首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The adaptor protein Grb2 associates with phospholipase D2 (PLD2), but it is not known if this interaction is necessary for the functionality of the lipase in vivo. We demonstrate that stable short hairpin RNA (shRNA)-based silencing of Grb2, a critical signal transducer of the epidermal growth factor receptor (EGFR) and linker to the Ras/Erk pathway, resulted in the reduction of PLD2 activity in COS7 cells. Transfection of a Grb2 construct refractory to shGrb2 silencing (XGrb2(SiL)) into the Grb2-knockdown cells (COS7(shGrb2)), resulted in the nearly full rescue of PLD2 activity. However, Grb2-R86K, an SH2-deficient mutant of Grb2 that is incapable of binding to PLD2, failed to induce an enhancement of the impaired PLD2 activity in COS7(shGrb2) cells. Grb2 and PLD2 are directly associated and Grb2 is brought down with anti-myc antibodies irrespective of the presence or absence of EGFR activation. Immunofluorescence microscopy showed that co-transfected PLD2 and Grb2 re-localize to Golgi-like structures after EGF stimulation. Since this was not observed in cotransfection experiments with Grb2 and PLD2-Y169/179F, a lipase mutant that does not bind to Grb2, we inferred that Grb2 serves to hijack PLD2 to the perinuclear Golgi region through its SH2 domain. Supporting this is the finding that the primary cell line HUVEC expresses PLD2 diffusely in the cytoplasm and in the perinuclear Golgi region, where PLD2 and Grb2 colocalize. Such colocalization in primary cells increased after stimulation with EGF. These results demonstrate for the first time that the presence of Grb2 and its interaction with localized intracellular structures is essential for PLD2 activity and signaling in vivo.  相似文献   

2.
Src‐homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific inhibitor. The G7‐18NATE cyclic peptide is reported to specifically inhibit the growth factor receptor bound protein 7 (Grb7) adapter protein, implicated in the progression of several cancer types, via interactions with its SH2 domain. G7‐18NATE effectively inhibits the interaction of Grb7 with ErbB3 and focal adhesion kinase in cell lysates and, with the addition of a cell permeability sequence, inhibits the growth and migration of a number of breast cancer cell lines. It is thus a promising lead in the development of therapeutics targeted to Grb7. Here we investigate the degree to which G7‐18NATE is specific for the Grb7‐SH2 domain compared with closely related SH2 domains including those of Grb10, Grb14, and Grb2 using surface plasmon resonance. We demonstrate that G7‐18NATE binds with micromolar binding affinity to Grb7‐SH2 domain (KD = 4–6 μm ) compared with 50–200 times lower affinity for Grb10, Grb14, and Grb2 but that this specificity depends critically on the presence of phosphate in millimolar concentrations. Other differences in buffer composition, including use of Tris or 2‐(N‐Morpholino)ethanesulfonic acid or varying the pH, do not impact on the interaction. This suggests that under cellular conditions, G7‐18NATE binds with highest affinity to Grb7. In addition, our findings demonstrate that the basis of specificity of G7‐18NATE binding to the Grb7‐SH2 domain is via other than intrinsic structural features of the protein, representing an unexpected mode of molecular recognition. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Grb10 has been described as a cellular partner of several receptor tyrosine kinases, including the insulin receptor (IR) and the insulin-like growth factor I (IGF-I) receptor (IGF-IR). Its cellular role is still unclear and a positive as well as an inhibitory role in mitogenesis depending on the cell context has been implicated. We have tested other mitogenic receptor tyrosine kinases as putative Grb10 partners and have identified the activated forms of platelet-derived growth factor (PDGF) receptor beta (PDGFRbeta), hepatocyte growth factor receptor (Met), and fibroblast growth factor receptor as candidates. We have mapped Y771 as a PDFGRbeta site that is involved in the association with Grb10 via its SH2 domain. We have further investigated the putative role of Grb10 in mitogenesis with four independent experimental strategies and found that all consistently suggested a role as a positive, stimulatory signaling adaptor in normal fibroblasts. (i) Complete Grb10 expression from cDNA with an ecdysone-regulated transient expression system stimulated PDGF-BB-, IGF-I, and insulin- but not epidermal growth factor (EGF)-induced DNA synthesis in an ecdysone dose-responsive fashion. (ii) Microinjection of the (dominant-negative) Grb10 SH2 domain interfered with PDGF-BB- and insulin-induced DNA synthesis. (iii) Alternative experiments were based on cell-permeable fusion peptides with the Drosophila antennapedia homeodomain which effectively traverse the plasma membrane of cultured cells. A cell-permeable Grb10 SH2 domain similarly interfered with PDGF-BB-, IGF-I-, and insulin-induced DNA synthesis. In contrast, a cell-permeable Grb10 Pro-rich putative SH3 domain binding region interfered with IGF-I- and insulin- but not with PDGF-BB- or EGF-induced DNA synthesis. (iv) Transient overexpression of complete Grb10 increased whereas cell-permeable Grb10 SH2 domain fusion peptides substantially decreased the cell proliferation rate (as measured by cell numbers) in normal fibroblasts. These experimental strategies independently suggest that Grb10 functions as a positive, stimulatory, mitogenic signaling adapter in PDGF-BB, IGF-I, and insulin action. This function appears to involve the Grb10 SH2 domain, a novel sequence termed BPS, and the Pro-rich putative SH3 domain binding region in IGF-I- and insulin-mediated mitogenesis. In contrast, PDGF-BB-mediated mitogenesis appears to depend on the SH2 but not on the Pro-rich region and may involve other, unidentified Grb10 domains. Distinct protein domains may help to define specific Grb10 functions in different signaling pathways.  相似文献   

4.
Grb10 is a member of the Grb7 family of adapter proteins lacking intrinsic enzymatic function and encodes functional domains including a pleckstrin homology (PH) domain and an SH2 domain. The role of different Grb10 splice variants in signal transduction of growth factors like insulin or insulin-like growth factor has been described as inhibitory or stimulatory depending on the presence of a functional PH and/or SH2 domain. Performing a yeast two-hybrid screen with the c-kit cytoplasmic tail fused to LexA as a bait and a mouse embryo cDNA library as prey, we found that the Grb10 SH2 domain interacted with the c-kit receptor tyrosine kinase. In the course of SCF-mediated activation of c-kit, Grb10 is recruited to the c-kit receptor in an SH2 domain- and phosphotyrosine-dependent but PH domain-independent manner. We found that Akt and Grb10 form a constitutive complex, suggesting a role for Grb10 in the translocation of Akt to the cell membrane. Indeed, coexpression studies revealed that Grb10 and c-kit activate Akt in a synergistic manner. This dose-dependent effect of Grb10 is wortmannin sensitive and was also seen at a lower level in cells in which c-kit was not expressed. Expression of a Grb10 mutant lacking the SH2 domain as well as a mutant lacking the PH domain did not influence Akt activity. Grb10-induced Akt activation was observed without increased phosphatidylinositol 3-kinase (PI3-kinase) activity, suggesting that Grb10 is a positive regulator of Akt downstream of PI3-kinase. Significantly, deficient activation of Akt by a constitutively activated c-kit mutant lacking the binding site for PI3-kinase (c-kitD814V/Y719F) could be fully compensated by overexpression of Grb10. In Ba/F3 cells, the incapacity of c-kitD814V/Y719F to induce interleukin-3 (IL-3)-independent growth could be rescued by overexpression of Grb10. In contrast, expression of the SH2 deletion mutant of Grb10 together with c-kitD814V/Y719F did not render Ba/F3 cells independent of IL-3. In summary, we provide evidence that Grb10 is part of the c-kit signaling pathway and that the expression level of Grb10 critically influences Akt activity. We propose a model in which Grb10 acts as a coactivator for Akt by virtue of its ability to form a complex with Akt and its SH2 domain-dependent translocation to the cell membrane.  相似文献   

5.
Association of focal adhesion kinase with Grb7 and its role in cell migration.   总被引:11,自引:0,他引:11  
Focal adhesion kinase (FAK) has been implicated to play a key role in integrin-mediated signal transduction in cell migration. Grb7 is an Src homology (SH) 2-containing and pleckstrin homology domain-containing molecule, which shares significant homology with the Caenorhabditis elegans gene for Mig-10 involved in cell migration during embryogenesis. Here, we report that the SH2 domain of Grb7 can directly interact with FAK through Tyr-397, a major autophosphorylation site in vitro and in vivo. This interaction is cell adhesion-dependent, suggesting that the FAK-Grb7 complex is involved in integrin signaling. Using tetracycline-regulated expression system, we showed that overexpression of Grb7 enhanced cell migration toward fibronectin, whereas overexpression of its SH2 domain alone inhibited cell migration. In addition, we found that phosphorylation of FAK or p130(cas) was not affected by the expression of either Grb7 or its SH2 domain alone, suggesting that Grb7 is downstream of FAK and does not compete with Src for binding to FAK in vivo. Taken together, these results suggest that the FAK-Grb7 complex plays a role in cell migration stimulated by integrin signaling through FAK.  相似文献   

6.
We have previously described Grb7 association with focal adhesion kinase (FAK) and its possible roles in cell migration. In this paper, we investigated the mechanisms by which Grb7 and its association with FAK regulate cell migration. We found that deletion of the Grb7 SH2 domain eliminated partial Grb7 localization to focal contacts and its ability to stimulate cell migration. Replacement of the SH2 domain with the focal adhesion targeting sequence from FAK resulted in the focal contacts localization of the chimeric molecule and restored its activity to stimulate cell migration. We also found that Grb7 could be phosphorylated by FAK, which was dependent on the FAK kinase activity but not the presence of the Src family kinases. Cell adhesion also enhanced Grb7 phosphorylation in FAK+/+ cells but not FAK-/- cells, suggesting that Grb7 is a physiological substrate of FAK. Furthermore, both Grb7 and the chimeric molecule did not increase migration of FAK-/- cells, although the chimeric molecule was targeted to the focal contacts. Last, we showed that other Grb7 family members could not stimulate cell migration under similar experimental conditions. Together, these results demonstrate a role for Grb7 targeting to focal contacts and its phosphorylation by FAK in the regulation of cell migration.  相似文献   

7.
The role of Grb7 adapters, Grb7, Grb10, and Grb14, was investigated in Xenopus oocytes expressing fibroblast growth factor receptors (FGFR). FGF-induced maturation of FGFR-expressing oocytes was blocked by previous injection of Grb7 or Grb14, but not Grb10. This effect correlated with Grb7/14 binding to the receptor, and inhibition of the Ras-dependent pathway. Interestingly, the phosphorylated insulin receptor interacting region (PIR) and Src 2 homology domains (SH2) of Grb7 and Grb14 were differently implicated in the inhibition of FGFR signalling. This study provided further evidence for specificity of the biological action of the Grb7 adapters on receptor tyrosine kinase signalling.  相似文献   

8.
Axl is a receptor tyrosine kinase implicated in cell survival following growth factor withdrawal and other stressors. The binding of Axl's ligand, growth arrest-specific protein 6 (Gas6), results in Axl autophosphorylation, recruitment of signaling molecules, and activation of downstream survival pathways. Pull-down assays and immunoprecipitations using wildtype and mutant Axl transfected cells determined that Axl directly binds growth factor receptor-bound protein 2 (Grb2) at pYVN and the p85 subunit of phosphatidylinositol-3 kinase (PI3 kinase) at two pYXXM sites (pY779 and pY821). Also, p85 can indirectly bind to Axl via an interaction between p85's second proline-rich region and the N-terminal SH3 domain of Grb2. Further, Grb2 and p85 can compete for binding at the pY821VNM site. Gas6-stimulation of Axl-transfected COS7 cells recruited activated PI3 kinase and phosphorylated Akt. An interaction between Axl, p85 and Grb2 was confirmed in brain homogenates, enriched populations of O4+ oligodendrocytes, and O4− flow-through prepared from day 10 mouse brain, indicating that cells with active Gas6/Axl signal through Grb2 and the PI3 kinase/Akt pathways.  相似文献   

9.
The Src homology 3 (SH3) domain of Fyn binds to a conserved PXXP motif on microtubule-associated protein-2. Co-transfections into COS7 cells and in vitro kinase assays performed with Fyn and wild-type, or mutant MAP-2c, determined that Fyn phosphorylated MAP-2c on tyrosine 67. The phosphorylation generated a consensus sequence for the binding of the SH2 domain of Grb2 (pYSN). Pull-down assays with SH2-Grb2 from human fetal brain homogenates, and co-immunoprecipitation of Grb2 and MAP-2 confirmed the interaction in vivo, and demonstrated that MAP-2c is tyrosine-phosphorylated in human fetal brain. Filter overlay assays confirmed that the SH2 domain of Grb2 binds to human MAP-2c following incubation with active Fyn. Enzyme-linked immunosorbent assays confirmed the interaction between the SH2 domain of Grb2 and a tyrosine-phosphorylated MAP-2 peptide spanning the pY(67)SN motif. Thus, MAP-2c can directly recruit multiple signaling proteins important for central nervous system development.  相似文献   

10.
Grb7, Grb10, and Grb14 are members of a distinct family of adapter proteins that interact with various receptor tyrosine kinases upon receptor activation. Proteins in this family contain several modular signaling domains including a pleckstrin homology (PH) domain, a BPS (between PH and SH2) domain, and a C-terminal Src homology 2 (SH2) domain. Although SH2 domains are typically monomeric, we show that the Grb10 SH2 domain and also full-length Grb10 gamma are dimeric in solution under physiologic conditions. The crystal structure of the Grb10 SH2 domain at 1.65-A resolution reveals a non-covalent dimer whose interface comprises residues within and flanking the C-terminal alpha helix, which are conserved in the Grb7/Grb10/Grb14 family but not in other SH2 domains. Val-522 in the BG loop (BG3) and Asp-500 in the EF loop (EF1) are positioned to interfere with the binding of the P+3 residue of a phosphopeptide ligand. These structural features of the Grb10 SH2 domain will favor binding of dimeric, turn-containing phosphotyrosine sequences, such as the phosphorylated activation loops in the two beta subunits of the insulin and insulin-like growth factor-1 receptors. Moreover, the structure suggests the mechanism by which the Grb7 SH2 domain binds selectively to pTyr-1139 (pYVNQ) in Her2, which along with Grb7 is co-amplified in human breast cancers.  相似文献   

11.
We have previously reported the association of tumor cell invasion with expression of growth factor receptor-bound protein 7 (Grb7). This molecule contains a Src homology 2 (SH2) domain and shares structural homology with a cell migration molecule designated Mig-10 found in Caenorhabditis elegans. In the present study, Grb7 expression was analyzed in human esophageal carcinomas with or without metastatic spread. The Grb7 protein was overexpressed in 14 of 31 esophageal carcinomas as compared to the adjacent normal mucosa (45%) and this finding was significantly correlated with the presence of lymph node metastases. We also identified that Grb7 protein in esophageal carcinoma cells was phosphorylated on tyrosine by epidermal growth factor as well as attachment to extracellular matrix proteins including fibronectin. Such fibronectin-dependent phosphorylation of Grb7 was regulated by integrin signaling that leads to the interaction with focal adhesion kinase protein. Furthermore, ectopic expression of a Grb7-SH2 dominant-negative fragment inhibited the fibronectin-dependent phosphorylation of endogenous Grb7, and reduced migration of esophageal carcinoma cells into fibronectin. Our results suggest a role of Grb7 mediated signal transduction in generation of an invasive cell phenotype against extracellular matrix, and thus contributes to metastatic progression of human esophageal carcinoma.  相似文献   

12.
Src homology domains [i.e., Src homology domain 2 (SH2) and Src homology domain 3 (SH3)] play a critical role in linking receptor tyrosine kinases to downstream signaling networks. A well-defined function of the SH3-SH2-SH3 adapter Grb2 is to link receptor tyrosine kinases, such as the epidermal growth factor receptor (EGFR), to the p21ras-signaling pathway. Grb2 has also been implicated to play a role in growth factor-regulated actin assembly and receptor endocytosis, although the underlying mechanisms remain unclear. In this study, we show that Grb2 interacts through its SH3 domains with the human Wiskott-Aldrich syndrome protein (WASp), which plays a role in regulation of the actin cytoskeleton. We find that WASp is expressed in a variety of cell types and is exclusively cytoplasmic. Although the N-terminal SH3 domain of Grb2 binds significantly stronger than the C-terminal SH3 domain to WASp, full-length Grb2 shows the strongest binding. Both phosphorylation of WASp and its interaction with Grb2, as well as with another adapter protein Nck, remain constitutive in serum-starved or epidermal growth factor-stimulated cells. WASp coimmunoprecipitates with the activated EGFR after epidermal growth factor stimulation. Purified glutathione S-transferase-full-length-Grb2 fusion protein, but not the individual domains of Grb2, enhances the association of WASp with the EGFR, suggesting that Grb2 mediates the association of WASp with EGFR. This study suggests that Grb2 translocates WASp from the cytoplasm to the plasma membrane and the Grb2-WASp complex may play a role in linking receptor tyrosine kinases to the actin cytoskeleton.  相似文献   

13.

Background

Human growth factor receptor bound protein 7 (Grb7) is an adapter protein that mediates the coupling of tyrosine kinases with their downstream signaling pathways. Grb7 is frequently overexpressed in invasive and metastatic human cancers and is implicated in cancer progression via its interaction with the ErbB2 receptor and focal adhesion kinase (FAK) that play critical roles in cell proliferation and migration. It is thus a prime target for the development of novel anti-cancer therapies. Recently, an inhibitory peptide (G7-18NATE) has been developed which binds specifically to the Grb7 SH2 domain and is able to attenuate cancer cell proliferation and migration in various cancer cell lines.

Results

As a first step towards understanding how Grb7 may be inhibited by G7-18NATE, we solved the crystal structure of the Grb7 SH2 domain to 2.1 Å resolution. We describe the details of the peptide binding site underlying target specificity, as well as the dimer interface of Grb 7 SH2. Dimer formation of Grb7 was determined to be in the μM range using analytical ultracentrifugation for both full-length Grb7 and the SH2 domain alone, suggesting the SH2 domain forms the basis of a physiological dimer. ITC measurements of the interaction of the G7-18NATE peptide with the Grb7 SH2 domain revealed that it binds with a binding affinity of Kd = ~35.7 μM and NMR spectroscopy titration experiments revealed that peptide binding causes perturbations to both the ligand binding surface of the Grb7 SH2 domain as well as to the dimer interface, suggesting that dimerisation of Grb7 is impacted on by peptide binding.

Conclusion

Together the data allow us to propose a model of the Grb7 SH2 domain/G7-18NATE interaction and to rationalize the basis for the observed binding specificity and affinity. We propose that the current study will assist with the development of second generation Grb7 SH2 domain inhibitors, potentially leading to novel inhibitors of cancer cell migration and invasion.  相似文献   

14.
Grb7 is a member of a family of molecular adapters which are able to contribute positively but also negatively to signal transduction and whose precise roles remain obscure. Rnd1 is a member of the Rho family, but, as opposed to usual GTPases, it is constitutively bound to GTP. We show here that Rnd1 and Grb7 interact, in two-hybrid assays, in vitro, and in pull-down experiments performed with SK-BR3, a breast cancer cell line that overexpresses Grb7. This interaction involves switch II loop of Rnd1, a region crucial for guanine nucleotide exchange in all GTPases, and a Grb7 SH2 domain, a region crucial for Grb7 interaction with several activated receptors. The contribution of the interaction between Rnd1 and Grb7 to their respective functions and properties is discussed.  相似文献   

15.
Grb7 is an adapter-type signaling protein, which is recruited via its SH2 domain to a variety of receptor tyrosine kinases (RTKs), including ErbB2 and ErbB3. It is overexpressed in breast, esophageal, and gastric cancers, and may contribute to the invasive potential of cancer cells. Molecular interactions involving Grb7 therefore provide attractive targets for therapeutic intervention. We have utilized phage display random peptide libraries as a source of small peptide ligands to the SH2 domain of Grb7. Screening these libraries against purified Grb7 SH2 resulted in the identification of Grb7-binding peptide phage clones that contained a non-phosphorylated Tyr-X-Asn (YXN) motif. The tyrosine-phosphorylated form of this motif is characteristic of Grb7 SH2 domain binding sites identified in RTKs and other signaling proteins such as Shc. Peptides that are non-phosphorylated have greater potential in the development of therapeutics because of the instability of a phosphate group in vivo. Using a biased library approach with this conserved YXN motif, we identified seven different peptide phage clones, which bind specifically to the SH2 domain of Grb7. These peptides did not bind to the SH2 domain of Grb2 (which also selects for Asn at pY(+2)) or Grb14, a closely related family member. The cyclic structure of the peptides was required to bind to the Grb7 SH2 domain. Importantly, the synthetic Grb7-binding peptide G7-18 in cell lysates was able to specifically inhibit the association of Grb7 with the ErbB family of RTKs, in particular ErbB3, in a dose-dependent manner. These peptides will be useful in the development of targeted molecular therapeutics for cancers overexpressing Grb7 and in the development of Grb7-specific inhibitors to gain a complete understanding of the physiological role of Grb7.  相似文献   

16.
Using the cytoplasmic domain of fibroblast growth factor receptor 1 (FGFR1) as bait in a yeast two-hybrid screen, Grb14 was identified as a FGFR1 binding partner. A kinase-inactive mutant of FGFR1 failed to interact with Grb14, indicating that activation of FGFR1 is necessary for binding. Deletion of the C-tail or mutation of both C-tail tyrosine residues of FGFR1 to phenylalanine abolished binding, and deletion of the juxtamembrane domain of the receptor reduced binding, suggesting that Grb14 binds to FGFR1 at multiple sites. Co-immunoprecipitation and in vitro binding assays demonstrated that binding of Grb14 to FGFR1 in mammalian cells was dependent on receptor activation by fibroblast growth factor-2 (FGF-2). Deletion of the Src homology 2 (SH2) domain of Grb14 reduced but did not block binding to FGFR1 and eliminated dependence on receptor activation. The SH2 domain alone bound both FGFR1 and platelet-derived growth factor receptor, whereas full-length Grb14 bound only FGFR1, suggesting that regions upstream of the SH2 domain confer specificity for FGFR1. Grb14 was phosphorylated on serine and threonine residues in unstimulated cells, and treatment with FGF-2 enhanced this phosphorylation. Expression of exogenous Grb14 inhibited FGF-2-induced cell proliferation, whereas a point-mutated form of Grb14 incapable of binding to FGFR1 enhanced FGF-2-induced mitogenesis. These data demonstrate an interaction between activated FGFR1 and Grb14 and suggest a role for Grb14 in FGF signaling.  相似文献   

17.
Grb14 is an adapter protein that is known to be overexpressed in estrogen receptor positive breast cancers, and in a number of prostate cancer cell lines. Grb14 has been demonstrated to bind to a number of activated receptor tyrosine kinases (RTKs) and to modulate signals transduced through these receptors. The RTKs to which Grb14 binds include the insulin receptor (IR), the fibroblast growth factor receptor (FGFR), the platelet-derived growth factor receptor (PDGFR), and the tunica endothelial kinase (Tek/Tie2) receptor. Grb14 has been shown to bind to these activated RTKs through its Src homology 2 (SH2) domain, with the exception of the insulin receptor, where the primary binding interaction is via a small domain adjacent to the SH2 domain (the BPS or PIR domain). Grb14 is a member of the Grb7 family of proteins, which also includes Grb7 and Grb10. We have solved the solution structure of the human Grb14-SH2 domain and compared it with the recently determined Grb7-SH2 and Grb10-SH2 domain structures.  相似文献   

18.
The growth factor receptor-bound protein 2 (Grb2) is an SH2 domain-containing docking module that participates in the signaling of numerous oncogenic growth factor receptor protein-tyrosine kinases (PTKs). Presented herein is a 5-methylindolyl-containing macrocyclic tetrapeptide mimetic (5) that binds to Grb2 SH2 domain protein with K(d)=75 pM. This represents the highest affinity yet reported for a synthetic inhibitor against any SH2 domain. In whole cell assays this novel analogue is able to effectively block the association of Grb2 to cognate cytoplasmic erbB-2 at IC(50)<10nM without prodrug derivatization or the addition of carrier peptide motifs. Anti-mitogenic effects against erbB-2-dependent breast cancers are achieved at non-cytotoxic concentrations (IC(50)=0.6 microM). Macrocycle 5 may be representative of a new class of therapeutically relevant Grb2 SH2 domain-directed agents.  相似文献   

19.
In this study we initially examined the interaction between CD44v3 (a hyaluronan (HA) receptor) and Vav2 (a guanine nucleotide exchange factor) in human ovarian tumor cells (SK-OV-3.ipl cell line). Immunological data indicate that both CD44v3 and Vav2 are expressed in SK-OV-3.ipl cells and that these two proteins are physically linked as a complex in vivo. By using recombinant fragments of Vav2 and in vitro binding assays, we have detected a specific binding interaction between the SH3-SH2-SH3 domain of Vav2 and the cytoplasmic domain of CD44. In addition, we have observed that the binding of HA to CD44v3 activates Vav2-mediated Rac1 signaling leading to ovarian tumor cell migration. Further analyses indicate that the adaptor molecule, growth factor receptor-bound protein 2 (Grb2) that is bound to p185(HER2) (an oncogene product), is also associated with the CD44v3-Vav2 complex. HA binding to SK-OV-3.ipl cells promotes recruitment of both Grb2 and p185(HER2) to the CD44v3-Vav2 complex leading to Ras activation and ovarian tumor cell growth. In order to determine the role of Grb2 in CD44v3 signaling, we have transfected SK-OV-3.ipl cells with Grb2 mutant cDNAs (e.g. Delta N-Grb2 that has a deletion in the amino-terminal SH3 domain or Delta C-Grb2 that has a deletion in the carboxyl-terminal SH3 domain). Our results clearly indicate that the SH3 domain deletion mutants of Grb2 (i.e. the Delta N-Grb2 (and to a lesser extent the Delta C-Grb2) mutant) not only block their association with p185(HER2) but also significantly impair their binding to the CD44v3-Vav2 complex and inhibit HA/CD44v3-induced ovarian tumor cell behaviors. Taken together, these findings strongly suggest that the interaction of CD44v3-Vav2 with Grb2-p185(HER2) plays an important role in the co-activation of both Rac1 and Ras signaling that is required for HA-mediated human ovarian tumor progression.  相似文献   

20.
Growth factor receptor-bound protein 2 (Grb2) is an extensively studied adaptor protein involved in cell signaling. Grb2 is a highly flexible protein composed of a single SH2 domain flanked by two SH3 domains. The evolutionarily conserved serine/threonine kinase, AMP-activated protein kinase (AMPK), functions as a cellular fuel gauge that regulates metabolic pathways in glucose and fatty acid metabolism and protein synthesis. AMPK regulates the activation of TSC2 by phosphorylating TSC2. Here we report for the first time on the interaction of Grb2 with AMPK. SH2 domain of Grb2 and KIS domain of AMPK are both required for the combination of Grb2 and AMPK. Furthermore, Grb2 function as a factor which mediates phosphorylation of AMPK at Thr172, and potentially involves in metabolism pathways and AMPK-TSC2-mTOR cell growth pathway through regulating the activation of AMPK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号