首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Porins mediate the uptake of nutrients across the outer membrane of Gram-negative bacteria. For general porins like OmpF, electrophysicoloigcal experiments now establish that the charged residues within their channels primarily modulate pore selectivity, rather than voltage-gated switching between open and closed states. Recent studies on the maltoporin, LamB, solidify the importance of its 'greasy slide' aromatic residues during sugar transport, and suggest the involvement of L9, in the exterior vestibule, as the initial maltodextrin binding site. The application of biophysical methodologies to the TonB-dependent porin, FepA, ostensibly reveal the opening and closing of its channel during ligand uptake, a phenomenon that was predicted but not previously demonstrated.  相似文献   

2.
P E Klebba  M Hofnung    A Charbit 《The EMBO journal》1994,13(19):4670-4675
LamB facilitates the uptake of maltose and maltodextrins across the bacterial outer membrane and acts as a general porin for small molecules. Using directed deletion mutagenesis we removed several regions of the LamB polypeptide and identified a polypeptide loop that both constricts the maltoporin channel and binds maltodextrins. In conjunction with a second sugar binding site that we identified at the rim of the channel, these data clarify, for the first time, the mechanism of transport through a substrate-specific porin. Furthermore, unlike the transverse loops of general porins, which originate from a central location in their primary structure, the loop that regulates LamB permeability originates from a C-terminal site. Thus LamB represents a second distinct class of porins in the bacterial outer membrane that is differently organized and separately evolved from OmpF-type, general porins.  相似文献   

3.
The lining of the maltodextrin-specific maltoporin (LamB) channel exhibits a string of aromatic residues, the greasy slide, part of which has been shown previously by crystallography to be involved in substrate binding. To probe the functional role of the greasy slide, alanine scanning mutagenesis has been performed on the six greasy slide residues and Y118 at the channel constriction. The mutants were characterized by an in vivo uptake assay and sugar-induced-current-noise analysis. Crystallographic analysis of the W74A mutant showed no perturbation of the structure. All mutants showed considerably decreased maltose uptake rates in vivo (<10% of the wild-type value), indicating the functional importance of the investigated residues. Substitutions at the channel center revealed appreciably increased (up to 100-fold) in vitro half-saturation concentrations for maltotriose and maltohexaose binding to the channel. Sugar association rates, however, were significantly affected also by the mutations at either end of the slide (W74A, W358A, and F227A), an effect which became most apparent upon nonsymmetrical sugar addition. The kinetic data are discussed on the basis of an asymmetric one-site two-barrier model, which suggests that, at low substrate concentrations, as are found under physiological conditions, only the heights of the extracellular and periplasmic barriers, which are reduced by the presence of the greasy slide, determine the efficiency of this facilitated diffusion channel.  相似文献   

4.
LamB of Escherichia coli K12, also called maltoporin, is an outer membrane protein, which specifically facilitates the diffusion of maltose and maltodextrin through the bacterial outer membrane. Each monomer is composed of an 18-stranded antiparallel beta-barrel. In the present work, on the basis of the known X-ray structure of LamB, the effects of modifications of the beta-barrel domain of maltoporin were studied in vivo and in vitro. We show that: (i) the substitution of the pair of strands beta13-beta14 of the E. coli maltoporin with the corresponding pair of strands from the functionally related maltoporin of Salmonella typhimurium yielded a protein active in vivo and in vitro; and (ii) the removal of one pair of beta-strands (deletion beta13-beta14) from the E. coli maltoporin, or its replacement by a pair of strands from the general porin OmpF of E. coli, leads to recombinant proteins that lost in vivo maltoporin activities but still kept channel formation and carbohydrate binding in vitro. We also inserted into deletion beta13-beta14 the portion of the E. coli LamB protein comprising strands beta13 to beta16. This resulted in a protein expected to have 20 beta-strands and which completely lost all LamB-specific activities in vivo and in vitro.  相似文献   

5.
LamB (maltoporin) is essential for the uptake of maltose and malto-oligosaccharides across the outer membrane of Escherichia coli. Purified LamB was reconstituted in artificial lipid bilayer membranes forming channels in the permanently open configuration at neutral pH. Almost complete channel closure was observed when the pH on both sides of the membrane was lowered to pH 4. When LamB was added to only one side of the membrane, the cis-side, and the pH was lowered at either side of the membrane, the cis- or the trans-side, the response to pH was asymmetric, suggesting preferential orientation of maltoporin channels and pH- dependent closure of only one side of the channel. In experiments with LamB mutants in which major external loops L4, L6, and/or L9 were deleted, we identified the surface-exposed loops L4 and L6 as the cause of pH-mediated closure. The pH dependence of the LamB channel is consistent with the assumption that it inserts in a preferential orientation into the lipid bilayer. About 70-80% of the reconstituted channels are oriented with the extracellular entrance toward the side to which the protein was added (the cis-side) and with the periplasmic opening on the opposite side (the trans-side). The possibility of closing the channels, which are oriented in the reverse direction by low pH at the trans-side, allowed the deduction of channel asymmetry with respect to carbohydrate binding kinetics. Whereas maltose binding was found to be almost symmetric with respect to the channel orientation, the sucrose and trehalose binding to LamB was asymmetric. The results are discussed in respect to possible physiological function of the pH-dependent closure of maltoporin.  相似文献   

6.
Substrate-specific outer membrane channels of Gram-negative bacteria mediate uptake of many small molecules, including carbohydrates. The mechanism of sugar uptake by enterobacterial channels, such as Escherichia coli LamB (maltoporin), has been characterized in great detail. In pseudomonads and related organisms, sugar uptake is not mediated by LamB but by OprB channels. Beyond the notion that OprB channels seem to prefer monosaccharides as substrates, very little is known about OprB-mediated sugar uptake. Here I report the X-ray crystal structure of an OprB channel from Pseudomonas putida F1. The structure shows that OprB forms a monomeric, 16-stranded β-barrel with a constriction formed by extracellular loops L2 and L3. The side chains of two highly conserved arginine residues (Arg83 and Arg110) and a conserved glutamate (Glu106) line the channel constriction and interact with a bound glucose molecule. Liposome swelling uptake assays show a strong preference for monosaccharide transport over disaccharides. Moreover, substrates with a net negative charge are disfavored by the channel, probably due to the negatively charged character of the constriction. The architecture of the eyelet and the absence of a greasy slide provide an explanation for the observed specificity of OprB for monosaccharides rather than the oligosaccharides preferred by LamB and related enterobacterial channels.  相似文献   

7.
The 3-D structure of the maltooligosaccharide-specific LamB channel of Escherichia coli (also called maltoporin) is known from x-ray crystallography. The central constriction of the channel formed by the external loop 3 is controlled by tyrosine 118. Y118 was replaced by site-directed mutagenesis by 10 other amino acids (alanine (A), isoleucine (I), asparagine (N), serine (S), cysteine (C), aspartic acid (D), arginine (R), histidine (H), phenylalanine (F), and tryptophan (W)) including neutral ones, negatively and positively charged amino acids to study the effect of their size, their hydrophobicity index, and their charge on maltose and maltooligosaccharide binding to LamB. The mutants were reconstituted into lipid bilayer membranes and the stability constants for binding of maltose, maltotriose, maltopentaose, and maltoheptaose to the channel were measured using titration experiments. The mutation of Y118 to any other non-aromatic amino acid led to a substantial decrease of the stability constant of binding by factors between about two and six. The highest effect was observed for the mutant Y118A. Replacement of Y118 by the two other aromatic amino acids, phenylalanine (F) and tryptophan (W), resulted in a substantial increase of the stability constant maximally by a factor of almost 400 for the Y118W mutant. The carbohydrate-induced block of the channel function was used for the study of current noise through the different mutant LamB channels. The analysis of the power density spectra allowed the evaluation of the on- and off-rate constants (k(1) and k(-1)) of sugar binding. The results suggest that both rate constants were affected by the mutations. For most mutants, with the exception of Y118F and Y118W, k(1) decreased and k(-1) increased, whereas the opposite was found for the aromatic amino acid mutants. The results suggest that tyrosine 118 has a crucial effect on carbohydrate transport through LamB.  相似文献   

8.
The relationships between the bacteriophage lambda binding site, the starch binding site and the pore formed by maltoporin (LamB protein, lambda receptor protein) were investigated. Bacteria with single amino acid substitutions in the maltoporin sequence, which were previously shown to be strongly reduced in phage lambda sensitivity, were assayed for maltose- (and maltodextrin) selective pore functions. Maltose transport assays was performed at low substrate concentrations, under conditions where LamB is limiting for transport. It revealed three classes of mutants. Class A is composed of mutants with no effect on transport (substitutions at amino acid residues 154, 155, 259, 382 and 401); class B corresponds to mutants with a significant but variable reduction in transport (sites 148, 151, 152, 163, 164, 245, 247 and 250); class C is represented by a single mutant for which transport is almost completely abolished (site 18). Starch binding was assayed by two different methods that gave compatible results. In class A mutants, binding was normal, while no binding was observed in the class C mutant. Binding was impaired to various extents in category B mutants. There was a correlation between the level of impairment of starch binding and impairment of maltose transport, consistent with the notion that the residues influencing starch binding are inside, or in close proximity to, the pore. These results, together with previous data on starch-binding mutants that were not affected in phage binding (substitutions at residues 8, 74, 82, 118 and 121), suggest that the binding sites for starch and phage lambda overlap but are distinct. Mutations affecting transport and starch binding are located in the first third of the protein and in the region of residues 245 to 250. Mutations affecting phage adsorption are located mainly in the last two-thirds of the protein. The topological constraints suggested by the results with the available mutants altered in the lamB gene were used to propose a revised model of maltoporin folding across the outer membrane as well as to define the outlines of footprints of macromolecular binding sites (phage, starch and monoclonal antibodies) on the surface of the protein.  相似文献   

9.
The three-dimensional structure of the maltooligosaccharide specific outer membrane channel LamB of Escherichia coli complexed with sugar molecules revealed a hypothetical transport pathway. Sugars are supposed to slide over a stretch of aromatic residues facilitated by continuous making/breaking of hydrogen bonds between the hydroxyl groups of the sugars and charged amino acids, the "polar tracks." The effect of nine single and three multiple mutations in the polar track residues was investigated by current fluctuations, liposome swelling assays, and in vivo uptake of radiolabeled substrates. Additionally, sugar transport through wild-type LamB was investigated by current fluctuation analysis in water and deuterium. This way the effects on k(on) and k(off) could be investigated separately. Analyses of the various mutants revealed a strong effect on the k(on) values. Because steering to the binding site requires only a few interactions, consequently the loss of even one bond will have a strong effect. Deuterium experiments, which changed the characteristic of all hydrogen bonds, showed a strong effect on k(off) rates, because at this stage the sugar has numerous interactions with the channel. Furthermore, all the mutations induces a strong decrease of in vivo uptake of sugars. These results clearly demonstrate the importance of the polar track residues on both on and off rates in sugar transport and reveal a strong cooperative effect of hydrogen bond formation.  相似文献   

10.
Summary We have determined the sequence of the lamB gene from Klebsiella pneumoniae. It encodes the precursor to the LamB protein, a 429 amino acid polypeptide with maltoporin function. Comparison with the Escherichia coli LamB protein reveals a high degree of homology, with 325 residues strictly identical. The N-terminal third of the protein is the most conserved part of the molecule (1 change in the signal sequence, and 13 changes up to residue 146 of the mature protein). Differences between the two mature proteins are clustered mainly in six regions comprising residues 145–167, 173–187, 197–226, 237–300, 311–329, and 367–387 (K. pneumoniae LamB sequence). The most important changes were found in regions predicted by the two-dimensional model of LamB folding to form loops on the cell surface. In vivo maltose and maltodextrin transport properties of E. coli K 12 and K. pneumoniae strains were identical. However, none of the E. coli K12 LamB-specific phages was able to plaque onto K. pneumoniae. Native K. pneumoniae LamB protein forms highly stable trimers. The protein could be purified by affinity chromatography on starch-Sepharose as efficiently as the E. coli K12 LamB protein, indicating a conservation of the binding site for dextrins. However, none of the monoclonal antibodies directed against native E. coli K12 LamB protein recognized native purified K. pneumoniae LamB protein. These data indicate that most of the variability occurs within exposed regions of the protein and provide additional support for the proposed model of LamB folding. The fact that the N-terminal third of the protein is highly conserved is in agreement with the idea that it is part of, or constitutes, the pore domain located within the transmembranous channel and that it is not accessible from the cell surface.  相似文献   

11.
LamB (maltoporin) of Salmonella typhimurium was found to be more strongly associated with the murein than OmpF. It was purified in one step using a hydroxyapatite (HTP) column. Reconstitution of the pure protein with lipid bilayer membrane showed that LamB of S. typhimurium formed small ion-permeable channels with a single channel conductance of about 90 pS in 1 M KCl and some preference for cations over anions. The conductance concentration curve was linear, which suggested that LamB of S. typhimurium does not contain any binding site for ions. Pore conductance was completely inhibited by the addition of 20 mM maltotriose. Titration of the LamB-induced membrane conductance with different sugars, including all members of the maltooligosaccharide series up to seven glucose residues, suggested that the channel contains, like LamB (maltoporin) of Escherichia coli, a binding site for sugars. The binding constant of sugars of the maltooligosaccharide series increased with increasing number of glucose residues up to five (saturated). Small sugars had a higher stability constant for sugar binding relative to LamB of E. coli. The advantage of a binding site inside a specific porin for the permeation of solutes is discussed with respect to the properties of a general diffusion porin.  相似文献   

12.
Summary Lipid bilayer experiments were performed with the sugar-specific LamB (maltoporin) channel ofEscherichia coli outer membrane. Single-channel analysis of the conductance steps caused by LamB showed that there was a linear relationship between the salt concentration in the aqueous phase and the channel conductance, indicating only small or no binding between the ions and the channel interior. The total or the partial blockage of the ion movement through the LamB channel was not dependent on the ion concentration in the aqueous phase. Both results allowed the investigation of the sugar binding in more detail, and the stability constants of the binding of a large variety of sugars to the binding site inside the channel were calculated from titration experiments of the membrane conductance with the sugars. The channel was highly cation selective, both in the presence and absence of sugars, which may be explained by the existence of carbonyl groups inside the channel. These carbonyl groups may also be involved in the sugar binding via hydrogen bonds. The kinetics of the sugar transport through the LamB channel were estimated relative to maltose by assuming a simple one-site, two-barrier model from the relative rates of permeation taken from M. Luckey and H. Nikaido (Proc. Natl. Acad. Sci. USA 77:165–171 (1980a)) and the stability constants for the sugar binding given in this study.  相似文献   

13.
The cryptic gene bglH from the Escherichia coli chromosome was cloned into a tacOP-driven expression vector. The resulting plasmid was transferred into the porin-deficient E. coli strain KS26 and the protein was expressed by addition of IPTG. The BglH protein was localized in the outer membrane. It was purified to homogeneity using standard methods. Reconstitution experiments with lipid bilayer membranes defined BglH as a channel-forming component, i.e. it is an outer membrane porin. The single-channel conductance of BglH (560 pS in 1 M KCl) was only one-third of that of the general diffusion porins of E. coli outer membrane. The presence of carbohydrates in the aqueous phase led to a dose-dependent block of ion transport through the channel, similar to that found for LamB (maltoporin) of E. coli and Salmonella typhimurium, which means that BglH is a porin specific for the uptake of carbohydrates. The binding constants of a variety of different carbohydrates were calculated from titration experiments of the BglH-induced membrane conductance. The tightest binding was observed with the aromatic beta-D-glucosides arbutin and salicin, and with gentibiose and cellobiose. Binding of maltooligosaccharides to BglH was in contrast to their binding to LamB in that it was much weaker, indicating that the binding site of BglH for carbohydrates is different from that of LamB (maltoporin). The kinetics of cellopentaose binding to BglH was investigated using the carbohydrate-induced current noise and was compared with that of cellopentaose binding to LamB (maltoporin) and ScrY (sucroseporin).  相似文献   

14.
Affinity-chromatographic selection on immobilized starch was used to selectively enhance the affinity of the maltodextrin-specific pore protein ( maltoporin , LamB protein, or lambda receptor protein) in the outer membrane of E. coli. Selection strategies were established for rare bacteria in large populations producing maltoporin variants with enhanced affinities for both starch and maltose, for starch but not maltose and for maltose but not starch. Three classes of lamB mutants with up to eight-fold increase in affinity for particular ligands were isolated. These mutants provide a unique range of modifications in the specificity of a transport protein.  相似文献   

15.
The cell surface receptor for bacteriophage Lambda is LamB (maltoporin). Responsible for phage binding to LamB is the C-terminal part, gpJ, of phage tail protein J. To study the interaction between LamB and gpJ, a chimera protein composed of maltose binding protein (MBP or MalE) connected to the C-terminal part of J (gpJ, amino acids 684-1131) of phage tail protein J of bacteriophage Lambda was expressed in Escherichia coli and purified to homogeneity. The interaction of the MBP-gpJ chimera protein with reconstituted LamB and its mutants LamB Y118G and the loop deletion mutant LamB Delta4+Delta6+Delta9v was studied using planar lipid bilayer membranes on a single-channel and multichannel level. Titration with the MBP-gpJ chimera blocked completely the ion current through reconstituted LamB when it was added to the cis side, the extracellular side of LamB with a half-saturation constant of approximately 6 nM in 1 M KCl. Control experiments with LamB Delta4+Delta6+Delta9v from which all major external loops had been removed showed similar blocking, whereas MBP alone caused no visible effect. Direct conductance measurement with His(6)-gpJ that contained a hexahistidyl tag (His(6) tag) at the N-terminal end of the protein for easy purification revealed no blocking of the ion current, requiring other measurements for the binding constant. However, when maltoporin was preincubated with His-gpJ, MBP-gpJ could not block the channel, which indicated that also His(6)-gpJ bound to the channel. High-molecular mass bands on SDS-PAGE and Western blots, confirming the planar lipid bilayer experiment results, also demonstrated stable complex formation between His(6)-gpJ and LamB or LamB mutants. The results revealed that phage Lambda binding includes not only the extracellular loops.  相似文献   

16.
LamB (maltoporin) of Escherichia coli outer membrane was reconstituted into artificial lipid bilayer membranes. The channel contains a binding site for sugars and is blocked for ions when the site is occupied by a sugar. The on and off reactions of sugar binding cause an increase of the noise of the current through the channel. The sugar-induced current noise of maltoporin was used for the evaluation of the sugar-binding kinetics for different sugars of the maltooligosaccharide series and for sucrose. The on rate constant for sugar binding was between 10(6) and 10(7) M-1.s-1 for the maltooligosaccharides and corresponds to the movement of the sugars from the aqueous phase to the central binding site. The off rate (corresponding to the release of the sugars from the channel) decreased with increasing number of glucose residues in the maltooligosaccharides from approximately 2,000 s-1 for maltotriose to 180 s-1 for maltoheptaose. The kinetics for sucrose movement was considerably slower. The activation energies of the stability constant and of the rate constants for sugar binding were evaluated from noise experiments at different temperatures. The role of LamB in the transport of maltooligosaccharides across the outer membrane is discussed.  相似文献   

17.
The 3D-structure of the maltooligosaccharide-specific LamB-channel of Escherichia coli (also called maltoporin) is known from X-ray crystallography. The 3D structure suggests that a number of aromatic residues (Y6, Y41, W74, F229, W358 and W420) within the channel lumen are involved in carbohydrate and ion transport. All aromatic residues were replaced by alanine-scanning mutagenesis. Furthermore, LamB mutants were created in which two, three, four, five and all six aromatic residues were replaced to study their effects on ion and maltopentaose transport through LamB. The purified mutant proteins were reconstituted into lipid bilayer membranes and the single-channel conductance of the mutants was studied in conductance experiments. The results suggest that all aromatic residues provide some steric hindrance for ion transport through LamB. Highest impact is provided by Y6 and Y41 that are localized opposite Y118, which form the central constriction of the LamB channel. Stability constants for binding of maltopentaose to the mutant channels were measured using titration experiments with the carbohydrate. The mutation of one or several aromatic residue(s) led to a substantial decrease of the stability constant of binding. The highest effect was observed when all aromatic residues were replaced by alanine because no binding of maltopentaose could be detected in such a case. However, binding was again possible when Y118 was replaced by tryptophan. The carbohydrate-induced block of the channel function could be used also for the study of current noise through the different mutant LamB-channels. The analysis of the power density spectra of some of the mutants allowed the evaluation of the on-rate and off-rate constants (k1 and k(-1)) of carbohydrate binding to the binding site inside the channels. The results suggest that both on-rate and off-rate constants were affected by the mutations. For most mutants, k1 decreased and k(-1) increased. The possible influence of the aromatic residues of the greasy slide on carbohydrate and ion transport through LamB is discussed.  相似文献   

18.
Maltoporin (LamB) and sucrose porin (ScrY) reside in the bacterial outer membrane and facilitate the passive diffusion of maltodextrins and sucrose, respectively. To gain further insight into the determinants of solute specificity, LamB mutants were designed to allow translocation of sucrose, which hardly translocates through wild-type LamB. Three LamB mutants were studied. (a) Based on sequence and structure alignment of LamB with ScrY, two LamB triple mutants were generated (R109D, Y118D,D121F; R109N,Y118D,D121F) to mimic the ScrY constriction. The crystal structure of the first of these mutants was determined to be 3.2 A and showed an increased ScrY-like cross-section except for D109 that protrudes into the channel. (b) Based on this crystal structure a double mutant was generated by truncation of the two residues that obstruct the channel most in LamB (R109A,Y118A). Analysis of liposome swelling and in vivo sugar uptake demonstrated substantial sucrose permeation through all mutants with the double alanine mutant performing best. The triple mutants did not show a well-defined binding site as indicated by sugar-induced ion current noise analysis, which can be explained by remaining steric interference as deduced from the crystal structure. Binding, however, was observed for the double mutant that had the obstructing residues truncated to alanines.  相似文献   

19.
Maltoporin (LamB protein) is a maltodextrin transport protein in the outer membrane of Escherichia coli with binding sites for bacteriophage lambda and maltosaccharides. Binding of starch by bacteria was found to inhibit swarming of Escherichia coli in soft agar plates; the inhibition was dependent on the maltodextrin affinity of maltoporin. On the basis of this observation, chemotactic cell-sorting techniques were developed for the isolation and analysis of mutants with an altered starch-binding phenotype. Fifteen lamB mutations generated by hydroxylamine and linker mutagenesis, as well as spontaneous mutations, were analyzed. The effects of the mutations on starch and lambda-binding, as well as transport specificity, were assayed. Mutations that affect residues near 8 to 18, 74 to 82, and 118 to 121 were found to affect starch binding and maltodextrin-selective functions strongly, confirming and extending previous results with substitutions at these regions. Substitutions and insertions in two previously undefined regions in the protein, in or near residues 194 and 360, also resulted in defects in maltodextrin-specific functions and indicate that C-terminal parts of the protein also contribute to the discontinuous binding and pore domains. There was a detectable transport defect in all binding-affected mutants, and one mutation caused near-total pore blocking towards both maltose and nonmaltoside. The highly discontinuous phage lambda-binding site was affected by mutations near residues 9 and 10 and 194, as well as previously established regions near residues 18, 148 to 165, 245 to 259, and 380 to 400. The significance of these mutations is discussed in the context of a model of the functional topology of maltoporin. The additional role of regions near residues 10 and 120 in maltoporin assembly, as well as starch binding, was suggested by the temperature-sensitive biogenesis of maltoporin in strains with one- or two-codon insertion at these sites.  相似文献   

20.
Maltoporin (LamB protein), a protein of Escherichia coli outer membrane forms ionic channels with a selectivity for maltose and maltodextrins (Dargent et al., 1987). The effect of different point mutations on maltoporin pore properties was investigated in vitro with planar bilayers. The mutations belong to three classes in terms of selective maltose transport in vivo: class A (substitution at positions 259 and 382) does not affect maltose transport, class B (position 163 and 245) decreases maltose transport down to 20 to 30%, and class C (position 18) almost completely abolishes selective maltose transport. This in-vitro study reveals that class A does not affect the pore properties in contrast to class B substitutions. The class B maltoporins are still able to form channels but display some specific features and altered specificity for maltose and maltodextrins. The substitution (Gly18----Val) alters trimer stability and impedes pore function (class C mutant). Thus, there is a good correlation between the specific transport properties of the mutated maltoporins in vivo and their behavior in vitro. These data, in combination with the asymmetric orientation of the protein within the bilayer and topological considerations, indicate that residues 245 and 163 do not belong to the selectivity filter. Mutations at these sites cause hindrance at the mouth of the pore on the outer domain of maltoporin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号