首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial matrix protease CLPP plays a central role in the activation of the mitochondrial unfolded protein response (UPRmt) in Caenorhabditis elegans. Far less is known about mammalian UPRmt signaling, although similar roles were assumed for central players, including CLPP. To better understand the mammalian UPRmt signaling, we deleted CLPP in hearts of DARS2‐deficient animals that show robust induction of UPRmt due to strong dysregulation of mitochondrial translation. Remarkably, our results clearly show that mammalian CLPP is neither required for, nor it regulates the UPRmt in mammals. Surprisingly, we demonstrate that a strong mitochondrial cardiomyopathy and diminished respiration due to DARS2 deficiency can be alleviated by the loss of CLPP, leading to an increased de novo synthesis of individual OXPHOS subunits. These results question our current understanding of the UPRmt signaling in mammals, while introducing CLPP as a possible novel target for therapeutic intervention in mitochondrial diseases.  相似文献   

2.
Loss of SURF1, a Complex IV assembly protein, was reported to increase lifespan in mice despite dramatically lower cytochrome oxidase (COX) activity. Consistent with this, our previous studies found advantageous changes in metabolism (reduced adiposity, increased insulin sensitivity, and mitochondrial biogenesis) in Surf1?/? mice. The lack of deleterious phenotypes in Surf1?/? mice is contrary to the hypothesis that mitochondrial dysfunction contributes to aging. We found only a modest (nonsignificant) extension of lifespan (7% median, 16% maximum) and no change in healthspan indices in Surf1?/? vs. Surf1+/+ mice despite substantial decreases in COX activity (22%–87% across tissues). Dietary restriction (DR) increased median lifespan in both Surf1+/+ and Surf1?/? mice (36% and 19%, respectively). We measured gene expression, metabolites, and targeted expression of key metabolic proteins in adipose tissue, liver, and brain in Surf1+/+ and Surf1?/? mice. Gene expression was differentially regulated in a tissue‐specific manner. Many proteins and metabolites are downregulated in Surf1?/? adipose tissue and reversed by DR, while in brain, most metabolites that changed were elevated in Surf1?/? mice. Finally, mitochondrial unfolded protein response (UPRmt)‐associated proteins were not uniformly altered by age or genotype, suggesting the UPRmt is not a key player in aging or in response to reduced COX activity. While the changes in gene expression and metabolism may represent compensatory responses to mitochondrial stress, the important outcome of this study is that lifespan and healthspan are not compromised in Surf1?/? mice, suggesting that not all mitochondrial deficiencies are a critical determinant of lifespan.  相似文献   

3.
Hu F  Liu F 《Cellular signalling》2011,23(10):1528-1533
Under pathophysiological conditions such as obesity, excessive oxidation of nutrients may induce mitochondrial stress, leading to mitochondrial unfolded protein response (UPRmt) and initiation of a retrograde stress signaling pathway. Defects in the UPRmt and the retrograde signaling pathways may disrupt the integrity and homeostasis of the mitochondria, resulting in endoplasmic reticulum stress and insulin resistance. Improving the capacity of mitochondria to reduce stress may be an effective approach to improve mitochondria function and to suppress obesity-induced metabolic disorders such as insulin resistance and type 2 diabetes.  相似文献   

4.
线粒体未折叠蛋白反应(UPR~(mt))作为新发现的细胞内应激机制,直接影响老化、神经退行性疾病、癌症等疾病的发生发展.UPR~(mt)是线粒体为了维持其内部蛋白质的平衡,启动由核DNA编码的线粒体热休克蛋白和蛋白酶等基因群转录活化程序的应激反应.深入探究UPR~(mt)的作用机制对阐明老化和线粒体相关疾病的发病机理具有指导意义.本文主要阐述了线粒体未折叠蛋白反应的诱导因素、线虫和哺乳动物细胞中最新的未折叠蛋白应激反应的信号传导通路、调控因子、具体作用机制以及线粒体未折叠蛋白反应与衰老、免疫等疾病的联系,旨在为这些疾病提供新的理论基础和治疗靶点.  相似文献   

5.
6.
S-adenosylmethionine (SAM), generated from methionine and ATP by S-adenosyl methionine synthetase (SAMS), is the universal methyl group donor required for numerous cellular methylation reactions. In Caenorhabditis elegans, silencing sams-1, the major isoform of SAMS, genetically or via dietary restriction induces a robust mitochondrial unfolded protein response (UPRmt) and lifespan extension. In this study, we found that depleting SAMS-1 markedly decreases mitochondrial SAM levels. Moreover, RNAi knockdown of SLC-25A26, a carrier protein responsible for transporting SAM from the cytoplasm into the mitochondria, significantly lowers the mitochondrial SAM levels and activates UPRmt, suggesting that the UPRmt induced by sams-1 mutations might result from disrupted mitochondrial SAM homeostasis. Through a genetic screen, we then identified a putative mitochondrial tRNA methyltransferase TRMT-10C.2 as a major downstream effector of SAMS-1 to regulate UPRmt and longevity. As disruption of mitochondrial tRNA methylation likely leads to impaired mitochondrial tRNA maturation and consequently reduced mitochondrial translation, our findings suggest that depleting mitochondrial SAM level might trigger UPRmt via attenuating protein translation in the mitochondria. Together, this study has revealed a potential mechanism by which SAMS-1 regulates UPRmt and longevity.  相似文献   

7.
The mitochondrial UPR (UPRmt) is rapidly gaining attention. While most studies on the UPRmt have focused on its role in aging, emerging studies suggest an important role of the UPRmt in cancer. Further, several of the players of the UPRmt in mammalian cells have well reported roles in the maintenance of the organelle. The goal of this review is to emphasize aspects of the UPRmt that have been overlooked in the current literature, describe the role of specific players of the UPRmt in the biology of the mitochondria and highlight the intriguing possibility that targeting the UPRmt in cancer may be already within reach.  相似文献   

8.
9.
Mitochondria are the main oxygen consumers in cells and as such are the primary organelle affected by hypoxia. All hypoxia pathology presumably derives from the initial mitochondrial dysfunction. An early event in hypoxic pathology in C. elegans is disruption of mitochondrial proteostasis with induction of the mitochondrial unfolded protein response (UPRmt) and mitochondrial protein aggregation. Here in C. elegans, we screen through RNAis and mutants that confer either strong resistance to hypoxic cell death or strong induction of the UPRmt to determine the relationship between hypoxic cell death, UPRmt activation, and hypoxia-induced mitochondrial protein aggregation (HIMPA). We find that resistance to hypoxic cell death invariantly mitigated HIMPA. We also find that UPRmt activation invariantly mitigated HIMPA. However, UPRmt activation was neither necessary nor sufficient for resistance to hypoxic death and vice versa. We conclude that UPRmt is not necessarily hypoxia protective against cell death but does protect from mitochondrial protein aggregation, one of the early hypoxic pathologies in C. elegans.Subject terms: Necroptosis, Energy metabolism  相似文献   

10.
The mitochondrial unfolded protein response (UPRmt), a cellular protective program that ensures proteostasis in the mitochondria, has recently emerged as a regulatory mechanism for adult stem cell maintenance that is conserved across tissues. Despite the emerging genetic evidence implicating the UPRmt in stem cell maintenance, the underlying molecular mechanism is unknown. While it has been speculated that the UPRmt is activated upon stem cell transition from quiescence to proliferation, the direct evidence is lacking. In this study, we devised three experimental approaches that enable us to monitor quiescent and proliferating hematopoietic stem cells (HSCs) and provided the direct evidence that the UPRmt is activated upon HSC transition from quiescence to proliferation, and more broadly, mitochondrial integrity is actively monitored at the restriction point to ensure metabolic fitness before stem cells are committed to proliferation.  相似文献   

11.
12.
13.
The mitochondrial unfolded protein response (UPRmt) is involved in numerous diseases that have the common feature of mitochondrial dysfunction. However, its pathophysiological relevance in the context of hypoxia/reoxygenation (H/R) in endothelial cells remains elusive. Previous studies have demonstrated that acetylcholine (ACh) protects against cardiomyocyte injury by suppressing generation of mitochondrial reactive oxygen species (mtROS). This study aimed to explore the role of UPRmt in endothelial cells during H/R and to clarify the beneficial effects of ACh. Our results demonstrated that H/R triggered UPRmt in endothelial cells, as evidenced by the elevation of heat shock protein 60 and LON protease 1 protein levels, and resulted in release of mitochondrial pro-apoptotic proteins, including cytochrome C, Omi/high temperature requirement protein A 2 and second mitochondrial activator of caspases/direct inhibitor of apoptosis-binding protein with low PI, from the mitochondria to cytosol. ACh administration markedly decreased UPRmt by inhibiting mtROS and alleviating the mitonuclear protein imbalance. Consequently, ACh alleviated the release of pro-apoptotic proteins and restored mitochondrial ultrastructure and function, thereby reducing the number of terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling (TUNEL)-positive cells. Intriguingly, 4-diphenylacetoxy-N-methylpiperidine methiodide, a type-3 muscarinic ACh receptor (M3AChR) inhibitor, abolished the ACh-elicited attenuation of UPRmt and TUNEL positive cells, indicating that the salutary effects of ACh were likely mediated by M3AChR in endothelial cells. In conclusion, our studies demonstrated that UPRmt might be essential for triggering the mitochondrion-associated apoptotic pathway during H/R. ACh markedly suppressed UPRmt by inhibiting mtROS and alleviating the mitonuclear protein imbalance, presumably through M3AChR.  相似文献   

14.
Disturbance of cellular functions results in the activation of stress-signaling pathways that aim at restoring homeostasis. We performed a genome-wide screen to identify components of the signal transduction of the mitochondrial unfolded protein response (UPRmt) to a nuclear chaperone promoter. We used the ROS generating complex I inhibitor paraquat to induce the UPRmt, and we employed RNAi exposure post-embryonically to allow testing genes whose knockdown results in embryonic lethality. We identified 54 novel regulators of the ROS–induced UPRmt. Activation of the UPRmt, but not of other stress-signaling pathways, failed when homeostasis of basic cellular mechanisms such as translation and protein transport were impaired. These mechanisms are monitored by a recently discovered surveillance system that interprets interruption of these processes as pathogen attack and depends on signaling through the JNK-like MAP-kinase KGB-1. Mutation of kgb-1 abrogated the inhibition of ROS–induced UPRmt, suggesting that surveillance-activated defenses specifically inhibit the UPRmt but do not compromise activation of the heat shock response, the UPR of the endoplasmic reticulum, or the SKN-1/Nrf2 mediated response to cytosolic stress. In addition, we identified PIFK-1, the orthologue of the Drosophila PI 4-kinase four wheel drive (FWD), and found that it is the only known factor so far that is essential for the unfolded protein responses of both mitochondria and endoplasmic reticulum. This suggests that both UPRs may share a common membrane associated mechanism.  相似文献   

15.
Inflammation and metabolic disorder are common pathophysiological conditions, which play a vital role in the development of obesity and type 2 diabetes. The purpose of this study was to explore the effects of caspase recruitment domain (CARD) 9 in the high fat diet (HFD)‐treated mice and attempt to find a molecular therapeutic target for obesity development and treatment. Sixteen male CARD9?/? and corresponding male WT mice were fed with normal diet or high fat diet, respectively, for 12 weeks. Glucose tolerance, insulin resistance, oxygen consumption and heat production of the mice were detected. The CARD9/MAPK pathway‐related gene and protein were determined in insulin‐responsive organs using Western blotting and quantitative PCR. The results showed that HFD‐induced insulin resistance and impairment of glucose tolerance were more severe in WT mice than that in the CARD9?/? mice. CARD9 absence significantly modified O2 consumption, CO2 production and heat production. CARD9?/? mice displayed the lower expression of p38 MAPK, JNK and ERK when compared to the WT mice in both HFD‐ and ND‐treated groups. HFD induced the increase of p38 MAPK, JNK and ERK in WT mice but not in the CARD9?/? mice. The results indicated that CARD9 absence could be a vital protective factor in diet‐induced obesity via the CARD9/MAPK pathway, which may provide new insights into the development of gene knockout to improving diet‐induced obesity and metabolism disorder.  相似文献   

16.
Lifespan regulation by mitochondrial proteins has been well described, however, the mechanism of this regulation is not fully understood. Amongst the mitochondrial proteins profoundly affecting ageing are prohibitins (PHB-1 and PHB-2). Paradoxically, in C. elegans prohibitin depletion shortens the lifespan of wild type animals while dramatically extending that of metabolically compromised animals, such as daf-2-insulin-receptor mutants. Here we show that amongst the three kinases known to act downstream of daf-2, only loss of function of sgk-1 recapitulates the ageing phenotype observed in daf-2 mutants upon prohibitin depletion. Interestingly, signalling through SGK-1 receives input from an additional pathway, parallel to DAF-2, for the prohibitin-mediated lifespan phenotype. We investigated the effect of prohibitin depletion on the mitochondrial unfolded protein response (UPRmt). Remarkably, the lifespan extension upon prohibitin elimination, of both daf-2 and sgk-1 mutants, is accompanied by suppression of the UPRmt induced by lack of prohibitin. On the contrary, gain of function of SGK-1 results in further shortening of lifespan and a further increase of the UPRmt in prohibitin depleted animals. Moreover, SGK-1 interacts with RICT-1 for the regulation of the UPRmt in a parallel pathway to DAF-2. Interestingly, prohibitin depletion in rict-1 loss of function mutant animals also causes lifespan extension. Finally, we reveal an unprecedented role for mTORC2-SGK-1 in the regulation of mitochodrial homeostasis. Together, these results give further insight into the mechanism of lifespan regulation by mitochondrial function and reveal a cross-talk of mitochondria with two key pathways, Insulin/IGF and mTORC2, for the regulation of ageing and stress response.  相似文献   

17.
The mitochondrial DNA m.3243A > G mutation is well-known to cause a variety of clinical phenotypes, including diabetes, deafness, and osteoporosis. Here, we report isolation and expansion of urine-derived stem cells (USCs) from patients carrying the m.3243A > G mutation, which demonstrate bimodal heteroplasmy. USCs with high levels of m.3243A > G mutation displayed abnormal mitochondrial morphology and function, as well as elevated ATF5-dependent mitochondrial unfolded protein response (UPRmt), together with reduced Wnt/β-catenin signaling and osteogenic potentials. Knockdown of ATF5 in mutant USCs suppressed UPRmt, improved mitochondrial function, restored expression of GSK3B and WNT7B, and rescued osteogenic potentials. These results suggest that ATF5-dependent UPRmt could be a core disease mechanism underlying mitochondrial dysfunction and osteoporosis related to the m.3243A > G mutation, and therefore could be a novel putative therapeutic target for this genetic disorder.Subject terms: Mechanisms of disease, Diabetes  相似文献   

18.
Aging leads to a proinflammatory state within the vasculature without disease, yet whether this inflammatory state occurs during atherogenesis remains unclear. Here, we examined how aging impacts atherosclerosis using Ldlr?/? mice, an established murine model of atherosclerosis. We found that aged atherosclerotic Ldlr?/? mice exhibited enhanced atherogenesis within the aorta. Aging also led to increased LDL levels, elevated blood pressure on a low‐fat diet, and insulin resistance after a high‐fat diet (HFD). On a HFD, aging increased a monocytosis in the peripheral blood and enhanced macrophage accumulation within the aorta. When we conducted bone marrow transplant experiments, we found that stromal factors contributed to age‐enhanced atherosclerosis. To delineate these stromal factors, we determined that the vasculature exhibited an age‐enhanced inflammatory response consisting of elevated production of CCL‐2, osteopontin, and IL‐6 during atherogenesis. In addition, in vitro cultures showed that aging enhanced the production of osteopontin by vascular smooth muscle cells. Functionally, aged atherosclerotic aortas displayed higher monocyte chemotaxis than young aortas. Hence, our study has revealed that aging induces metabolic dysfunction and enhances vascular inflammation to promote a peripheral monocytosis and macrophage accumulation within the atherosclerotic aorta.  相似文献   

19.
The mitochondria of cancer cells are characterized by elevated oxidative stress caused by reactive oxygen species (ROS). Such an elevation in ROS levels contributes to mitochondrial reprogramming and malignant transformation. However, high levels of ROS can cause irreversible damage to proteins, leading to their misfolding, mitochondrial stress, and ultimately cell death. Therefore, mechanisms to overcome mitochondrial stress are needed. The unfolded protein response (UPR) triggered by accumulation of misfolded proteins in the mitochondria (UPRmt) has been reported recently. So far, the UPRmt has been reported to involve the activation of CHOP and estrogen receptor alpha (ERα). The current study describes a novel role of the mitochondrial deacetylase SirT3 in the UPRmt. Our data reveal that SirT3 acts to orchestrate two pathways, the antioxidant machinery and mitophagy. Inhibition of SirT3 in cells undergoing proteotoxic stress severely impairs the mitochondrial network and results in cellular death. These observations suggest that SirT3 acts to sort moderately stressed from irreversibly damaged organelles. Since SirT3 is reported to act as a tumor suppressor during transformation, our findings reveal a dual role of SirT3. This novel role of SirT3 in established tumors represents an essential mechanism of adaptation of cancer cells to proteotoxic and mitochondrial stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号