首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transition metal ions and superoxide participate in different autoxidations to a variable extent. In the reaction of 6-hydroxydopamine (6-OHDA) with oxygen at pH 7.0 or 8.0, addition of 5 to 300 U/ml superoxide dismutase inhibited autoxidation by up to 96% at the highest concentrations. Superoxide dismutase at concentrations of 5-20 U/ml inhibited by less than 40% when present alone, but inhibited by over 99% in the presence of desferrioxamine or histidine. EDTA also enhanced the inhibition by 20 U/ml superoxide dismutase to 86%, even though EDTA accelerated the autoxidation of 6-OHDA when present alone or with desferrioxamine. In contrast, other ligands, such as ADP or phytic acid, had little or no effect on inhibition by superoxide dismutase. Proteins such as albumin, cytochrome oxidase, or denatured superoxide dismutase also enhanced inhibition by active superoxide dismutase from less than 40% to over 90%. Evidently, in the presence of redox active metals, autoxidation occurs by inner sphere electron transfer, presumably within a ternary 6-OHDA.metal.oxygen complex. This mechanism does not involve free O2-. and is not inhibited by superoxide dismutase. On the other hand, the presence of certain ligands (including proteins) diminishes the ability of trace metals to exchange electrons with 6-OHDA or oxygen by an inner sphere mechanism. These ligands render autoxidation dependent on propagation by O2-. and therefore inhibitable by superoxide dismutase. Previously conflicting reports that superoxide dismutase alone inhibits 6-OHDA autoxidation are thus explicable on the basis that at sufficient concentration the apoprotein coordinates trace metals in such a way to preclude inner sphere metal catalysis.  相似文献   

2.
The molecular basis for the transport of manganese across membranes in plant cells is poorly understood. We have found that IRT1, an Arabidopsis thaliana metal ion transporter, can complement a mutant Saccharomyces cerevisiae strain defective in high-affinity manganese uptake (smf1). The IRT1 protein has previously been identified as an iron transporter. The current studies demonstrated that IRT1, when expressed in yeast, can transport manganese as well. This manganese uptake activity was inhibited by cadmium, iron(II) and zinc, suggesting that IRT1 can transport these metals. The IRT1 cDNA also complements a zinc uptake-deficient yeast mutant strain (zrt1zrt2), and IRT1-dependent zinc transport in yeast cells is inhibited by cadmium, copper, cobalt and iron(III). However, IRT1 did not complement a copper uptake-deficient yeast mutant (ctr1), implying that this transporter is not involved in the uptake of copper in plant cells. The expression of IRT1 is enhanced in A. thaliana plants grown under iron deficiency. Under these conditions, there were increased levels of root-associated manganese, zinc and cobalt, suggesting that, in addition to iron, IRT1 mediates uptake of these metals into plant cells. Taken together, these data indicate that the IRT1 protein is a broad-range metal ion transporter in plants.  相似文献   

3.
Superoxide dismutases are enzymes that function to catalytically convert superoxide radical to oxygen and hydrogen peroxide. These enzymes carry out catalysis at near diffusion controlled rate constants via a general mechanism that involves the sequential reduction and oxidation of the metal center, with the concomitant oxidation and reduction of superoxide radicals. That the catalytically active metal can be copper, iron, manganese or, recently, nickel is one of the fascinating features of this class of enzymes. In this review, we describe these enzymes in terms of the details of their catalytic properties, with an emphasis on the mechanistic differences between the enzymes. The focus here will be concentrated mainly on two of these enzymes, copper, zinc superoxide dismutase and manganese superoxide dismutase, and some relatively subtle variations in the mechanisms by which they function.  相似文献   

4.
The green microalgae Closterium ehrenbergii is an ideal organism for ecotoxicology assessments; however, its toxicogenomics has been insufficiently examined. Here, we identified three iron/manganese superoxide dismutase (SOD) genes (designated as CeFeSOD1, CeFeSOD2, and CeMnSOD) from C. ehrenbergii and examined their expressional patterns for four metals (iron, manganese, copper, and nickel). These genes encoded 362, 224, and 245 amino acids, respectively; signal-peptide analysis showed that they were differentially located in chloroplasts, cytosol, or mitochondria. Real-time PCRs revealed differential expression patterns according to metal and doses. Interestingly, CeSODs displayed no noticeable changes to treatment with their corresponding cofactor metals, iron or manganese, even at high doses. However, they were obviously up-regulated under toxic metal (copper and nickel) exposure, exhibiting approximately 10.8- and 4.4-fold increases, respectively. Copper (0.2 mg/L) dramatically stimulated intracellular reactive oxygen species (ROS) formation, increased SOD activity, and reduced photosynthetic efficiency in C. ehrenbergii. These results suggest that CeFeSODs and CeMnSOD might be involved in protecting cells against damage and oxidative stress caused by non-cofactor metals, such as copper and nickel. These genes were sensitively responsive at levels well below the EC50, showing that they can be used as molecular biomarkers to assess the toxicity of specific metal contaminants.  相似文献   

5.
The neurodegeneration induced by manganese has been attributed to its ability to undergo redox cycling, and catalysis of reactive oxygen species (ROS) formation, as with other transition metals. However, the characterization of manganese as a pro-oxidant is confounded by increasing evidence that the metal may scavenge superoxide anions and protect cells from oxidative damage. The current study was designed to address conflicting reports pertaining to the oxidative capacity of manganese. We found that the metal has distinctive redox dynamics in which the divalent reduced form, unlike iron, possessed no intrinsic oxidative capacity. The apparent ability of Mn(2+) to promote the formation of ROS within a cortical mitochondrial-synaptosomal fraction was quenched by the depletion of contaminating nanomolar concentrations of trivalent metals. The addition of manganic ions at trace concentrations dose-dependently restored the oxidative capacity attributed to divalent manganese, whereas the presence of the ferric ion retarded the rate of ROS generation. This result was paralleled by the spectrophotometric demonstration that the kinetics of iron oxidation is accelerated by trivalent but not divalent manganese. The markedly different capacities of the lower and higher valence states of manganese to promote free-radical formation in cortical fractions and to modulate the process of iron oxidation may account for earlier contradictory reports of anti- and pro-oxidant properties of manganese.  相似文献   

6.
Bioreduction processes have profound influences on mobility and bioavailability of metals in soils and sediments. In this study, a series of microcosm studies were conducted to investigate bioreduction progresses (ferric iron and sulfate reduction) and their influences on manganese and copper element redistributions with the change of microbial community under various geochemical conditions. Results indicated that ethanol stimulated higher rates of bioreduction processes than acetate did. High-concentration bicarbonate and sulfate addition inhibited iron reduction but not sulfate reduction. Sequential extraction revealed that the exchangeable and carbonate bonding-iron were increased in ethanol amendment, whereas those of copper were decreased. The elevated bicarbonate concentration and sulfate addition both influenced the mobility and redistribution of metals. 16S rRNA analysis indicated that ethanol amendment stimulated the growths of microbial iron and sulfate reducer. A high concentration of bicarbonate suppressed the growth of iron reducer Geobacteraceae, but showed limited effect on sulfate reducers. This study concluded that geochemical conditions such as electron donor, bicarbonate and sulfate concentration influenced the microbial community and led to changes in bioreduction processes and metal distributions in the anerobic sediments.  相似文献   

7.
Parkinson's disease involves the aggregation of alpha-synuclein to form fibrils, which are the major constituent of intracellular protein inclusions (Lewy bodies and Lewy neurites) in dopaminergic neurons of the substantia nigra. Occupational exposure to specific metals, especially manganese, copper, lead, iron, mercury, zinc, aluminum, appears to be a risk factor for Parkinson's disease based on epidemiological studies. Elevated levels of several of these metals have also been reported in the substantia nigra of Parkinson's disease subjects. We examined the effect of various metals on the kinetics of fibrillation of recombinant alpha-synuclein and in inducing conformational changes, as monitored by biophysical techniques. Several di- and trivalent metal ions caused significant accelerations in the rate of alpha-synuclein fibril formation. Aluminum was the most effective, along with copper(II), iron(III), cobalt(III), and manganese(II). The effectiveness correlated with increasing ion charge density. A correlation was noted between efficiency in stimulating fibrillation and inducing a conformational change, ascribed to formation of a partially folded intermediate. The potential for ligand bridging by polyvalent metal ions is proposed to be an important factor in the metal-induced conformational changes of alpha-synuclein. The results indicate that low concentrations of some metals can directly induce alpha-synuclein fibril formation.  相似文献   

8.
Ligands, especially desferrioxamine, affect the rate at which vanadium reduces or oxidizes cytochrome c. Whether reduction or oxidation occurs, and how fast, depends on the nature of the ligand, the state of reduction of the vanadium, the pH (6.0, 7.0, or 7.4), and the availability of oxygen. In general, oxidation of ferrocytochrome c was favored by (1) low pH, (2) an oxidized state of the vanadium, (3) the presence of oxygen, and (4) more strongly binding ligands (desferrioxamine much greater than histidine = ATP greater than EDTA greater than albumin greater than aquo). Thus, at pH 6.0, desferrioxamine accelerated the V(V)-catalyzed ferrocytochrome c oxidation 160-fold aerobically, and 3500-fold anaerobically. In general, strongly binding ligands slowed oxidations, especially at higher pH. Desferrioxamine was unique among the five ligands in that it not only accelerated oxidation of ferrocytochrome c at pH 6.0, but at pH 7.4 the redox balance shifted to the point where it paradoxically reduced ferricytochrome c. V(V) is an improbable electron donor, but desferrioxamine will reduce cytochrome c, and V(V) accelerates this process. Oxidation of cytochrome c by V(V):desferrioxamine was faster anaerobically, and reduction by V(IV):desferrioxamine was faster aerobically. Although V(V) did not oxidize ferrocytochrome c at pH 7.4, V(IV) did, provided oxygen and desferrioxamine were both present. V(IV):desferrioxamine almost completely reduced ferricytochrome c, and this reduction was followed by a slow, progressive oxidation. This latter oxidation of cytochrome c is mediated by active species generated in the reaction between V(IV):desferrioxamine and oxygen, because none of these reagents alone can induce oxidation at a comparable rate. The mediating species were transient, and generated in reactions with oxygen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Acid mine drainage (AMD), an acidic metal-bearingwastewater, poses a severe pollution problem attributedto post mining activities. The metals usuallyencountered in AMD and considered of concern for riskassessment are arsenic, cadmium, iron, lead, manganese,zinc, copper and sulfate. The pollution generated byabandoned mining activities in the area of Butte, Montanahas resulted in the designation of the Silver Bow Creek–ButteArea as the largest Superfund (National Priorities List) sitein the U.S. This paper reports the results of bench-scalestudies conducted to develop a resource recovery basedremediation process for the clean up of the Berkeley Pit.The process utilizes selective, sequential precipitation (SSP)of metals as hydroxides and sulfides, such as copper, zinc,aluminum, iron and manganese, from the Berkeley Pit AMDfor their removal from the water in a form suitable foradditional processing into marketable precipitates and pigments.The metal biorecovery and recycle process is based on completeseparation of the biological sulfate reduction step and themetal precipitation step. Hydrogen sulfide produced in the SRBbioreactor systems is used in the precipitation step to forminsoluble metal sulfides. The average metal recoveries usingthe SSP process were as follows: aluminum (as hydroxide) 99.8%,cadmium (as sulfide) 99.7%, cobalt (as sulfide) 99.1% copper(as sulfide) 99.8%, ferrous iron (sulfide) 97.1%, manganese(as sulfide) 87.4%, nickel (as sulfide) 47.8%, and zinc (as sulfide)100%. The average precipitate purity for metals, copper sulfide,ferric hydroxide, zinc sulfide, aluminum hydroxide and manganesesulfide were: 92.4, 81.5, 97.8, 95.6 , 92.1 and 75.0%, respectively.The final produced water contained only calcium and magnesiumand both sulfate and sulfide concentrations were below usablewater limits. Water quality of this agriculturally usable watermet the EPA's gold standard criterion.  相似文献   

10.
In manganese-enhanced magnetic resonance imaging (MEMRI), the paramagnetic divalent ion of manganese (Mn2+) is injected into animals to generate tissue contrast, typically at much higher exposures than have been previously used in studies of Mn toxicity. Here we investigate the effect of these injections on the homeostasis of the transition metals iron and copper in mice to see if there are disruptions which should be considered in MEMRI studies. Manganese shares transport proteins with other transition metals including iron and copper, so it is possible that changes in manganese levels in tissue following injections of the metal may affect other metal levels too. This in turn may affect MRI contrast or the investigation of disease processes in the animal models being imaged. In this study, we measured manganese, iron, and copper concentrations in the blood, kidney, liver and in brain regions in mice treated with four injections of 30 mg/kg MnCl2 4H2O (dry chemical weight/body weight)—a common dose used in MEMRI. In addition to the expected increases in manganese in tissues, we noted a statistically significant reduction in copper in the kidney and liver. Also, we noted a statistically significant decrease in concentration of iron in the thalamus of the brain. These findings suggest that the high doses of manganese injected in MEMRI studies can disrupt the homeostasis of other transition metals in mice.  相似文献   

11.
Abnormal distributions of transition metals inside the brain are potential diagnostic markers for several central nervous system diseases, including Alzheimer’s disease (AD), Parkinson’s disease, dementia with Lewy bodies (DLB), bipolar disorders and depression. To further explore this possibility, the total concentrations of iron, zinc, copper, manganese, aluminum, chromium and cadmium were measured in post-mortem hippocampus and amygdala tissues taken from AD, DLB and Control patients. A statistically significant near fifty percent reduction in the total copper levels of AD patients was observed in both the hippocampus and amygdala. The statistical power of the hippocampus and amygdala copper analysis was found to be 86 and 74% respectively. No statistically significant deviations in the total metal concentrations were found for zinc, manganese, chromium or aluminum. Iron was found to be increased by 38% in AD amygdala tissues, but was unchanged in AD hippocampus tissues. Accounting for differences in tissue water content, as a function of both tissue type and disease state, revealed more consistencies with previous literature. To aid in the design of future experiments, the effect sizes for all tissue types and metals studied are also presented.  相似文献   

12.
H2O2, a product of the aerobic autoxidation of 6-hydroxydopamine, is also consumed as a reactant, contributing progressively more to the oxidation as the concentration of O2 becomes limiting H2O2 is a less effective oxidant than O2, since the anaerobic peroxidatic oxidation of 6-hydrodopamine is slower than the aerobic oxidation by three orders of magnitude. The anaerobic peroxidation was inhibited by the hydroxyl scavengers mannitol (13–40%), glucose (41–62%) and benzoate (15–100%), implying a catalytic role for .OH. -9e strongly inhibitory action of desferrioxamine (76–91%), regardless of which other scavengers were present, suggests a specific role for iron in the reaction, despite the use of Chelex 100-treated buffers. Further addition of diethylenetriaminepentaacetate (DTPA), benzoate or formate to the desferrioxamine-treated reactions resulted in complete inhibition. In contrast, the presence of DTPA alone, accelerated the reaction by 160%. This acceleration is in part due to stimulation by DTPA of production of .OH (by Fenton-type reactions), since it was partially prevented by the hydroxyl scavengers benzoate (32% inhibition) and glucose (41%). Thus, DTPA inhibits the participation of metals other than iron, but potentiates the catalytic role of iron, in the reduction of hydrogen peroxide. The semidehydromannitol radical can reduce the DTPA-Fe3+ chelate directly, since mannitol further accelerated the DTPA-stimulated peroxidation (by 55%). Superoxide dismutase also accelerated the reaction (by 57–84%). This activation was seen regardless of which other scavengers were present. These effects are explained in terms of potentiating or moderating interactions among the reactive intermediates which propagate the overall reaction.  相似文献   

13.
We analysed the roles and distribution of metal ions in enzymatic catalysis using available public databases and our new resource Metal-MACiE (). In Metal-MACiE, a database of metal-based reaction mechanisms, 116 entries covering 21% of the metal-dependent enzymes and 70% of the types of enzyme-catalysed chemical transformations are annotated according to metal function. We used Metal-MACiE to assess the functions performed by metals in biological catalysis and the relative frequencies of different metals in different roles, which can be related to their individual chemical properties and availability in the environment. The overall picture emerging from the overview of Metal-MACiE is that redox-inert metal ions are used in enzymes to stabilize negative charges and to activate substrates by virtue of their Lewis acid properties, whereas redox-active metal ions can be used both as Lewis acids and as redox centres. Magnesium and zinc are by far the most common ions of the first type, while calcium is relatively less used. Magnesium, however, is most often bound to phosphate groups of substrates and interacts with the enzyme only transiently, whereas the other metals are stably bound to the enzyme. The most common metal of the second type is iron, which is prevalent in the catalysis of redox reactions, followed by manganese, cobalt, molybdenum, copper and nickel. The control of the reactivity of redox-active metal ions may involve their association with organic cofactors to form stable units. This occurs sometimes for iron and nickel, and quite often for cobalt and molybdenum. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The reduction of ferricytochrome c in the presence of 6-hydroxydopamine/O2 mixtures was examined under various reaction conditions. As the autoxidation of 6-hydroxy-dopamine progressed to completion, there were fluctuations in the net redox reactivity between reducing and oxidizing steady states. This was reflected in a sequence of damped oscillations in the redox state of cytochrome c. Corresponding to the time when 6-hydroxydopamine was 75–100% exhausted, reoxidation of the ferrocytochrome c occurred (prevented by catalase or catalase plus Superoxide dismutase). After the H2O2, in turn, was mostly consumed, the next phase commenced in which the cytochrome c became reduced for a second time. This reductive phase was 52% inhibited by superoxide dismutase. In the subsequent and final phase of the process, a progressive oxidation of cytochrome c lasting at least 24 h was observed. Of the initial reduction of ferricytochrome c, at most 37% can be attributed to direct reduction by 6-hydroxydopamine or its semiquinone. This initial net reduction of cytochrome c was inhibited 51% by superoxide dismutase and 41% by catalase. However, since either catalase or superoxide dismutase inhibited the autoxidation of 6-hydroxydopamine by at least as much as it slowed the reduction of cytochrome c, their effects in slowing the reduction of cytochrome c resulted largely from the decreased production of those free radicals which reduce ferricytochrome c, and only in part from accelerated removal. Elimination of the actions of transition metal ions (whether by passage of the buffer solutions through Chelex 100 resins or by addition of desferrioxamine to the reaction medium) slowed both the reoxidation and rereduction by up to 96%. Addition of mannitol decreased the rate of the first reoxidation by 25% and increased the rate of the rereduction by 7%. In general, the oscillations are explicable in terms of changes in the steady state levels of O2 and H2O2, with metal ions playing a major role and hydroxyl radicals a minor role in both the reoxidation and rereduction.  相似文献   

15.
Many reports have documented wetlands removing a wide variety of contaminants in mine drainage, including aluminum, arsenic, cadmium, cobalt, copper, cyanide, iron, lead, manganese, nickel, selenium, uranium, and zinc. This article reviews biogeochemical processes responsible for their ability to transform and retain metals into insoluble forms. Shallow depth and large inputs of organic matter are key characteristics of wetlands that promote chemical and biological processes effecting metal removal. Aquatic macrophytes play an essential role in creating and maintaining this environment, but their uptake of metals usually accounts for a minor proportion of the total mass removed. Sorption onto organic matter is important in metal removal, particularly for copper, nickel, and uranium. Aluminum, iron, and manganese are often removed by hydrolysis, with the resulting acidification of water buffered by alkalinity produced in wetland sediments by anaerobic bacteria. Bacterial sulfate reduction accounts for much of this alkalinity. It can also contribute significantly to metal removal by formation of insoluble sulfides. Other important processes include the formation of insoluble carbonates, reduction to nonmobile forms, and adsorption onto iron oxides and hydroxides. Examples from field studies are presented throughout the review to illustrate these processes.  相似文献   

16.
In this study, we aimed to assess whether free-ranging wild canids are exposed to heavy metals in one of the most developed and populated regions of Brazil. Hair of 26 wild canids (maned wolves Chrysocyon brachyurus, crab-eating foxes Cerdocyon thous, and hoary foxes Lycalopex vetulus) from the Cerrado biome in Southeast Brazil were analyzed by spectrophotometry to detect cadmium, chromium, and lead, and also the essential copper, iron, manganese, and zinc traces. All samples showed traces of copper, iron, manganese, and zinc. Non-essential lead was detected in 57% (2.35 ± 0.99 mg/kg), and chromium in 88% (2.98 ± 1.56 mg/kg) of samples. Cadmium traces (detection limit 0.8 mg/kg) were not found. Crab-eating foxes had more copper, iron, and manganese in hair than maned wolves. Correlations among element levels differed between maned wolves and crab-eating foxes. Concentrations of chromium and lead were outstandingly higher than in wild canids from other areas. Addressing the causes of such levels and the impacts of the heavy metal pollution in Neotropical ecosystems is urgent for animal health and conservation purposes. We argue that heavy metal pollution should be considered as dangerous threats to wildlife health in Brazil and recommend hair sampling as a biomonitoring tool for heavy metals in Neotropical terrestrial mammals.  相似文献   

17.
to-baccoBright Yellow 2 (BY-2) suspension culture to understand the mechanisms of metal resistance in plant cells.We have analysed superoxide dismutase, catalase, and ascorbate peroxidase enzyme activities and superoxidedismutase-isoforms by isoelectric focusing gels in tobacco cells grown at two different toxic concentrations ofeach of the transition metals: copper, iron, manganese and zinc. Exposure of tobacco cells to these metals causedchanges in total superoxide dismutase activity in a different manner, depending on the metal assayed: after cop-perand manganese treatments, total superoxide dismutase activity was enhanced, while it was reduced after ironand zinc exposure. Superoxide dismutase-isoforms were affected by the metal used, and a Fe-SOD band with thesame isoelectric point as a Cu, Zn-SOD from non-treated cells, was induced after iron and zinc treatments. Cu,Zn-SODs were present in all metal-treatments whereas Mn-SOD was not detected in any case. Concerning otherantioxidant enzymes tested, such as catalase and ascorbate peroxidase, the latter showed a remarkable increase inactivity in response to copper treatments and catalase activity was enhanced after iron and with the lowest man-ganeseconcentration. Lipid peroxidation was increased after each metal treatment, as an indication of the oxi-dativedamage caused by metal concentration assayed in tobacco cells. These results suggest that an activation ofsome antioxidant enzymes in response to oxidative stress induced by transition metals is not enough to confertolerance to metal accumulation.  相似文献   

18.
Interactions of micronutrients can affect absorption and bioavailability of other nutrients by a number of mechanisms. In aqueous solutions, and at higher uptake levels, competition between elements with similar chemical characteristics and uptake process can take place. The consequences of these interactions may depend on the relative concentrations of the nutrients. In this work, we measure the effects of increasing concentrations of iron, zinc, and copper on iron and copper uptake in Caco-2 cells. Intracellular Fe or Cu levels were affected by incubating with increased concentrations of metals. However, when the cells already had different intracellular metal concentration, the uptake of Fe or Cu was nor affected. In competition studies, we showed that Cu and Zn inhibited Fe uptake, and while Fe inhibited Cu uptake, Zn did not. When the three metals were given together (1:1:1 ratio), Fe or Cu uptake was inhibited approximately 40%. These results point to a potential risk in the absorption and bioavailability of these minerals by the presence of other minerals in the diet. This aspect must be considered in food supplementation and fortification programs.  相似文献   

19.
The concentration of trace elements in L-cells has been studied as a function of the trace metal content of the growth medium. Cells were cultured in synthetic media which contained varying trace amounts of the elements manganese, iron, cobalt, copper, zinc and molybdenum. The cellular concentration of the elements potassium, iron, copper and zinc were then determined. It was found that the cell accumulates trace metals at a different rate than they are made available. Deficiencies in zinc could be “induced” in the cell by increasing the concentration of iron, manganese and cobalt; cellular iron deficiencies were observed at larger medium concentrations of zinc, manganese, copper and cobalt. Trace metal uptake by the cell was seen to parallel the utilization by multicellular organisms.  相似文献   

20.
A comparative bioaccumulation pattern and ultra structural changes were studied in Phragmites cummunis, Typha angustifolia and Cyperus esculentus in mixed metals solution of cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn). P. cummunis was observed to be a shoot accumulator for Cr, Fe, Mn, Ni, Pb, and Zn. However, T. angustifolia was found to be a root accumulator for Cd, Cr, Cu, Fe, Ni and Pb. In addition, C. esculentus also accumulated most of the tested heavy metals in the roots, while Mn and Fe were translocated up to leaves. Further, the long term metal treatment showed maximum accumulation of all heavy metals in P. cummunis followed by T. angustifolia and C. esculentus. Among heavy metals, Fe was accumulated maximum, i.e., >1000 microg g(-1) by all three plants. Simultaneously, the adverse effects on biochemical parameters were noted earlier in C. esculentus than T. angustifolia and P. cummunis. Ultra structural observation showed the cellular changes in wetland plants after longer exposure. Results revealed that P. cummunis and T. angustifolia had more potential for tested metals than C. esculentus. This study established that these wetland plants could be used for heavy metals phytoremediation from metal containing industrial wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号