首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of wetlands is a promising technology to treat acid mine drainage, yet there is little understanding of the fundamental biological processes involved. They are considered to centre on the complex anaerobic ecology within sediments and involve the removal of metals by sulphate-reducing bacteria (SRB). These bacteria generate hydrogen sulphide and cause precipitation of metals from solution as the insoluble metal sulphide. Sulphate-reducing bacteria have been isolated from natural and constructed wetlands receiving acid mine drainage. Sulphide production by isolates and removal of the metals iron, manganese and zinc were measured, as well as utilization of a range of carbon sources. Marked ecological differences between the wetlands were reflected in population composition of SRB enrichments, and these consortia displayed significant differences in sulphide generation and rates of metal removal from solution. Rates of metal removal did not correlate with sulphide generation in all cultures, suggesting the involvement of other biological mechanisms of metal removal. Differences in substrate utilization have highlighted the need for further investigation of carbon flow and potential carbon sources within constructed wetlands.  相似文献   

2.
Abstract

Electrometric studies were carried out on the interaction of heavy metal ions such as manganese, chromium, nickel, copper, zinc, cadmium and lead with the extracted organic matter, humic and fulvic acid from the sludge in a sewage oxidation pond. The distribution of heavy metals was between 60 and 97%, which is associated with the solid waste (sludge) of the oxidation pond. The adsorption/removal efficiency of metal ions onto the sludge ash was more than 90% and 97%, respectively, in the pure system. To obtain the ash, the sludge was burnt at 500°C, treated with nitric acid (1+1) to leach out all the metals and then filtered; the residue left on the filter paper was the pure ash. Both this and that coated with organic matter were studied. The adsorption isotherm for metals, humic/fulvic acids and metal-humic/fulvic acid complexes in the metal-free sludge ash and in the organic matter in the pure system were studied using the Freundlich relationship. Good agreement was found suggesting that sediment and humic/fulvic acids have an important role in the mobility, dispersion and sedimentation of metal ions in an aquatic environment. More of these heavy metals are removed in the pure system than in the natural system. This may be due to the lesser availability of humic and fulvic acids in the lagoons during the short detention time of sewage in suspension in the oxidation pond, whereas the sludge which has settled to the bottom of the pond for several years contains rich decomposed organic matter in the form of humic and fulvic acids containing heavy metals. Such pure systems could be useful for the effective removal of heavy metals.  相似文献   

3.
Ten different isolates of Thiobacillus ferrooxidans were studied with regard to their degree of resistance to the metals copper, nickel, uranium, and thorium. Inhibitory concentrations for a particular metal were those which showed a statistically-significant decrease in the amount of ferrous iron oxidized by the bacterium compared to an untreated control. The different isolates had different susceptibilities to the metals tested, and none of the metals had a stimulatory effect. Uranium and thorium were 20 to 40 times more toxic to ferrous iron oxidation than either copper or nickel.  相似文献   

4.
Transition metal homeostasis: from yeast to human disease   总被引:1,自引:0,他引:1  
Transition metal ions are essential nutrients to all forms of life. Iron, copper, zinc, manganese, cobalt and nickel all have unique chemical and physical properties that make them attractive molecules for use in biological systems. Many of these same properties that allow these metals to provide essential biochemical activities and structural motifs to a multitude of proteins including enzymes and other cellular constituents also lead to a potential for cytotoxicity. Organisms have been required to evolve a number of systems for the efficient uptake, intracellular transport, protein loading and storage of metal ions to ensure that the needs of the cells can be met while minimizing the associated toxic effects. Disruptions in the cellular systems for handling transition metals are observed as a number of diseases ranging from hemochromatosis and anemias to neurodegenerative disorders including Alzheimer??s and Parkinson??s disease. The yeast Saccharomyces cerevisiae has proved useful as a model organism for the investigation of these processes and many of the genes and biological systems that function in yeast metal homeostasis are conserved throughout eukaryotes to humans. This review focuses on the biological roles of iron, copper, zinc, manganese, nickel and cobalt, the homeostatic mechanisms that function in S. cerevisiae and the human diseases in which these metals have been implicated.  相似文献   

5.
Surface-flow wetlands constructed with Acorus and Typha plants, connected to a wastewater treatment plant, were investigated with respect to organics (dissolved organic matter), anions (nitrate, sulfate, and phosphate), metals (Cu, Ni, Zn, Fe, and Mn), and metalloids (As). The results of the research indicated: (1) effluent organic matter (EfOM), based on dissolved organic carbon (DOC), was not efficiently removed by the wetlands. However, the hydrophobic, transphilic, and hydrophilic EfOM fractions varied throughout the wetlands, as identified by XAD-8/4 resins. (2) Nitrate, as compared to sulfate and phosphate, was efficiently removed, especially in the Typha wetland pond that had long retention time, under anoxic condition. (3) Most of the heavy metals were ineffectively removed via the wetland ponds. However, the iron concentration increased in the Typha wetland pond, which was probably due to its reduction under anoxic condition.  相似文献   

6.
The green microalgae Closterium ehrenbergii is an ideal organism for ecotoxicology assessments; however, its toxicogenomics has been insufficiently examined. Here, we identified three iron/manganese superoxide dismutase (SOD) genes (designated as CeFeSOD1, CeFeSOD2, and CeMnSOD) from C. ehrenbergii and examined their expressional patterns for four metals (iron, manganese, copper, and nickel). These genes encoded 362, 224, and 245 amino acids, respectively; signal-peptide analysis showed that they were differentially located in chloroplasts, cytosol, or mitochondria. Real-time PCRs revealed differential expression patterns according to metal and doses. Interestingly, CeSODs displayed no noticeable changes to treatment with their corresponding cofactor metals, iron or manganese, even at high doses. However, they were obviously up-regulated under toxic metal (copper and nickel) exposure, exhibiting approximately 10.8- and 4.4-fold increases, respectively. Copper (0.2 mg/L) dramatically stimulated intracellular reactive oxygen species (ROS) formation, increased SOD activity, and reduced photosynthetic efficiency in C. ehrenbergii. These results suggest that CeFeSODs and CeMnSOD might be involved in protecting cells against damage and oxidative stress caused by non-cofactor metals, such as copper and nickel. These genes were sensitively responsive at levels well below the EC50, showing that they can be used as molecular biomarkers to assess the toxicity of specific metal contaminants.  相似文献   

7.
In the autoxidation of 6-hydroxydopamine, we investigated the reactivity of metals and metal complexes with a range of abilities to catalyse the reaction with oxygen. Comparing the catalytic effectiveness of aquo metals at pH 7.4, copper accelerated autoxidation 61-fold, iron 24-fold, manganese 7.3-fold, and vanadium 5.7-fold. Copper was thus the most effective catalyst despite being the weakest oxidant, indicating reduction of oxygen as rate limiting. EDTA, which decreases the reduction potential of Fe(III)/Fe(II), increased catalysis by iron 74% to almost that of aquo copper. Conversely, EDTA inhibited catalysis by copper, manganese, and vanadium. Desferrioxamine strongly inhibited catalysis by all of the metals. Histidine prevented catalysis by copper, accelerated catalysis by iron (43%), and had little effect on catalysis by manganese or vanadium. ADP and phytate inhibited catalysis by iron and manganese (50% or more), accelerated catalysis by vanadium (10-27%), and had no effect on catalysis by copper. The effects of the ligands largely reflected their influence on the reduction potential of the metal. Accordingly, addition of NaBr, which increases the reduction potential of Cu(II)/Cu(I), inhibited by 50%. In contrast, Na2SO4 augmented catalysis by copper 3-fold. Consistent with effects of OH- on reduction potentials and on metal coordination to 6-hydroxydopamine, an increase in pH to 8.0 decreased catalysis by copper and iron, but increased that of manganese 10-fold. In conclusion, the catalytic effectiveness of the metal-ligand complexes are largely attributable to their reduction potential, with steric accessibility playing secondary roles. The results delineate a window of catalytically effective potentials suitable for facile reduction and reoxidation by oxygen. By extension the results identify factors determining the pro- and antioxidant roles of ligands in metal mediated reduction of oxygen.  相似文献   

8.
Many microbes have the ability to reduce transition metals, coupling this reduction to the oxidation of energy sources in a dissimilatory fashion. Because of their abundance, iron and manganese have been extensively studied, and it is well established that reduction of Mn and Fe account for significant turnover of organic carbon in many environments. In addition, many of the dissimilatory metal reducing bacteria (DMRB) also reduce other metals, including toxic metals like Cr(VI), and radioactive contaminants like U(VI), raising the expectations that these processes can be used for bioremediation. The processes involved in metal reduction remain mysterious, and often progress is slow, as nearly all iron and manganese oxides are solids, which offer particular challenges with regard to imaging and chemical measurements. In particular, the interactions that occur at the bacteria-mineral interfaces are not yet clearly elucidated. One DMRB, Shewanella oneidensis MR-1 offers the advantage that its genome has recently been sequenced, and with the availability of its genomic sequence, several aspects of its metal reducing abilities are now beginning to be seen. As these studies progress, it should be possible to separate several processes involved with metal reduction, including surface recognition, attachment, metal destabilization and reduction, and secondary mineral formation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Acid mine drainage (AMD), an acidic metal-bearingwastewater, poses a severe pollution problem attributedto post mining activities. The metals usuallyencountered in AMD and considered of concern for riskassessment are arsenic, cadmium, iron, lead, manganese,zinc, copper and sulfate. The pollution generated byabandoned mining activities in the area of Butte, Montanahas resulted in the designation of the Silver Bow Creek–ButteArea as the largest Superfund (National Priorities List) sitein the U.S. This paper reports the results of bench-scalestudies conducted to develop a resource recovery basedremediation process for the clean up of the Berkeley Pit.The process utilizes selective, sequential precipitation (SSP)of metals as hydroxides and sulfides, such as copper, zinc,aluminum, iron and manganese, from the Berkeley Pit AMDfor their removal from the water in a form suitable foradditional processing into marketable precipitates and pigments.The metal biorecovery and recycle process is based on completeseparation of the biological sulfate reduction step and themetal precipitation step. Hydrogen sulfide produced in the SRBbioreactor systems is used in the precipitation step to forminsoluble metal sulfides. The average metal recoveries usingthe SSP process were as follows: aluminum (as hydroxide) 99.8%,cadmium (as sulfide) 99.7%, cobalt (as sulfide) 99.1% copper(as sulfide) 99.8%, ferrous iron (sulfide) 97.1%, manganese(as sulfide) 87.4%, nickel (as sulfide) 47.8%, and zinc (as sulfide)100%. The average precipitate purity for metals, copper sulfide,ferric hydroxide, zinc sulfide, aluminum hydroxide and manganesesulfide were: 92.4, 81.5, 97.8, 95.6 , 92.1 and 75.0%, respectively.The final produced water contained only calcium and magnesiumand both sulfate and sulfide concentrations were below usablewater limits. Water quality of this agriculturally usable watermet the EPA's gold standard criterion.  相似文献   

10.
An investigation was conducted to examine the spatial variation and fractionation of bed sediment-borne Cu, Zn, Pb, and Cd in a stream system affected by acid mine drainage. The pH had a major control on the spatial variation pattern of soluble, exchangeable, and carbonate-bound Cu, Zn, and Cd. There was a prominent concentration peak of carbonate-bound, oxide-bound, and organic-bound metals at the 29 km station, as controlled by the abundance of organic C, carbonate C, and oxides of manganese and iron. In general, the residual fraction was the dominant form for all four investigated metals. It was likely that oxide-Mn played a more important role in binding Zn and Cd than oxide-Fe did. In contrast, Cu had a higher affinity for iron hydrous oxides than for manganese oxide. Pb had a higher affinity for oxides of iron and manganese than for carbonates and organic matter. The presence of organic-bound metals in both the acidic upstream reach and non-acidic downstream reach suggests that the binding of these metals by organic matter was not markedly affected by pH, while the correspondence of organic C peak and organic-bound metal peaks at the 29 km station indicates a strong control by organic matter abundance on the quantity of organic-complexed metals.  相似文献   

11.
Accumulative phases for heavy metals in limnic sediments   总被引:3,自引:1,他引:2  
Förstner  Ulrich 《Hydrobiologia》1982,91(1):269-284
Data from mechanical concentrates of recent sediments indicate that clay minerals, clay-rich aggregates and heavy minerals are the major carriers of heavy metals in detrital sediment fractions. Hydrous Fe/Mn oxides and carbonates and sulfides, in their specific environments, are the predominant accumulative phases for heavy metals in autochthonous fractions. Sequential chemical extraction techniques permit the estimation of characteristic heavy metal bonding forms: exchangeable metal cations, easily reducible, moderately reducible, organic and residual metal fractions, whereby both diagenetic processes and the potential availability of toxic compounds can be studied. The data from lakes affected by acid precipitation indicate that zinc, cobalt and nickel are mainly released from the easily reducible sediment fractions and cadmium from organic phases. In contrast at pH 4.4, neither lead nor copper seem to be remobilized to any significant extent. Immobilization by carbonate precipitation seems to provide an effective mechanism for the reduction of dissolved inputs 9f metals such as zinc and cadmium in pH-buffered, hard water systems.  相似文献   

12.
Activation of superoxide dismutases: putting the metal to the pedal   总被引:1,自引:0,他引:1  
Superoxide dismutases (SOD) are important anti-oxidant enzymes that guard against superoxide toxicity. Various SOD enzymes have been characterized that employ either a copper, manganese, iron or nickel co-factor to carry out the disproportionation of superoxide. This review focuses on the copper and manganese forms, with particular emphasis on how the metal is inserted in vivo into the active site of SOD. Copper and manganese SODs diverge greatly in sequence and also in the metal insertion process. The intracellular copper SODs of eukaryotes (SOD1) can obtain copper post-translationally, by way of interactions with the CCS copper chaperone. CCS also oxidizes an intrasubunit disulfide in SOD1. Adventitious oxidation of the disulfide can lead to gross misfolding of immature forms of SOD1, particularly with SOD1 mutants linked to amyotrophic lateral sclerosis. In the case of mitochondrial MnSOD of eukaryotes (SOD2), metal insertion cannot occur post-translationally, but requires new synthesis and mitochondrial import of the SOD2 polypeptide. SOD2 can also bind iron in vivo, but is inactive with iron. Such metal ion mis-incorporation with SOD2 can become prevalent upon disruption of mitochondrial metal homeostasis. Accurate and regulated metallation of copper and manganese SOD molecules is vital to cell survival in an oxygenated environment.  相似文献   

13.
Biogeochemistry of manganese- and iron-rich sediments in Toolik Lake,Alaska   总被引:2,自引:2,他引:0  
The sediments within Toolik Lake in arctic Alaska are characterized by extremely low rates of organic matter sedimentation and unusually high concentrations of iron and manganese. Pore water and solid phase measurements of iron, manganese, trace metals, carbon, nitrogen, phosphorus, and sulfur are consistent with the hypothesis that the reduction of organic matter by iron and manganese is the most important biogeochemical reaction within the sediment. Very low rates of dissolved oxygen consumption by the sediments result in an oxidizing environment at the sediment-water interface. This results in high retention of upwardly-diffusing iron and manganese and the formation of metal-enriched sediment. Phosphate in sediment pore waters is strongly adsorbed by the metal-enriched phases. Consequently, fluxes of phosphorus from the sediments to overlying waters are very small and contribute to the oligotrophic nature of the Toolik Lake aquatic system. Toolik Lake contains an unusual type of lacustrine sediment, and in many ways the sediments are similar to those found in oligotrophic oceanic environments.  相似文献   

14.
In manganese-enhanced magnetic resonance imaging (MEMRI), the paramagnetic divalent ion of manganese (Mn2+) is injected into animals to generate tissue contrast, typically at much higher exposures than have been previously used in studies of Mn toxicity. Here we investigate the effect of these injections on the homeostasis of the transition metals iron and copper in mice to see if there are disruptions which should be considered in MEMRI studies. Manganese shares transport proteins with other transition metals including iron and copper, so it is possible that changes in manganese levels in tissue following injections of the metal may affect other metal levels too. This in turn may affect MRI contrast or the investigation of disease processes in the animal models being imaged. In this study, we measured manganese, iron, and copper concentrations in the blood, kidney, liver and in brain regions in mice treated with four injections of 30 mg/kg MnCl2 4H2O (dry chemical weight/body weight)—a common dose used in MEMRI. In addition to the expected increases in manganese in tissues, we noted a statistically significant reduction in copper in the kidney and liver. Also, we noted a statistically significant decrease in concentration of iron in the thalamus of the brain. These findings suggest that the high doses of manganese injected in MEMRI studies can disrupt the homeostasis of other transition metals in mice.  相似文献   

15.
Three large plastic enclosures (5 m diam, volume 40 m3) were used to study the effects of copper, manganese and zinc, on the phytoplankton community in Island billabong, a floodplain billabong (waterhole) situated in the Magela Creek in tropical northern Australia. Copper was added to one enclosure, and manganese and zinc to another, to give initial concentrations around ten times the normal wet season values. The enclosures and the billabong were monitored over a ten week period towards the end of the dry season, with the enclosures allowed to stabilise for four weeks before the metals were added.The control enclosure adequately simulated the temperature and pH changes in the billabong. The trends in conductivity, dissolved oxygen and major ion concentrations were similar in the enclosure and the billabong, with the minor differences observed attributed to either epiphytic growth on the enclosure walls (influenced dissolved oxygen, pH and bicarbonate concentration) or ingress of sulphate-rich groundwater into the billabong (influenced sulphate concentration and conductivity). Major differences in both the composition of species and the size of the phytoplankton populations were observed between the three enclosures and between the control enclosure and the billabong. This variability reflects the great natural variability in the phytoplankton communities in tropical lentic systems, and means that enclosures are unlikely to adequately simulate the biological communities in the billabongs.The control enclosure appeared to simulate quite well the longer term changes in total concentration and speciation of the three metals (copper, manganese & zinc) in the billabong. The mean concentrations of copper and zinc were similar in the two systems, although the mean concentration of manganese in the billabong was almost double that in the enclosure, possibly due to ingress of manganese-enriched groundwater. Particulate forms dominated the speciation of copper and manganese. There was considerable short term variation in both total metal concentration and speciation in both the enclosure and the billabong. This variability appears to be a feature of these small tropical waterbodies.The added heavy metals were found to have minimal detrimental effect on the phytoplankton community in each metal-loaded enclosure. The high natural variability in the phytoplankton community in these tropical systems will make it difficult to separate natural changes from those caused by low level contamination from mining operations should this occur.All three metals were rapidly removed from the water column, so that by the end of the six week period, only ca. 5% of each added metal remained in the water column. Association with the particulate matter (phytoplankton, abiotic particulate matter and MnOx in enclosure 2) followed by sedimentation was the major removal pathway. Epiphytes growing on the enclosure walls appeared to have a minor influence (<10% of the total amount of metal added) on the removal of the added metals. For copper, uptake by phytoplankton followed by sedimentation was the major (65%) removal process. Manganese and zinc, added together, were found to influence each other. The major manganese removal process (60%) was rapid (ca. 3 days) involving bacterial oxidation and sedimentation of the MnOx formed. This material appeared to have little influence on the behaviour of zinc, possibly because other particulate matter competed more effectively for the zinc. A further 30% of the added manganese was removed via initial adsorption to other particulate matter, possibly phytoplankton. Approximately one third of this adsorbed manganese (10% of the total added) appeared to undergo delayed oxidation some 8 days after the initial additions, and the heavier particles settled out more rapidly. This path was responsible for removing the major amount (ca. 60%) of the added zinc. We hypothesis that the sorbed zinc inhibited the bacterial oxidation of the manganese. A further 25% of the zinc was removed in association with a burst of phytoplankton activity. The occurrence of bursts in the phytoplankton activity, when populations can increase very substantially and then decrease again, all within the space of a day, appears to be an important mechanism for removing copper and zinc from the water column in these tropical water bodies  相似文献   

16.
Transporters of ligands for essential metal ions in plants   总被引:6,自引:1,他引:5  
Essential metals are required for healthy plant growth but can be toxic when present in excess. Therefore plants have mechanisms of metal homeostasis which involve coordination of metal ion transporters for uptake, translocation and compartmentalization. However, very little metal in plants is thought to exist as free ions. A number of small, organic molecules have been implicated in metal ion homeostasis as metal ion ligands to facilitate uptake and transport of metal ions with low solubility and also as chelators implicated in sequestration for metal tolerance and storage. Ligands for a number of essential metals have been identified and proteins involved in the transport of these ligands and of metal-ligand complexes have been characterized. Here we review recent advances in understanding the role of mugineic acid, nicotianamine, organic acids (citrate and malate), histidine and phytate as ligands for iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and nickel (Ni) in plants, and the proteins identified as their transporters.  相似文献   

17.
讨论了土壤及水体环境中Fe、Mn、U、Se等金属元素的还原,并对还原不同金属的微生物及其对各金属的酶促和非酶促还原机制进行了综述,同时就不同微生物还原各金属在治理环境污染方面的意义进行了概述。  相似文献   

18.
Bioreduction processes have profound influences on mobility and bioavailability of metals in soils and sediments. In this study, a series of microcosm studies were conducted to investigate bioreduction progresses (ferric iron and sulfate reduction) and their influences on manganese and copper element redistributions with the change of microbial community under various geochemical conditions. Results indicated that ethanol stimulated higher rates of bioreduction processes than acetate did. High-concentration bicarbonate and sulfate addition inhibited iron reduction but not sulfate reduction. Sequential extraction revealed that the exchangeable and carbonate bonding-iron were increased in ethanol amendment, whereas those of copper were decreased. The elevated bicarbonate concentration and sulfate addition both influenced the mobility and redistribution of metals. 16S rRNA analysis indicated that ethanol amendment stimulated the growths of microbial iron and sulfate reducer. A high concentration of bicarbonate suppressed the growth of iron reducer Geobacteraceae, but showed limited effect on sulfate reducers. This study concluded that geochemical conditions such as electron donor, bicarbonate and sulfate concentration influenced the microbial community and led to changes in bioreduction processes and metal distributions in the anerobic sediments.  相似文献   

19.
The geochemistry of dissolved and particulate trace metals has been studied in the water column and the sediments of the Scheldt estuary between 1987 and 1990. A strong seasonal influence on the behaviour of dissolved Cd, Cu and Zn is observed, related to the redox conditions in the upper estuary and phytoplankton activity in the lower estuary (which are both seasonally dependent variables). The dissolved trace metal concentrations in the fresh water end-member are remarkably low during spring and summer, due to metal sulphide precipitation in the anoxic Scheldt river. However, the dissolved concentrations increase rapidly with increasing salinity, due to oxidation of metal sulphides that are present in the suspended matter, accompanied by (e.g. chloro-)complexation of the released metals. Readsorption of Cd and Zn occurs in the lower estuary during the spring phytoplankton bloom. During winter, when the Scheldt river is not completely anoxic, much higher dissolved trace metal concentrations are observed in the fresh water end-member since metal sulphide precipitation in the water column is precluded. Rapid trace metal removal is observed in the low salinity, high turbidity zone, due to adsorption onto suspended matter and freshly precipitated iron and manganese oxyhydroxides. Upon further mixing, desorption is apparent, due to a similar oxidation-complexation mechanism as observed during spring and summer. Pore water infusion may also contribute to the enrichment of dissolved Cd, Cu and Zn in the mid-estuarine region. The trace metal contents of the suspended matter and the sediments show a continuous decrease with increasing salinity. This behaviour is to a very large extent due to physical mixing of contaminated fluvial particulates and relatively unpolluted marine particulates. Desorption of Cd, Cu and Zn can be identified but is of minor importance compared to the conservative mixing process. The distribution of dissolved Cd, Cu and Zn in the pore waters of the mid-estuarine region reflects the impact of early diagenetic processes. Trace metal peaks are observed near the sediment-water interface, and at greater depth in the manganese and iron reduction zones. These peaks are attributed to oxidation of reduced trace metal compounds (e.g. sulphides) and reduction of the (iron and manganese) oxide carrier phases, respectively. At greater depth, the dissolved trace metal concentrations are much lower due to metal sulphide precipitation in the sulphate reduction zone. Analysis of a large sediment dataset indicates severe trace metal pollution of the Scheldt estuary at the end of the fifties. A major reduction of the pollution by As, Cr, Hg, Pb, and Zn has occurred in the seventies, and of Cd and Cu in the eighties. The Ni pollution has increased over the time period considered. In spite of this improvement, the present-day pollution status of the Scheldt estuary is still reason for concern.  相似文献   

20.
The formation of microbial mats by thermophilic organisms on submerged rocks in radioactive thermal springs was followed quantitatively in situ as well as under experimental conditions, by determining the change in dry weight and organic matter as a function of time. Furthermore, the decay of the rock occurring in the springs could be shown to be directly related to the microbial colonization. Early in that process the formation of silicious gels, facilitating the settling of the organisms, could be observed. Simultaneously, this was accompanied by the leaching of silica from the underlying rock. This resulted in the destruction of the rock, which had been altered to a fine-grained dust underneath the colonizing mats; the microorganisms were found to move further downward within this layer. From the heavy metals present in the rock—iron (Fe), copper (Cu), manganese (Mn), uranium (U)— the leaching of uranium could be demonstrated, leading to the acquisition of this metal in the microbial mats in concentrations up to 15.34g/mg dry weight. Direct evidence for the leaching of Si (silicon) and U could be obtained by measurement of these elements after their release from ground rock chips in cultures with microorganisms from the hot springs at 50°C. X-ray analysis of the biomats strongly suggested that Cu, Mn, and Fe are also accumulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号