decomposition demonstrated formation of NO2- and NO3- in approximately stoichiometric ratios. Several mechanisms are proposed for O2 adduct formation followed by decomposition to NO3- or by oxidation of an HN2O3- molecule to form NO2-. Given that the cytotoxicity of AS is far greater than that of either NO/N2O3 or NO + O2, this study provides important new insights into the implications of the potential endogenous formation of NO- under inflammatory conditions in vivo.  相似文献   

13.
Peroxynitrite (ONOO(-)/ONOOH), the product of the diffusion-limited reaction of nitric oxide (*NO) with superoxide (O(-*)(2)), has been implicated as an important mediator of tissue injury during conditions associated with enhanced *NO and O(-*)(2) production. Although several groups of investigators have demonstrated substantial oxidizing and cytotoxic activities of chemically synthesized peroxynitrite, others have proposed that the relative rates of *NO and production may be critical in determining the reactivity of peroxynitrite formed in situ (Miles, A. M., Bohle, D. S., Glassbrenner, P. A., Hansert, B., Wink, D. A., and Grisham, M. B. (1996) J. Biol. Chem. 271, 40-47). In the present study, we examined the mechanisms by which excess O(-*)(2) or *NO production inhibits peroxynitrite-mediated oxidation reactions. Peroxynitrite was generated in situ by the co-addition of a chemical source of *NO, spermineNONOate, and an enzymatic source of O(-*)(2), xanthine oxidase, with either hypoxanthine or lumazine as a substrate. We found that the oxidation of the model compound dihydrorhodamine by peroxynitrite occurred via the free radical intermediates OH and NO(2), formed during the spontaneous decomposition of peroxynitrite and not via direct reaction with peroxynitrite. The inhibitory effect of excess O(-*)(2) on the oxidation of dihydrorhodamine could not be ascribed to the accumulation of the peroxynitrite scavenger urate produced from the oxidation of hypoxanthine by xanthine oxidase. A biphasic oxidation profile was also observed upon oxidation of NADH by the simultaneous generation of *NO and O(-*)(2). Conversely, the oxidation of glutathione, which occurs via direct reaction with peroxynitrite, was not affected by excess production of *NO. We conclude that the oxidative processes initiated by the free radical intermediates formed from the decomposition of peroxynitrite are inhibited by excess production of *NO or O(-*)(2), whereas oxidative pathways involving a direct reaction with peroxynitrite are not altered. The physiological implications of these findings are discussed.  相似文献   

14.
The aim of this study was to investigate the oxidation of two common fluorescent probes, dichlorodihydrofluorescein (DCFH2) and dihydrorhodamine (DHR), and their oxidized forms, dichlorofluorescein and rhodamine, by the radical products of peroxynitrite chemistry, *OH, NO2*, and CO3*-. At pH 8.0-8.2, rate constants for the interaction of carbonate radical with probes were estimated to be 2.6 x 10(8) x M(-1) s(-1) for DCFH2 and 6.7 x 10(8) M(-1) s(-1) for DHR. Nitrogen dioxide interacted more slowly than carbonate radical with these probes: the rate constant for the interaction between NO2* and DCFH2 was estimated as 1.3 x 10(7) M(-1) s(-1). Oxidation of DHR by nitrogen dioxide led to the production of rhodamine, but the kinetics of these reactions were complex. Hydroxyl radical interacted with both probes with rate constants close to the diffusion-controlled limit. We also found that oxidized forms of these fluorescent probes reacted rapidly with carbonate, nitrogen dioxide, and hydroxyl radicals. These data suggest that probe oxidation may often be in competition with reaction of the radicals with cellular antioxidants.  相似文献   

15.
The iron chelating agent desferrioxamine inhibits peroxynitrite-mediated oxidations and attenuates nitric oxide and oxygen radical-dependent oxidative damage both in vitro and in vivo. The mechanism of protection is independent of iron chelation and has remained elusive over the past decade. Herein, stopped-flow studies revealed that desferrioxamine does not react directly with peroxynitrite. However, addition of peroxynitrite to desferrioxamine in both the absence and the presence of physiological concentrations of CO2 and under excess nitrite led to the formation of a one-electron oxidation product, the desferrioxamine nitroxide radical, consistent with desferrioxamine reacting with the peroxynitrite-derived species carbonate (CO3*-) and nitrogen dioxide (*NO2) radicals. Desferrioxamine inhibited peroxynitrite-dependent free radical-mediated processes, including tyrosine dimerization and nitration, oxyhemoglobin oxidation in the presence of CO2, and peroxynitrite plus carbonate-dependent chemiluminescence. The direct two-electron oxidation of glutathione by peroxynitrite was unaffected by desferrioxamine. The reactions of desferrioxamine with CO3*- and *NO2 were unambiguously confirmed by pulse radiolysis studies, which yielded second-order rate constants of 1.7 x 10(9) and 7.6 x 10(6) M(-1) s(-1), respectively. Desferrioxamine also reacts with tyrosyl radicals with k = 6.3 x 10(6) M(-1) s(-1). However, radical/radical combination reactions between tyrosyl radicals or of tyrosyl radical with *NO2 outcompete the reaction with desferrioxamine and computer-assisted simulations indicate that the inhibition of tyrosine oxidation can be fully explained by scavenging of the peroxynitrite-derived radicals. The results shown herein provide an alternative mechanism to account for some of the biochemical and pharmacological actions of desferrioxamine via reactions with CO3*- and *NO2 radicals.  相似文献   

16.
Reaction of peroxynitrite with the biological ubiquitous CO(2) produces about 35% yields of two relatively strong one-electron oxidants, CO(3) and ( small middle dot)NO(2), but the remaining of peroxynitrite is isomerized to the innocuous nitrate. Partial oxidant deactivation may confound interpretation of the effects of HCO3-/CO(2) on the oxidation of targets that react with peroxynitrite by both one- and two-electron mechanisms. Thiols are example of such targets, and previous studies have reported that HCO3-/CO(2) partially inhibits GSH oxidation by peroxynitrite at pH 7.4. To differentiate the effects of HCO3-/CO(2) on two- and one-electron thiol oxidation, we monitored GSH, cysteine, and albumin oxidation by peroxynitrite at pH 5.4 and 7.4 by thiol disappearance, oxygen consumption, fast flow EPR, and EPR spin trapping. Our results demonstrate that HCO3-/CO(2) diverts thiol oxidation by peroxynitrite from two- to one-electron mechanisms particularly at neutral pH. At acid pH values, thiol oxidation to free radicals predominates even in the absence of HCO3-/CO(2). In addition to the previously characterized thiyl radicals (RS.), we also characterized radicals derived from them such as the corresponding sulfinyl (RSO.) and disulfide anion radical (RSSR.-) of both GSH and cysteine. Thiyl, RSO. and RSSR.- are reactive radicals that may contribute to the biodamaging and bioregulatory actions of peroxynitrite.  相似文献   

17.
3-Morpholinosyndnomine (SIN-1) has been reported to be a peroxynitrite (OONO(-)) donor because it produces both nitric oxide (NO) and superoxide (O(2)(-).) upon decomposition in aqueous solution. However, SIN-1 can decompose to primarily NO in the presence of electron acceptors, including those found in biological tissues, making it necessary to determine the release product(s) formed in any given biological system. In a mixed cortical cell culture system, SIN-1 caused a concentration-dependent increase in cortical cell injury with a parallel increase in the release of cellular proteins containing 3-nitrotyrosine into the culture medium. The increase in 3-nitrotyrosine immunoreactivity, a footprint of OONO(-) production, was specific for SIN-1 as exposure to neurotoxic concentrations of an NO donor (Z)-1-[2-aminoethyl)-N-(2-ammonioethyl) aminodiazen-1-ium-1,2-diolate (DETA/NO), or NMDA did not result in the nitration of protein tyrosine residues. Both SIN-1-induced injury and 3-nitrotyrosine staining were prevented by the addition of either 5,10,15,20-Tetrakis (4-sulfonatophenyl) prophyrinato iron (III) [FeTPPS], an OONO(-) decomposition catalyst, or uric acid, an OONO(-) scavenger. Removal of NO alone was sufficient to inhibit the formation of OONO(-) from SIN-1 as well as its cytotoxicity. Removal of O(2)(-). and the subsequently formed H(2)O(2) by superoxide dismutase (SOD) plus catalase likewise prevented the nitration of protein-bound tyrosine but actually enhanced the cytotoxicity of SIN-1, indicating that cortical cells can cope with the oxidative but not the nitrosative stress generated. Finally, neural injury induced by SIN-1 in unadulterated cortical cells was prevented by antagonism of AMPA/kainate receptors, while blockade of the NMDA receptor was without effect. In contrast, activation of both NMDA and non-NMDA receptors contributed to the SIN-1-mediated neurotoxicity when cultures were exposed in the presence of SOD plus catalase. Thus, whether SIN-1 initiates neural cell death in an OONO(-)-dependent or -independent manner is determined by the antioxidant status of the cells. Further, the mode of excitotoxicity by which injury progresses is determined by the NO-related species generated.  相似文献   

18.
We have investigated the protective effects of water-soluble cationic Mn(III) porphyrins against peroxynitrite (ONOO-)-induced DNA damage in the cells of Salmonella typhimurium TA4107/pSK1002 and lipid peroxidation of red blood cell membranes. Mn(III) tetrakis (N-methylpyridinium-4-yl) porphine (TMPyP) and the brominated form, Mn(III) octabromo-tetrakis (N-methylpyridinium-4-yl) porphine (OBTMPyP) effectively reduced the damage and peroxidation induced by N-morpholino sydnonimine (SIN-1), which gradually generates ONOO- from O2*- and *NO produced through hydrolysis. Mn(III)OBTMPyP became 10-fold more active than the non-brominated form. In the presence of authentic ONOO-, the Mn(III) porphyrins were ineffective against damage and strongly enhanced lipid peroxidation, while the coexistence of ascorbic acid inhibited peroxidation. Using a diode array spectrophotometry, the reactions of Mn(III)TMPyP with authentic ONOO- and SIN-1 were measured. Mn(III)TMPyP is known to be catalytic for ONOO- decomposition in the presence of antioxidants. OxoMn(IV)TMPyP with SIN-1 was rapidly reduced back to Mn(III) without adding any oxidants. Further, in the SIN-1 system, the concentration of NO2- and NO3- were colorimetrically determined by Griess reaction based on the two-step diazotization. NO2- increased by addition of Mn(III) porphyrin and the ratio of NO2- to NO3- was 4-7 times higher than that (1.05) of SIN-1 alone. This result suggests that O2*- from SIN-1 acts as a reductant and *NO cogenerated is oxidized to NO2-, a primarily decomposition product of *NO. Under the pathological conditions where biological antioxidants are depleted and ONOO- and O2*- are extensively generated, the Mn(III) porphyrins will effectively cycle ONOO- decomposition using O2*-.  相似文献   

19.
Heo J  Campbell SL 《Biochemistry》2006,45(7):2200-2210
Ras GTPases cycle between inactive GDP-bound and active GTP-bound states to modulate a diverse array of processes involved in cellular growth control. We have previously shown that both NO/O(2) (via nitrogen dioxide, (*)NO(2)) and superoxide radical anion (O(2)(*)(-)) promote Ras guanine nucleotide dissociation. We now show that hydrogen peroxide in the presence of transition metals (i.e., H(2)O(2)/transition metals) and peroxynitrite also trigger radical-based Ras guanine nucleotide dissociation. The primary redox-active reaction species derived from H(2)O(2)/transition metals and peroxynitrite is O(2)(*)(-) and (*)NO(2), respectively. A small fraction of hydroxyl radical (OH(*)) is also present in both. We also show that both carbonate radical (CO(3)(*)(-)) and (*)NO(2), derived from the mixture of peroxynitrite and bicarbonate, facilitate Ras guanine nucleotide dissociation. We further demonstrate that NO/O(2) and O(2)(*)(-) promote Ras GDP exchange with GTP in the presence of a radical-quenching agent, ascorbate, or NO, and generation of Ras-GTP promotes high-affinity binding of the Ras-binding domain of Raf-1, a downstream effector of Ras. S-Nitrosylated Ras (Ras-SNO) can be formed when NO serves as a radical-quenching agent, and hydroxyl radical but not (*)NO(2) or O(2)(*)(-) can further react with Ras-SNO to modulate Ras activity in vitro. However, given the lack of redox specificity associated with the high redox potential of OH(*), it is unclear whether this reaction occurs under physiological conditions.  相似文献   

20.
R K Upmacis  R S Deeb  D P Hajjar 《Biochemistry》1999,38(38):12505-12513
Nitric oxide and its derivatives have been shown to both activate and inhibit prostaglandin H(2) synthase 1 (PGHS-1). We set out to determine the mechanisms by which different nitrogen oxide derivatives modulate PGHS-1 activity. To this end, we show that 3-morpholinosydnonimine hydrochloride (SIN-1), a compound capable of generating peroxynitrite, activates purified PGHS-1 and also stimulates PGE(2) production in arterial smooth muscle cells in the presence of exogenous arachidonic acid. The effect of SIN-1 in smooth muscle cells was abrogated by superoxide and peroxynitrite inhibitors, which supports the hypothesis that peroxynitrite is an activating species of PGHS-1. Indeed, authentic peroxynitrite also induced PGE(2) production in arachidonic acid-stimulated cells. In contrast, when cells were exposed to the nitric oxide-releasing compound 1-hydroxy-2-oxo-3-[(methylamino)propyl]-3-methyl-1-triazene (NOC-7), PGHS-1 enzyme activity was inhibited in the presence of exogenous arachidonic acid. Finally, in lipid-loaded smooth muscle cells, we demonstrate that SIN-1 stimulates arachidonic acid-induced PGE(2) production; albeit, the extent of activation is reduced compared to that under normal conditions. These results indicate that formation of peroxynitrite is a key intermediary step in PGHS-1 activation. However, other forms of NO(x)() inhibit PGHS-1. These results may have implications in the regulation of vascular function and tone in normal and atherosclerotic arteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号