首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The ketogenic diet is a high-fat, low-carbohydrate regimen that forces ketone-based rather than glucose-based cellular metabolism. Clinically, maintenance on a ketogenic diet has been proven effective in treating pediatric epilepsy and type II diabetes, and recent basic research provides evidence that ketogenic strategies offer promise in reducing brain injury. Cellular mechanisms hypothesized to be mobilized by ketone metabolism and underlying the success of ketogenic diet therapy, such as reduced reactive oxygen species and increased central adenosine, suggest that the ketolytic metabolism induced by the diet could reduce pain and inflammation. To test the effects of a ketone-based metabolism on pain and inflammation directly, we fed juvenile and adult rats a control diet (standard rodent chow) or ketogenic diet (79% fat) ad libitum for 3–4 weeks. We then quantified hindpaw thermal nociception as a pain measure and complete Freund''s adjuvant-induced local hindpaw swelling and plasma extravasation (fluid movement from the vasculature) as inflammation measures. Independent of age, maintenance on a ketogenic diet reduced the peripheral inflammatory response significantly as measured by paw swelling and plasma extravasation. The ketogenic diet also induced significant thermal hypoalgesia independent of age, shown by increased hindpaw withdrawal latency in the hotplate nociception test. Anti-inflammatory and hypoalgesic diet effects were generally more robust in juveniles. The ketogenic diet elevated plasma ketones similarly in both age groups, but caused slowed body growth only in juveniles. These data suggest that applying a ketogenic diet or exploiting cellular mechanisms associated with ketone-based metabolism offers new therapeutic opportunities for controlling pain and peripheral inflammation, and that such a metabolic strategy may offer significant benefits for children and adults.  相似文献   

2.
A series of constrained ketone-based inhibitors has been developed that show low nanomolar Ki values. These ketone inhibitors showed promising activity towards cruzain, the cysteine protease implicated in Chagas' disease. This series of constrained inhibitors, which can be accessed quickly and efficiently using a solid-phase combinatorial strategy, should be applicable to other members of the cysteine protease class.  相似文献   

3.
A protein proteinase inhibitor was purified from a seed extract of amaranth (Amaranthus hypochondriacus) by precipitation with (NH4)2SO4, gel-filtration chromatography, ion-exchange chromatography, and reverse-phase high-performance liquid chromatography. It is a 69-amino acid protein with a high content of valine, arginine, and glutamic acid, but lacking in methionine. The inhibitor has a relative molecular weight of 7400 and an isoelectric point of 7.5. It is a serine proteinase inhibitor that recognizes chymotrypsin, trypsin, and trypsin-like proteinase activities extracted from larvae of the insect Prostephanus truncatus. This inhibitor belongs to the potato-I inhibitor family, showing the closest homology (59.5%) with the Lycopersicum peruvianum trypsin inhibitor, and (51%) with the proteinase inhibitor 5 extracted from the seeds of Cucurbita maxima. The position of the lysine-aspartic acid residues present in the active site of the amaranth inhibitor are found in almost the same relative position as in the inhibitor from C. maxima.  相似文献   

4.
The turkey reproductive tract and seminal plasma contain a serine proteinase inhibitor that seems to be unique for the reproductive tract. Our experimental objective was to isolate, characterize and cDNA sequence the Kazal family proteinase inhibitor from turkey seminal plasma and testis. Seminal plasma contains two forms of a Kazal family inhibitor: virgin (Ia) represented by an inhibitor of moderate electrophoretic migration rate (present also in the testis) and modified (Ib, a split peptide bond) represented by an inhibitor with a fast migration rate. The inhibitor from the seminal plasma was purified by affinity, ion-exchange and reverse phase chromatography. The testis inhibitor was purified by affinity and ion-exchange chromatography. N-terminal Edman sequencing of the two seminal plasma inhibitors and testis inhibitor were identical. This sequence was used to construct primers and obtain a cDNA sequence from the testis. Analysis of a cDNA sequence indicated that turkey proteinase inhibitor belongs to Kazal family inhibitors (pancreatic secretory trypsin inhibitors, mammalian acrosin inhibitors) and caltrin. The turkey seminal plasma Kazal inhibitor belongs to low molecular mass inhibitors and is characterized by a high value of the equilibrium association constant for inhibitor/trypsin complexes.  相似文献   

5.
Urokinase-related proteins in human urine occur mainly as a 1:1 complex of urokinase with an inhibitor (Stump, D. C., Thienpont, M., and Collen, D. (1986) J. Biol. Chem. 261, 1267-1273). BALB/c mice were immunized with this urokinase-urokinase inhibitor complex and spleen cells fused with mouse myeloma cells, resulting in hybridomas producing monoclonal antibodies. Three antibodies reacting with the complex but not with urokinase were utilized to develop a sensitive (0.5 ng/ml) enzyme-linked immunosorbent assay for the urokinase inhibitor, which was used for monitoring its purification by chromatography on zinc chelate-Sepharose, concanavalin A-Sepharose, SP-Sephadex C-50, and Sephadex G-100. A homogenous glycoprotein of apparent Mr 50,000 was obtained with a yield of 40 micrograms/liter urine and a purification factor of 320. One mg of the purified protein inhibited 35,000 IU of urokinase within 30 min at 37 degrees C. This protein was immunologically related to both the purified urokinase-urokinase inhibitor complex and to the inhibitor portion dissociated from it by nucleophilic dissociation. It was immunologically distinct from all known protease inhibitors, including the endothelial cell-derived fast-acting inhibitor of tissue-type plasminogen activator, the placental inhibitor of urokinase and protease nexin. In electrophoresis the protein migrated with beta-mobility. Inhibition of urokinase occurred with a second order rate constant (k) of 8 X 10(3) M-1 s-1 in the absence and of 9 X 10(4) M-1 s-1 in the presence of 50 IU of heparin/ml. The urokinase inhibitor was inactive towards single-chain urokinase-type plasminogen activator and plasmin, but it inhibited two-chain tissue-type plasminogen activator with a k below 10(3) M-1 s-1 and thrombin with a k of 4 X 10(4) M-1 s-1 in the absence and 2 X 10(5) M-1 s-1 in the presence of heparin. The concentration of this urokinase inhibitor in plasma from normal subjects determined by immunoassay was 2 +/- 0.7 micrograms/ml (mean +/- S.D., n = 25). The protein purified from plasma by immunoabsorption had the same Mr, amino acid composition, and immunoreactivity as the urinary protein. Furthermore, when urokinase was added to plasma, time-dependent urokinase-urokinase inhibitor complex formation was observed at a rate similar to that observed for the inhibition of urokinase by the purified inhibitor from urine. This urokinase inhibitor, purified from human urine, most probably represents a new plasma protease inhibitor.  相似文献   

6.
By manifold immunizations of rabbits with virgin or modified trypsin inhibitor III from squash seeds and trypsin inhibitor II b from cucumber seeds, specific antibodies were produced. In double immunodiffusion the anti-squash inhibitor antibody also gave weak precipitate arcs with inhibitor I from squash, inhibitor II from summer squash and with inhibitor I from zucchini, but not with inhibitor II b from cucumber seeds. The genus of Cucurbita trypsin inhibitors, preincubated with the antibody, lost their antitrypsin activity. The antibody showed a significantly weaker effect on the activity of the inhibitor from cucumber sees. 1H-NMR and CD spectra also confirm structural differences between trypsin inhibitors from the genus of Cucurbita and the cucumber (genus of Cucumis) inhibitor.  相似文献   

7.
8.
The effect of alpha-NeuAc(2-->6)Gal/GalNAc-specific lectin from Sambucus nigra (SNA) on the release of lysozyme from human neutrophils was studied in vitro. Interaction of cells with the lectin was accompanied by dose-dependent release of lysozyme, which was increased in the presence of cytochalasin B. The involvement of intracellular signaling pathways in the lectin-induced degranulation of neutrophils was determined using a panel of specific inhibitors tested at concentrations in the range of 10-100 microM. Aristolochic acid (a phospholipase A2 inhibitor), indomethacin (a cyclooxygenase inhibitor), neomycin sulfate (a phospholipase C inhibitor), trifluoperazine (a calmodulin antagonist/protein kinase C inhibitor), N-ethylmaleimide (a sulfhydryl reagent), and guanosine-5;-O-(2-thiodiphosphate) (a G-protein inhibitor) were found to reduce SNA-induced lysozyme release from neutrophils by 20-45%. The treatment of cells with bisindolylmaleimide (a protein kinase C inhibitor), H-8 (an inhibitor of protein kinases A, C, G and of myosin light chain kinase), PD 98059 (a MAP kinase inhibitor), and (+/-)-methoxyverapamil (a Ca2+-channel blocker) failed to affect the release of lysozyme. These results indicate that only selective intracellular pathways associated with activation of G-proteins and phospholipid metabolism as well as the thiol-dependent signaling systems are apparently involved in the realization of the SNA-induced degranulation response of human neutrophils.  相似文献   

9.
Two polypeptides, isolated to electrophoretic homogeneity from Russet Burbank potato tubers, are powerful inhibitors of pancreatic serine proteinases. One of the inhibitors, called polypeptide trypsin inhibitor, PTI, has a molecular weight of 5100, and inhibits bovine trypsin. The inhibitor is devoid of methionine, histidine, and tryptophan and contains eight half-cystine residues as four disulfide bridges. The second inhibitor, polypeptide chymotrypsin inhibitor II, PCI-II, has a molecular weight of 5700 and powerfully inhibits chymotrypsin. This inhibitor is also devoid of methionine and tryptophan but it contains only six of half-cystines as three disulflde bonds. Both polypeptides strongly inhibit pancreatic elastase. In immunological double diffusion assays, polypeptide trypsin inhibitor and polypeptide chymotrypsin inhibitor II exhibit a high degree of immunological identity (a) with each other, (b) with a polypeptide chymotrypsin inhibitor (PCI-I, Mr 5400) previously isolated from potato tubers, and (c) with inhibitor II, a larger (monomer Mr ~ 12,000) inhibitor of both trypsin and chymotrypsin which has also been previously isolated from potato tubers. The four polypeptide proteinase inhibitors now isolated from Russet Burbank potato tubers cumulatively inhibit all five major intestinal digestive endo- and exoproteinases of animals. The inhibitors are thought to be antinutrients that are present as part of the natural chemical defense mechanisms of potato tubers against attacking pests.  相似文献   

10.
In FL cells, interferon (IFN)-induced dsRNA-dependent protein kinase (PK-I) was found to be present in a form complexed with a potent inhibitor of its dsRNA-dependent activation. The inhibitor was readily dissociated from PK-I by DEAE-cellulose chromatography to yield a dsRNA-responsive PK-I. The inhibitor was also dissociated easily from PK-I by gel filtration through Sephacryl S-200. The apparent molecular mass of the inhibitor as estimated by gel filtration was more than 160 kilodaltons. Activity of the inhibitor was decreased on IFN treatment for 8.5 hr or on Sindbis virus infection with concomitant increase in the amount of dsRNA-activatable form of PK-I. This result implies that the inhibitor may be one of the regulatory factors of cellular PK-I activity. Longer IFN treatment (24 hr) led to recovery of the inhibitor activity, but it was overridden by an extensive net synthesis of the PK-I protein.  相似文献   

11.
Activation of the antitubercular isoniazid (INH) by the Mycobacterium tuberculosis KatG produces an inhibitor for enoyl reductase (InhA). The mechanism for INH activation remains poorly understood, and the inhibitor has never been isolated. We have purified the InhA-inhibitor complex generated in the M. tuberculosis KatG-catalyzed INH activation. The complex exhibited a 278-nm absorption peak and a shoulder around 326 nm with a characteristic A(326)/A(278) ratio of 0.16. The complex was devoid of enoyl reductase activity. The inhibitor noncovalently binds to InhA with a K(d) < 0.4 nM and can be dissociated from denatured InhA for chromatographic isolation. The free inhibitor showed absorption peaks at 326 (epsilon(326) 6900 M(-1) cm(-1)) and 260 nm (epsilon(260) 27,000 M(-1) cm(-1)). The inactive complex can be reconstituted from InhA and the isolated inhibitor. The InhA inhibitor from the KatG-catalyzed INH activation was identical to that from a slow, KatG-independent, Mn(2+)-mediated reaction based on high pressure liquid chromatography analysis and absorption and mass spectral characteristics. By monitoring the formation of the InhA-inhibitor complex, we have found that manganese is not essential to the INH activation by M. tuberculosis KatG. Furthermore, the formation of the InhA inhibitor in the KatG reaction was independent of InhA.  相似文献   

12.
Studying protease/peptide inhibitor interactions is a useful tool for understanding molecular recognition in general and is particularly relevant for the rational design of inhibitors with therapeutic potential. An inhibitory peptide (PMTLEYR) derived from the third domain of turkey ovomucoid inhibitor and optimized for specific porcine pancreatic elastase inhibition was introduced into an inhibitor scaffold to increase the proteolytic stability of the peptide. The trypsin-specific squash inhibitor EETI II from Ecballium elaterium was chosen as the scaffold. The resulting hybrid inhibitor HEI-TOE I (hybrid inhibitor from E. elaterium and the optimized binding loop of the third domain of turkey ovomucoid inhibitor) shows a specificity and affinity to porcine pancreatic elastase similar to the free inhibitory peptide but with significantly higher proteolytic stability. Isothermal titration calorimetry revealed that elastase binding of HEI-TOE I occurs with a small unfavorable positive enthalpy contribution, a large favorable positive entropy change, and a large negative heat capacity change. In addition, the inhibitory peptide and the hybrid inhibitor HEI-TOE I protected endothelial cells against degradation following treatment with porcine pancreatic elastase.  相似文献   

13.
Ram seminal plasma, and ejaculated ram spermatozoa that have been washed with 0.25M sucrose, both contain acrosin inhibitor. The aim of this work was to determine whether the intracellular inhibitor originates from the seminal plasma. The amounts of inhibitor in ejaculated and epididymal spermatozoa were measured and compared with the amounts present in the seminal plasma of normal and vasectomized rams. One ejaculated ram spermatozoon contained 2.1 amol (2.1 X 10(-18) mol) of inhibitor and one epididymal spermatozoon contained 3.3 amol of inhibitor. (All molarities are mean values based on pooled ram semen or on single ejaculates from three vasectomized rams.) Calculations from results in earlier publications indicated that one ejaculated ram spermatozoon contains about 3 amol of acrosin; thus the inhibitor: acrosin ratio in washed ram spermatozoa is approximately 1. One ml of ram semen contains, on average, 3 X 10(9) spermatozoa and not more than 0.8 ml of seminal plasma. This number of ejaculated spermatozoa would contain 6.3 nmol of inhibitor, while the same number of epididymal spermatozoa would contain 9.9 nmol of inhibitor. These values exceed the quantities of inhibitor present in 0.8 ml of normal seminal plasma (approximately 1.6 nmol) or in 0.8 ml of seminal plasma from vasectomized rams (approximately 2.3 nmol). We conclude that seminal plasma is not a major source of the acrosin inhibitor that can be recovered from washed ejaculated ram spermatozoa.  相似文献   

14.
The rate of mitochondrial ATPase inactivation by the naturally occurring inhibitor protein in the presence of saturating ATP and Mg2+ at pH 8.0 depends hyperbolically on the amount of inhibitor added; the upper limit of an apparent first-order constant for the inactivation process is 1.0(-1) at 25 degrees C. A dramatic difference in the inactivation rate is observed when the protein inhibitor is added to the same assay system from either acidic (pH 4.8) or alkaline (pH 8.2) solutions. The slow reversible transition of the inhibitor from its rapidly reacting 'acidic' form to the slow reacting 'alkaline' form occurs when the solution of the protein inhibitor is subjected to a pH-jump from 4.8 to 8.2 (t1/2 approximately 30s at 25 degrees C). The pH-profile of the inhibitor active/inactive equilibrium suggests that a group with pKa approximately 6.5 is involved in the transition. Treatment of the inhibitor protein with a histidine-specific reagent (e.g. diethyl pyrocarbonate) abolishes its inactivating effect on the ATPase activity. It is concluded that the protonation/deprotonation of the inhibitor protein followed by its slow conformational changes is the rate-limiting step in the inhibitor-ATP synthetase interaction.  相似文献   

15.
F P Schwarz 《Biochemistry》1988,27(22):8429-8436
Differential scanning calorimetry (DSC) measurements were performed on the thermal denaturation of ribonuclease a and ribonuclease a complexed with an inhibitor, cytidine or uridine 3'-monophosphate, in sodium acetate buffered solutions. Thermal denaturation of the complex results in dissociation of the complex into denatured ribonuclease a and free inhibitor. Binding constants of the inhibitor to ribonuclease a were determined from the increase in the denaturation temperature of ribonuclease a in the complexed form and from the denaturation enthalpy of the complex. Binding enthalpies of the inhibitor to ribonuclease a were determined from the increase in the denaturation enthalpy of ribonuclease a complexed with the inhibitor. For the cytidine inhibitor in 0.2 M sodium acetate buffered solutions, the binding constants increase from 87 +/- 8 M-1 (pH 7.0) to 1410 +/- 54 M-1 (pH 5.0), while the binding enthalpies increase from 17 +/- 13 kJ mol-1 (pH 4.7) to 79 +/- 15 kJ mol-1 (pH 5.5). For the uridine inhibitor in 0.2 M sodium acetate buffered solutions, the binding constants increase from 104 +/- 1 M-1 (pH 7.0) to 402 +/- 7 M-1 (pH 5.5), while the binding enthalpies increase from 16 +/- 5 kJ mol-1 (pH 6.0) to 37 +/- 4 kJ mol-1 (pH 7.0). The binding constants and enthalpies of the cytidine inhibitor in 0.05 M sodium acetate buffered solutions increase respectively from 328 +/- 37 M-1 (pH 6.5) to 2200 +/- 364 M-1 (pH 5.5) and from 22 kJ mol-1 (pH 5.5) to 45 +/- 7 kJ mol-1 (pH 6.5). the denaturation transition cooperativities of the uncomplexed and complexed ribonuclease a were close to unity, indicating that the transition is two state with a stoichiometry of 1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A small amount of antitryptic activity is detectable in the supernatant of deproteinized human serum. Preincubation of serum with trypsin causes an increase in acid-stable antitryptic activity. This rise in activity depends on the inter alpha-trypsin inhibitor concentration. The native inhibitor present in normal sera, and in higher concentrations in sera of patients with nephropathies, and the trypsin-liberated inhibitor show immunological cross reaction with antibodies to the serum inter-alpha-trypsin inhibitor. The two inhibitors differ in molecular weight and electrophoretic mobility. The physiological inhibitor (I-34), with a molecular weight of 34 000 and a high carbohydrate content, can be transformed by trypsin into an inhibitor (I-17) with a molecular weight of 17 000. This inhibitor is identical with the inhibitors liberated by trypsin from serum or from purified inter-alpha-trypsin inhibitor. The acid-stable inhibitor from urine is identical with the physiological serum inhibitor. Analogously, this inhibitor is transformed by trypsin into the inhibitor with a molecular weight of 17 000. We conclude that the inter-alpha-trypsin inhibitor is the precursor of both the physiological and the trypsin-liberated inhibitor. By a mechanism as yet unknown, but most likely a limited proteolysis, the secreted inhibitor is liberated from the high molecular weight precursor. In contrast to the monospecific trypsin-inhibiting precursor, the physiological and artificially liberated inhibitors are trypsin/chymotrypsin/plasmin inhibitors.  相似文献   

17.
Two acid stable proteinase inhibitors are present in bull seminal plasma and washed ejaculated bull spermatozoa. Inhibitor I with a molecular weight of about 8700 (estimated by gel filtration) is a very strong inhibitor of bull sperm acrosin but also inhibits bovine trypsin and chymotrypsin and porcine plasmin; inhibition of porcine pancreatic and urinary kallikrein was not observed. In this respect inhibitor I resembles the well known cow colostrum trypsin inhibitor. Inhibitor II with a molecular weight near 6800 (estimated by gel filtration) inhibits bovine trypsin and chymotrypsin, porcine plasmin and pancreatic and urinary kallikrein as well as bull acrosin. The inhibition specificity of inhibitor II is thus very similar to that of the basic inhibitor from bovine organs (Kunitz-type). In view of the inhibition strength and other characteristics, however, the acid stable bull seminal inhibitors are not identical with the inhibitor from cow colostrum or bovine lung (organs).  相似文献   

18.
Rat peritoneal macrophages contain a chymotrypsin-like protease and its specific inhibitor, both being associated with chromatin of the cells. The inhibitor was separated from the protease by gel filtration through a Sephadex G-75 column, further treated with trypsin, DNase and RNase, and then purified successively on Sephadex G-75, Sephadex G-25, and dihydroxyboryl Bio-Gel P-60 columns. The purified inhibitor had a molecular weight in the range from 2,000 to 3,500 and an absorption maximum at 260 nm at pH 7.0. When the inhibitor was digested by snake venom phosphodiesterase, the inhibitory potency was lost, yielding 5'-AMP and 2'-(5'-phosphoribosyl)-5'-AMP as the digestion products which were identified by high pressure liquid chromatography. The inhibitory potency was neutralized specifically by anti-poly(ADP-ribose) antiserum. The profile of inhibition by the isolated inhibitor was nearly identical with that produced by authentic poly(ADP-ribose). It was therefore concluded that the inhibitor isolated was identical with poly(ADP-ribose), whose chain length ranged from 4 to 7 ADP-ribosyl units. This is the first demonstration that a intracellular protease inhibitor can be endogenous poly(ADP-ribose).  相似文献   

19.
Endogenous inhibitor of protein kinases (type II inhibitor, GABA-modulin) blocks the phosphorylation catalyzed by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) as a competitive inhibitor of substrate proteins when histone is used as a substrate. Moreover, type II inhibitor blocks the phosphorylation of endogenous membrane proteins by PKC. Stimulation of alpha 1-adrenoceptors induced rapid redistribution of PKC from cytosol to membrane fraction which lasted at least 3 h, accompanied by rapid and short-lasting translocation of type II inhibitor from membrane to cytosol fraction. The cytosol content of type II inhibitor reached maximal level 10 and 20 min and became normal again 40 min after i.p. administration of methoxamine. The above actions of methoxamine were completely blocked by pretreatment with prazosin. It seems that short-lasting redistribution of type II inhibitor from membrane to cytosol fraction allows the effective phosphorylation of membrane proteins by PKC after stimulation of alpha 1-adrenoceptors.  相似文献   

20.
Thiol proteinase inhibitors in rat serum were purified and their properties were compared with those of rat liver thiol proteinase inhibitor. The inhibitors in rat serum were separated into three forms (S-1, S-2, and S-3) by linear gradient elution from a DE52 column. One inhibitor (S1) was purified to homogeneity by chromatography on ficin-bound Sepharose and Sephadex G-150 columns. The apparent molecular weights of S1, S2, and S3 on Sephadex G-150 columns were 90,000, 95,000, and 160,000, respectively. Serum thiol proteinase inhibitor and liver thiol proteinase differed in the following: 1) all three forms of serum inhibitor had much higher molecular weights than the liver thiol proteinase inhibitor (Mr = 12,500); 2) no cross-reactivity was observed between serum inhibitors and liver inhibitor in tests with either antiserum inhibitor or anti-liver antiserum; 3) both serum inhibitor and liver inhibitor were specific for thiol proteinases, but had different inhibition spectra; 4) the liver inhibitor did not bind to concanavalin A-Sepharose, whereas the serum inhibitor bound and was eluted with alpha-methyl mannoside. A thiol proteinase inhibitor of high molecular weight detected in tissue homogenates inhibited papain markedly but did not inhibit cathepsin H. Its activity was diminished by perfusion of the organ, indicating that it is derived from serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号