首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Idiopathic pulmonary fibrosis (IPF) is an aging‐associated disease with poor prognosis. Currently, there are no effective drugs for preventing the disease process. The mechanisms underlying the role of alveolar epithelial cell (AEC) senescence in the pathogenesis of IPF remain poorly understood. We aimed to explore whether PTEN/NF‐κB activated AEC senescence thus resulting in lung fibrosis. First, we investigated the association between the activation of PTEN/NF‐κB and cellular senescence in lung tissues from IPF patients. As a result, decreased PTEN, activated NF‐κB and increased senescent markers (P21WAF1, P16ink4a, and SA‐β‐gal) were found in AECs in fibrotic lung tissues detected by immunohistochemistry (IHC) and immunofluorescence (IF). In vitro experiments showed increased expression levels of senescent markers and augmented senescence‐associated secretory phenotype (SASP) in AECs treated with bleomycin (Blm); however, PTEN was reduced significantly following IκB, IKK, and NF‐κB activation after stimulation with Blm in AECs. AEC senescence was accelerated by PTEN knockdown, whereas senescence was reversed via NF‐κB knockdown and the pharmacological inhibition (BMS‐345541) of the NF‐κB pathway. Interestingly, we observed increased collagen deposition in fibroblasts cultured with the supernatants collected from senescent AECs. Conversely, the deposition of collagen in fibroblasts was reduced with exposure to the supernatants collected from NF‐κB knockdown AECs. These findings indicated that senescent AECs controlled by the PTEN/NF‐κB pathway facilitated collagen accumulation in fibroblasts, resulting in lung fibrosis. In conclusion, our study supports the notion that as an initial step in IPF, the senescence process in AECs may be a potential therapeutic target, and the PTEN/NF‐κB pathway may be a promising candidate for intervention.  相似文献   

2.
3.
Cellular senescence is a permanent state of cell cycle arrest that protects the organism from tumorigenesis and regulates tissue integrity upon damage and during tissue remodeling. However, accumulation of senescent cells in tissues during aging contributes to age‐related pathologies. A deeper understanding of the mechanisms regulating the viability of senescent cells is therefore required. Here, we show that the CDK inhibitor p21 (CDKN1A) maintains the viability of DNA damage‐induced senescent cells. Upon p21 knockdown, senescent cells acquired multiple DNA lesions that activated ataxia telangiectasia mutated (ATM) and nuclear factor (NF)‐κB kinase, leading to decreased cell survival. NF‐κB activation induced TNF‐α secretion and JNK activation to mediate death of senescent cells in a caspase‐ and JNK‐dependent manner. Notably, p21 knockout in mice eliminated liver senescent stellate cells and alleviated liver fibrosis and collagen production. These findings define a novel pathway that regulates senescent cell viability and fibrosis.  相似文献   

4.
Cellular senescence is accompanied by a senescence‐associated secretory phenotype (SASP). We show here that primary human senescent CD8+ T cells also display a SASP comprising chemokines, cytokines and extracellular matrix remodelling proteases that are unique to this subset and contribute to age‐associated inflammation. We found the CD8+ CD45RA+CD27? EMRA subset to be the most heterogeneous, with a population aligning with the naïve T cells and another with a closer association to the effector memory subset. However, despite the differing processes that give rise to these senescent CD8+ T cells once generated, they both adopt a unique secretory profile with no commonality to any other subset, aligning more closely with senescence than quiescence. Furthermore, we also show that the SASP observed in senescent CD8+ T cells is governed by p38 MAPK signalling.  相似文献   

5.
The blind mole rat (Spalax) is a wild, long‐lived rodent that has evolved mechanisms to tolerate hypoxia and resist cancer. Previously, we demonstrated high DNA repair capacity and low DNA damage in Spalax fibroblasts following genotoxic stress compared with rats. Since the acquisition of senescence‐associated secretory phenotype (SASP) is a consequence of persistent DNA damage, we investigated whether cellular senescence in Spalax is accompanied by an inflammatory response. Spalax fibroblasts undergo replicative senescence (RS) and etoposide‐induced senescence (EIS), evidenced by an increased activity of senescence‐associated beta‐galactosidase (SA‐β‐Gal), growth arrest, and overexpression of p21, p16, and p53 mRNAs. Yet, unlike mouse and human fibroblasts, RS and EIS Spalax cells showed undetectable or decreased expression of the well‐known SASP factors: interleukin‐6 (IL6), IL8, IL1α, growth‐related oncogene alpha (GROα), SerpinB2, and intercellular adhesion molecule (ICAM‐1). Apparently, due to the efficient DNA repair in Spalax, senescent cells did not accumulate the DNA damage necessary for SASP activation. Conversely, Spalax can maintain DNA integrity during replicative or moderate genotoxic stress and limit pro‐inflammatory secretion. However, exposure to the conditioned medium of breast cancer cells MDA‐MB‐231 resulted in an increase in DNA damage, activation of the nuclear factor κB (NF‐κB) through nuclear translocation, and expression of inflammatory mediators in RS Spalax cells. Evaluation of SASP in aging Spalax brain and intestine confirmed downregulation of inflammatory‐related genes. These findings suggest a natural mechanism for alleviating the inflammatory response during cellular senescence and aging in Spalax, which can prevent age‐related chronic inflammation supporting healthy aging and longevity.  相似文献   

6.
A wealth of evidence supports the broad therapeutic potential of NF‐κB and EZH2 inhibitors as adjuvants for breast cancer treatment. We contribute to this knowledge by elucidating, for the first time, unique regulatory crosstalk between EZH2, NF‐κB and the NF‐κB interacting long non‐coding RNA (NKILA). We define a novel signaling loop encompassing canonical and non‐canonical actions of EZH2 on the regulation of NF‐κB/NKILA homeostasis, with relevance to breast cancer treatment. We applied a respective silencing approach in non‐transformed breast epithelial cells, triple negative MDA‐MB‐231 cells and hormone responsive MCF‐7 cells, and measured changes in EZH2/NF‐κB/NKILA levels to confirm their interdependence. We demonstrate cell line‐specific fluctuations in these factors that functionally contribute to epithelial‐to‐mesenchymal transition (EMT) remodelling and cell fate response. EZH2 inhibition attenuates MDA‐MB‐231 cell motility and CDK4‐mediated MCF‐7 cell cycle regulation, while inducing global H3K27 methylation and an EMT phenotype in non‐transformed cells. Notably, these events are mediated by a cell‐context dependent gain or loss of NKILA and NF‐κB. Depletion of NF‐κB in non‐transformed cells enhances their sensitivity to growth factor signaling and suggests a role for the host microenvironment milieu in regulating EZH2/NF‐κB/NKILA homeostasis. Taken together, this knowledge critically informs the delivery and assessment of EZH2 inhibitors in breast cancer.  相似文献   

7.
8.
Cullin‐RING‐ubiquitin‐ligase (CRL)‐dependent ubiquitination of the nuclear factor kappa B (NF‐κB) inhibitor IκBα and its subsequent degradation by the proteasome usually precede NF‐κB/RelA nuclear activity. Through removal of the CRL‐activating modification of their cullin subunit with the ubiquitin (Ub)‐like modifier NEDD8, the COP9 signalosome (CSN) opposes CRL Ub‐ligase activity. While RelA phosphorylation was observed to mediate NF‐κB activation independent of Ub‐proteasome‐pathway (UPP)‐dependent turnover of IκBα in some studies, a strict requirement of the p97/VCP ATPase for both, IκBα degradation and NF‐κB activation, was reported in others. In this study, we thus aimed to reconcile the mechanism for tumour necrosis factor (TNF)‐induced NF‐κB activation. We found that inducible phosphorylation of RelA is accomplished in an IKK‐complex‐dependent manner within the NF‐κB/RelA‐IκBα‐complex contemporaneous with the phosphorylation of IκBα, and that RelA phosphorylation is not sufficient to dissociate NF‐κB/RelA from IκBα. Subsequent to CRL‐dependent IκBα ubiquitination functional p97/VCP is essentially required for efficient liberation of (phosphorylated) RelA from IκBα, preceding p97/VCP‐promoted timely and efficient degradation of IκBα as well as simultaneous NF‐κB/RelA nuclear translocation. Collectively, our data add new facets to the knowledge about maintenance of IκBα and RelA expression, likely depending on p97/VCP‐supported scheduled basal NF‐κB activity, and the mechanism of TNF‐induced NF‐κB activation.  相似文献   

9.
10.
The major hallmark of cellular senescence is an irreversible cell cycle arrest and thus it is a potent tumor suppressor mechanism. Genotoxic insults, e.g. oxidative stress, are important inducers of the senescent phenotype which is characterized by an accumulation of senescence-associated heterochromatic foci (SAHF) and DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS). Interestingly, senescent cells secrete pro-inflammatory factors and thus the condition has been called the senescence-associated secretory phenotype (SASP). Emerging data has revealed that NF-κB signaling is the major signaling pathway which stimulates the appearance of SASP. It is known that DNA damage provokes NF-κB signaling via a variety of signaling complexes containing NEMO protein, an NF-κB essential modifier, as well as via the activation of signaling pathways of p38MAPK and RIG-1, retinoic acid inducible gene-1. Genomic instability evoked by cellular stress triggers epigenetic changes, e.g. release of HMGB1 proteins which are also potent enhancers of inflammatory responses. Moreover, environmental stress and chronic inflammation can stimulate p38MAPK and ceramide signaling and induce cellular senescence with pro-inflammatory responses. On the other hand, two cyclin-dependent kinase inhibitors, p16INK4a and p14ARF, are effective inhibitors of NF-κB signaling. We will review in detail the signaling pathways which activate NF-κB signaling and trigger SASP in senescent cells.  相似文献   

11.
Interleukin‐1 alpha (IL‐1α) is a powerful cytokine that modulates immunity, and requires canonical cleavage by calpain for full activity. Mature IL‐1α is produced after inflammasome activation and during cell senescence, but the protease cleaving IL‐1α in these contexts is unknown. We show IL‐1α is activated by caspase‐5 or caspase‐11 cleavage at a conserved site. Caspase‐5 drives cleaved IL‐1α release after human macrophage inflammasome activation, while IL‐1α secretion from murine macrophages only requires caspase‐11, with IL‐1β release needing caspase‐11 and caspase‐1. Importantly, senescent human cells require caspase‐5 for the IL‐1α‐dependent senescence‐associated secretory phenotype (SASP) in vitro, while senescent mouse hepatocytes need caspase‐11 for the SASP‐driven immune surveillance of senescent cells in vivo. Together, we identify IL‐1α as a novel substrate of noncanonical inflammatory caspases and finally provide a mechanism for how IL‐1α is activated during senescence. Thus, targeting caspase‐5 may reduce inflammation and limit the deleterious effects of accumulated senescent cells during disease and Aging.  相似文献   

12.
Saikosaponin‐d (Ssd) is a triterpene saponin derived from the medicinal plant, Bupleurum falcatum L. (Umbelliferae). Previous findings showed that Ssd exhibits a variety of pharmacological and immunomodulatory activities including anti‐inflammatory, anti‐bacterial, anti‐viral and anti‐cancer effects. In the current study we have investigated the effects of Ssd on activated mouse T lymphocytes through the NF‐κB, NF‐AT and AP‐1 signaling pathways, cytokine secretion, and IL‐2 receptor expression. The results demonstrated that Ssd not only suppressed OKT3/CD28‐costimulated human T cell proliferation, it also inhibited PMA, PMA/Ionomycin and Con A‐induced mouse T cell activation in vitro. The inhibitory effect of Ssd on PMA‐induced T cell activation was associated with down‐regulation of NF‐κB signaling through suppression of IKK and Akt activities. In addition, Ssd suppressed both DNA binding activity and the nuclear translocation of NF‐AT and activator protein 1 (AP‐1) of the PMA/Ionomycin‐stimulated T cells. The cell surface markers like IL‐2 receptor (CD25) were also down‐regulated together with decreased production of pro‐inflammatory cytokines of IL‐6, TNF‐α and IFN‐γ. These results indicate that the NF‐κB, NF‐AT and AP‐1 (c‐Fos) signaling pathways are involved in the T cell inhibition evoked by Ssd, so it can be a potential candidate for further study in treating T cell‐mediated autoimmune conditions. J. Cell. Biochem. 107: 303–315, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Cutaneous and ocular injuries caused by sulfur mustard (SM; bis‐(2‐chloroethyl) sulfide) are characterized by severe inflammation and death of exposed cells. Given the known roles of p38MAPK and NF‐κB in inflammatory cytokine production, and the known roles of NF‐κB and p53 in cell fate, these pathways are of particular interest in the study of SM injury. In this study, we utilized inhibitory RNA (RNAi) targeted against p38α, the p50 subunit of NF‐κB, or p53 to characterize their role in SM‐induced inflammation and cell death in normal human epidermal keratinocytes (NHEK). Analysis of culture supernatant from 200 μM SM‐exposed cells showed that inflammatory cytokine production was inhibited by p38α RNAi but not by NF‐κB p50 RNAi. These findings further support a critical role for p38 in SM‐induced inflammatory cytokine production in NHEK and suggest that NF‐κB may not play a role in the SM‐induced inflammatory response of this cell type. Inhibition of NF‐κB by p50 RNAi did, however, partially inhibit SM‐induced cell death, suggesting a role for NF‐κB in SM‐induced apoptosis or necrosis. Interestingly, inhibition of p53 by RNAi potentiated SM‐induced cell death, suggesting that the role of p53 in SM injury, may be complex and not simply prodeath. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:155–164, 2010; Published online inWiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20321  相似文献   

14.
15.
The risk of colorectal cancer (CRC) varies between people, and the cellular mechanisms mediating the differences in risk are largely unknown. Senescence has been implicated as a causative cellular mechanism for many diseases, including cancer, and may affect the risk for CRC. Senescent fibroblasts that accumulate in tissues secondary to aging and oxidative stress have been shown to promote cancer formation via a senescence‐associated secretory phenotype (SASP). In this study, we assessed the role of senescence and the SASP in CRC formation. Using primary human colon tissue, we found an accumulation of senescent fibroblasts in normal tissues from individuals with advanced adenomas or carcinomas in comparison with individuals with no polyps or CRC. In in vitro and ex vivo model systems, we induced senescence using oxidative stress in colon fibroblasts and demonstrated that the senescent fibroblasts secrete GDF15 as an essential SASP factor that promotes cell proliferation, migration, and invasion in colon adenoma and CRC cell lines as well as primary colon organoids via the MAPK and PI3K signaling pathways. In addition, we observed increased mRNA expression of GDF15 in primary normal colon tissue from people at increased risk for CRC in comparison with average risk individuals. These findings implicate the importance of a senescence‐associated tissue microenvironment and the secretory factor GDF15 in promoting CRC formation.  相似文献   

16.
17.
In response to a variety of stresses, mammalian cells undergo a persistent proliferative arrest known as cellular senescence. Many senescence‐inducing stressors are potentially oncogenic, strengthening the notion that senescence evolved alongside apoptosis to suppress tumorigenesis. In contrast to apoptosis, senescent cells are stably viable and have the potential to influence neighboring cells through secreted soluble factors, which are collectively known as the senescence‐associated secretory phenotype (SASP). However, the SASP has been associated with structural and functional tissue and organ deterioration and may even have tumor‐promoting effects, raising the interesting evolutionary question of why apoptosis failed to outcompete senescence as a superior cell fate option. Here, we discuss the advantages that the senescence program may have over apoptosis as a tumor protective mechanism, as well as non‐neoplastic functions that may have contributed to its evolution. We also review emerging evidence for the idea that senescent cells are present transiently early in life and are largely beneficial for development, regeneration and homeostasis, and only in advanced age do senescent cells accumulate to an organism's detriment.  相似文献   

18.
19.
Aging leads to increased cellular senescence and is associated with decreased potency of tissue‐specific stem/progenitor cells. Here, we have done an extensive analysis of cardiac progenitor cells (CPCs) isolated from human subjects with cardiovascular disease, aged 32–86 years. In aged subjects (>70 years old), over half of CPCs are senescent (p16INK4A, SA‐β‐gal, DNA damage γH2AX, telomere length, senescence‐associated secretory phenotype [SASP]), unable to replicate, differentiate, regenerate or restore cardiac function following transplantation into the infarcted heart. SASP factors secreted by senescent CPCs renders otherwise healthy CPCs to senescence. Elimination of senescent CPCs using senolytics abrogates the SASP and its debilitative effect in vitro. Global elimination of senescent cells in aged mice (INK‐ATTAC or wild‐type mice treated with D + Q senolytics) in vivo activates resident CPCs and increased the number of small Ki67‐, EdU‐positive cardiomyocytes. Therapeutic approaches that eliminate senescent cells may alleviate cardiac deterioration with aging and restore the regenerative capacity of the heart.  相似文献   

20.
Inactivation of survival pathways such as NF‐κB, cyclooxygenase (COX‐2), or epidermal growth factor receptor (EGFR) signaling individually may not be sufficient for the treatment of advanced pancreatic cancer (PC) as suggested by recent clinical trials. 3,3′‐Diindolylmethane (B‐DIM) is an inhibitor of NF‐κB and COX‐2 and is a well‐known chemopreventive agent. We hypothesized that the inhibition of NF‐κB and COX‐2 by B‐DIM concurrently with the inhibition of EGFR by erlotinib will potentiate the anti‐tumor effects of cytotoxic drug gemcitabine, which has been tested both in vitro and in vivo. Inhibition of viable cells in seven PC cell lines treated with B‐DIM, erlotinib, or gemcitabine alone or their combinations was evaluated using 3‐(4,5‐dimetylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay. Significant inhibition in cell viability was observed in PC cells expressing high levels of COX‐2, EGFR, and NF‐κB proteins. The observed inhibition was associated with an increase in apoptosis as assessed by ELISA. A significant down‐regulation in the expression of COX‐2, NF‐κB, and EGFR in BxPC‐3, COLO‐357, and HPAC cells was observed, suggesting that simultaneous targeting of EGFR, NF‐κB, and COX‐2 is more effective than targeting either signaling pathway separately. Our in vitro results were further supported by in vivo studies showing that B‐DIM in combination with erlotinib and gemcitabine was significantly more effective than individual agents. Based on our preclinical in vitro and in vivo results, we conclude that this multi‐targeted combination could be developed for the treatment of PC patients whose tumors express high levels of COX‐2, EGFR, and NF‐κB. J. Cell. Biochem. 110: 171–181, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号