首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Properties of D-amino-acid oxidase from Rhodotorula gracilis   总被引:2,自引:0,他引:2  
The flavoprotein D-amino-acid oxidase was purified to homogeneity from the yeast Rhodotorula gracilis by a highly reproducible procedure. The amino acid composition of the protein was determined; the protein monomer had a molecular mass of 39 kDa and contained one molecule of FAD. The ratio between A274/A455 was about 8.2. D-Amino-acid oxidase from yeast showed typical flavin spectral perturbations on binding of the competitive inhibitor benzoate and was reduced by D-alanine under anaerobiosis. The enzyme reacted readily with sulfite to form a covalent reversible adduct and stabilized the red anionic form of the flavin semiquinone on photoreduction in the presence of 5-deazariboflavin; the 3,4-dihydro-FAD form was not detectable after reduction with sodium borohydride. Thus D-amino-acid oxidase from yeast exhibited most of the general properties of the dehydrogenase/oxidase class of flavoproteins; at the same time, the enzyme showed some peculiar features with respect to the same protein from pig kidney.  相似文献   

2.
Vanillyl-alcohol oxidase was purified 32-fold from Penicillium simplicissimum, grown on veratryl alcohol as its sole source of carbon and energy. SDS/PAGE of the purified enzyme reveals a single fluorescent band of 65 kDa. Gel filtration and sedimentation-velocity experiments indicate that the purified enzyme exists in solution as an octamer, containing 1 molecule flavin/subunit. The covalently bound prosthetic group of the enzyme was identified as 8 alpha-(N3-histidyl)-FAD from pH-dependent fluorescence quenching (pKa = 4.85) and no decrease in fluorescence upon reduction with sodium borohydride. The enzyme shows a narrow substrate specificity, only vanillyl alcohol and 4-hydroxybenzyl alcohol are substrates for the enzyme. Cinnamyl alcohol is a strong competitive inhibitor of vanillyl-alcohol oxidation. The visible absorption spectrum of the oxidized enzyme shows maxima at 354 nm and 439 nm, and shoulders at 370, 417 and 461 nm. Under anaerobic conditions, the enzyme is easily reduced by vanillyl alcohol to the two-electron reduced form. Upon mixing with air, rapid reoxidation of the flavin occurs. Both with dithionite reduction and photoreduction in the presence of EDTA and 5-deazaflavin the red semiquinone flavin radical is transiently stabilized. Opposite to most flavoprotein oxidases, vanillyl-alcohol oxidase does not form a flavin N5-sulfite adduct. Photoreduction of the enzyme in the presence of the competitive inhibitor cinnamyl alcohol gives rise to a complete, irreversible bleaching of the flavin spectrum.  相似文献   

3.
Electron-transfer flavoprotein (ETF) serves as an intermediate electron carrier between primary flavoprotein dehydrogenases and terminal respiratory chains in mitochondria and prokaryotic cells. The three-dimensional structures of human and Paracoccus denitrificans ETFs determined by X-ray crystallography indicate that the 4'-hydroxyl of the ribityl side chain of FAD is hydrogen bonded to N(1) of the flavin ring. We have substituted 4'-deoxy-FAD for the native FAD and investigated the analog-containing ETF to determine the role of this rare intra-cofactor hydrogen bond. The binding constants for 4'-deoxy-FAD and FAD with the apoprotein are very similar, and the energy of binding differs by only 2 kJ/mol. The overall two-electron oxidation-reduction potential of 4'-deoxy-FAD in solution is identical to that of FAD. However, the potential of the oxidized/semiquinone couple of the ETF containing 4'-deoxy-FAD is 0.116 V less than the oxidized/semiquinone couple of the native protein. These data suggest that the 4'-hydoxyl-N(1) hydrogen bond stabilizes the anionic semiquinone in which negative charge is delocalized over the N(1)-C(2)O region. Transfer of the second electron to 4'-deoxy-FAD reconstituted ETF is extremely slow, and it was very difficult to achieve complete reduction of the flavin semiquinone to the hydroquinone. The turnover of medium chain acyl-CoA dehydrogenase with native ETF and ETF containing the 4'-deoxy analogue was essentially identical when the reduced ETF was recycled by reduction of 2,6-dichlorophenolindophenol. However, the steady-state turnover of the dehydrogenase with 4'-deoxy-FAD was only 23% of the turnover with native ETF when ETF semiquinone formation was assayed directly under anaerobic conditions. This is consistent with the decreased potential of the oxidized semiquinone couple of the analog-containing ETF. ETF containing 4'-deoxy-FAD neither donates to nor accepts electrons from electron-transfer flavoprotein ubiquinone oxidoreductase (ETF-QO) at significant rates (相似文献   

4.
Ghanem M  Gadda G 《Biochemistry》2006,45(10):3437-3447
A protein positive charge near the flavin N(1) locus is a distinguishing feature of most flavoprotein oxidases, with mechanistic implications for the modulation of flavin reactivity. A recent study showed that in the active site of choline oxidase the protein positive charge is provided by His(466). Here, we have reversed the charge by substitution with aspartate (CHO-H466D) and, for the first time, characterized a flavoprotein oxidase with a negative charge near the flavin N(1) locus. CHO-H466D formed a stable complex with choline but lost the ability to oxidize the substrate. In contrast to the wild-type enzyme, which binds FAD covalently in a 1:1 ratio, CHO-H466D contained approximately 0.3 FAD per protein, of which 75% was not covalently bound to the enzyme. Anaerobic reduction of CHO-H466D resulted in the formation of a neutral hydroquinone, with no stabilization of the flavin semiquinone; in contrast, the anionic semiquinone and hydroquinone species were observed with the wild type and a H466A variant of the enzyme. The midpoint reduction potential for the oxidized-reduced couple in CHO-H466D was approximately 160 mV lower than that of the wild-type enzyme. Finally, CHO-H466D lost the ability to form complexes with glycine betaine or sulfite. Thus, with a reversal of the protein charge near the FAD N(1) locus, choline oxidase lost the ability to stabilize negative charges in the active site, irrespective of whether they develop on the flavin or are borne on ligands, resulting in defective flavinylation of the protein, the decreased electrophilicity of the flavin, and the consequent loss of catalytic activity.  相似文献   

5.
Glycine oxidase (GO) is a homotetrameric flavoenzyme that contains one molecule of non-covalently bound flavin adenine dinucleotide per 47 kDa protein monomer. GO is active on various amines (sarcosine, N-ethylglycine, glycine) and d-amino acids (d-alanine, d-proline). The products of GO reaction with various substrates have been determined, and it has been clearly shown that GO catalyzes the oxidative deamination of primary and secondary amines, a reaction similar to that of d-amino acid oxidase, although its sequence homology is higher with enzymes such as sarcosine oxidase and N-methyltryptophane oxidase. GO shows properties that are characteristic of the oxidase class of flavoproteins: it stabilizes the anionic flavin semiquinone and forms a reversible covalent flavin-sulfite complex. The approximately 300 mV separation between the two FAD redox potentials is in accordance with the high amount of the anionic semiquinone formed on photoreduction. GO can be distinguished from d-amino acid oxidase by its low catalytic efficiency and high apparent K(m) value for d-alanine. A number of active site ligands have been identified; the tightest binding is observed with glycolate, which acts as a competitive inhibitor with respect to sarcosine. The presence of a carboxylic group and an amino group on the substrate molecule is not mandatory for binding and catalysis.  相似文献   

6.
An FAD-containing L-alpha-glycerophosphate oxidase has been purified to homogeneity from Streptococcus faecium. The purified protein exists as a dimer (subunit Mr = 65,000); each subunit contains 1 mol of FAD. The enzyme contains no iron, as determined by atomic absorption spectroscopy. The alpha-glycerophosphate oxidase reacts reversibly with sulfite to form a covalent N(5) adduct; it preferentially binds the anionic form of the native oxidized FAD, and it also stabilizes the p-quinonoid form of 8-mercapto-FAD. The enzyme shows an unusually high reactivity with ferricyanide in the absence of oxygen; however, there is no evidence for any superoxide ion (O2-.) generation under standard assay conditions. Dithionite titrations of the enzyme reveal an unusual pH dependence for the stabilization of the flavin semiquinone; only at pH 8.5 does significant anionic semiquinone accumulate. L-alpha-Glycerophosphate rapidly reduces the enzyme-bound FAD; in addition, a small amount of catalytically insignificant red semiquinone appears under these conditions. The 5-deaza-FAD-reconstituted enzyme is also reduced by substrate, strongly suggesting that a radical mechanism is not involved in the oxidation of alpha-glycerophosphate. Furthermore, nitroethane anion reduces the native enzyme; this observation suggests that an electron transfer mechanism involving a substrate carbanion is possible with this enzyme.  相似文献   

7.
Cellobiose oxidase from the white-rot fungus Sporotrichum pulverulentum has been purified to homogeneity by a new procedure. The carbohydrate and amino acid compositions of the enzyme have been determined. Cellobiose oxidase contains FAD and cytochrome b prosthetic groups. Mr of the enzyme has been estimated at 74400 by sedimentation equilibrium. The enzyme is a monomer. Optical, fluorescence and e.p.r. spectra of oxidized and reduced cellobiose oxidase have been determined. A preliminary investigation of the substrate specificity of cellobiose oxidase reveals that disaccharides and even some insoluble polysaccharides are substrates, but not monosaccharides. Strong substrate inhibition is seen at high concentrations of cellobiose. This effect is particularly marked when oxygen is the electron acceptor. Cellobiose oxidase is unusual among flavoproteins, since it stabilizes the red anionic flavin semiquinone and forms a sulphite adduct, yet appears to produce the superoxide anion as its primary reduced oxygen product.  相似文献   

8.
Electron-transferring flavoprotein (ETF), its redox partner flavoproteins, i.e., D-lactate dehydrogenase and butyryl-CoA dehydrogenase, and another well-known flavoprotein, flavodoxin, were purified from the same starting cell paste of an anaerobic bacterium, Megasphaera elsdenii. The purified ETF contained one mol FAD/mol ETF as the sole non-protein component and bound almost one mol of additional FAD. This preparation is a better subject for investigations of M. elsdenii ETF than the previously isolated ETF, which contains varying amounts of FAD and varying percentages of modified flavins such as 6-OH-FAD and 8-OH-FAD. The additionally bound FAD shows an anomalous absorption spectrum with strong absorption around 400 nm. This spectral change is not due to a chemical modification of the flavin ring because the flavin released by KBr or guanidine hydrochloride is normal FAD. It is also not due to unknown small molecules because the same spectrum appears when ETF is reconstituted from its guanidine-denatured subunits and FAD. A similar anomalous spectrum was observed for AMP-free pig ETF under acidic conditions, suggesting a common flavin environment between pig and M. elsdenii ETFs.  相似文献   

9.
The native flavin, FAD, was removed from chicken liver xanthine dehydrogenase and milk xanthine oxidase by incubation with CaCl2. The deflavoenzymes, still retaining their molybdopterin and iron-sulfur prosthetic groups, were reconstituted with a series of FAD derivatives containing chemically reactive or environmentally sensitive substituents in the isoalloxazine ring system. The reconstituted enzymes containing these artificial flavins were all catalytically active. With both the chicken liver dehydrogenase and the milk oxidase, the flavin 8-position was found to be freely accessible to solvent. The flavin 6-position was also freely accessible to solvent in milk xanthine oxidase, but was significantly less exposed to solvent in the chicken liver dehydrogenase. Pronounced differences in protein structure surrounding the bound flavin were indicated by the spectral properties of the two enzymes reconstituted with flavins containing ionizable -OH or -SH substituents at the flavin 6- or 8-positions. Milk xanthine oxidase either displayed no preference for binding of the neutral or anionic flavin (8-OH-FAD) or a slight preference for the anionic form of the flavin (6-hydroxy-FAD, 6-mercapto-FAD, and possibly 8-mercapto-FAD). On the other hand, the chicken liver dehydrogenase had a dramatic preference for binding the neutral (protonated) forms of all four flavins, perturbing the pK of the ionizable substituent greater than or equal to 4 pH units. These results imply the existence of a strong negative charge in the flavin binding site of the dehydrogenase, which is absent in the oxidase.  相似文献   

10.
Mammalian electron-transferring flavoproteins have previously been reported to form the red anionic semiquinone on 1-electron reduction. This work describes a new form of electron-transferring flavoprotein (ETFB) from pig kidney which yields the blue neutral semiquinone upon photochemical, dithionite, or enzymatic reduction. ETFB appears in varying amounts as part of an established purification scheme for ETF. Both the normal form of ETF (ETFR) and ETFB show small differences in the spectra of their oxidized flavins, but no detectable differences in molecular weight or subunit composition. The catalytic activities of ETFR and ETFB are comparable when they mediate the transfer of reducing equivalents between medium chain acyl-CoA dehydrogenase and 2,6-dichlorophenolindophenol. ETFB can be converted into a form showing the characteristic red semiquinone of ETFR by full reduction at pH 6.5 or by preparation of the apoprotein and reconstitution with FAD. In contrast, no conditions for the conversion of red to blue forms of ETF have been found. ETFB contains substoichiometric levels of an unusual FAD analogue which yields a pink flavin species on photochemical or dithionite reduction. The evidence presented suggests that ETFB contains a labile factor or protein modification which is irreversibly lost on conversion to ETFR. The possible physiological significance of these data is discussed.  相似文献   

11.
The peroxisomal acyl-CoA oxidase has been purified from extracts of the yeast Candida tropicalis grown with alkanes as the principal energy source. The enzyme has a molecular weight of 552,000 and a subunit molecular weight of 72,100. Using an experimentally determined molar extinction coefficient for the enzyme-bound flavin, a minimum molecular weight of 146,700 was determined. Based on these data, the oxidase contains eight perhaps identical subunits and four equivalents of FAD. No other β-oxidation enzyme activities are detected in purified preparations of the oxidase. The oxidase flavin does not react with sulfite to form an N(5) flavin-sulfite complex. Photochemical reduction of the oxidase flavin yields a red semiquinone; however, the yield of semiquinone is strongly pH dependent. The yield of semiquinone is significantly reduced below pH 7.5. The flavin semiquinone can be further reduced to the hydroquinone. The behavior of the oxidase flavin during photoreduction and its reactivity toward sulfite are interpreted to reflect the interaction in the N(1)-C(2)O region of the flavin with a group on the protein which acts as a hydrogen-bond acceptor. Like the acyl-CoA dehydrogenases which catalyze the same transformation of acyl-CoA substrates, the oxidase is inactivated by the acetylenic substrate analog, 3-octynoyl-CoA, which acts as an active site-directed inhibitor.  相似文献   

12.
Formation of the anionic flavosemiquinone was observed spectrophotometrically during the anaerobic photo-irradiation of Alcaligenes sp. choline oxidase in the presence of EDTA. Further irradiation slowly converted the semiquinone form into the fully reduced state. The presence of a catalytic amount of riboflavin greatly enhances the photoreduction rate not only to the semiquinone state but also to the fully reduced state. This semiquinone species has low reactivity toward the substrate, choline or betaine aldehyde, as well as toward oxygen. This low reactivity toward oxygen is unique to the semiquinone form of a flavoprotein oxidase. The oxidized enzyme forms a complex with betaine, the product of the enzymatic reaction of choline oxidase. The dissociation constant for this complex was found to be 17 mM by spectroscopic titration. Anaerobic photo-irradiation of the enzyme with a saturating amount of betaine in the absence of EDTA produces, with no detectable semiquinone formation, an absorption spectrum which resembles (but significantly differs from) that of the fully reduced form. This species was found to comprise two flavin species. One of them is rapidly oxidized to the oxidized form by oxygen and is thus assigned as the fully reduced state. The other is converted slowly to the oxidized form upon aerobic standing in the dark. We tentatively assigned this latter species as a C(4a)-adduct. Formaldehyde was detected as a product of this photoreaction. The amount of formaldehyde formed coincided with that of the fully reduced enzyme. On the basis of the results obtained we propose a mechanism of the photoreaction of the enzyme in the presence of betaine where a C(4a)-adduct and the fully reduced enzyme via an N(5)-adduct are formed. Betaine also affects the dithionite reduction. In the dithionite reduction of the oxidized enzyme, the semiquinone species is an intermediate in the conversion of the oxidized to the fully reduced form, while the reduction of the oxidized enzyme-betaine complex with dithionite produces the fully reduced form without any significant formation of the semiquinone species.  相似文献   

13.
The flavoprotein NADH oxidase from Streptococcus faecalis 10C1, which catalyzes the tetravalent reduction of O2-->2H2O, has been purified as the apoenzyme to allow reconstitution studies with both native and artificial flavins. Turnover numbers for the enzyme containing 1-deaza-, 2-thio-, and 4-thio-FAD range from 51 to 4% of that of the native FAD enzyme; these reconstituted oxidases also catalyze the four-electron reduction of oxygen. Dithionite and NADH titrations of the native FAD oxidase require 1.7 eq of reductant/FAD and follow spectral courses very similar to those previously reported for the purified holoenzyme. Azide is a linear mixed-type inhibitor with respect to NADH, and dithionite titrations in the presence of azide yield significant stabilization of the neutral blue semiquinone. Redox stoichiometries for the oxidase containing modified flavins range from 1.1 to 1.4 eq of reductant/FAD. Spectrally distinct reduced enzyme.NAD+ complexes result with all but the 2-thio-FAD enzyme on titration with NADH. The reduced 4-thio-FAD oxidase shows little or no evidence of desulfurization to native FAD on reduction and reoxidation. Both the 8-mercapto- (E'o = -290 mV) and 8-hydroxy-FAD (E'o = -335 mV) oxidase are readily reduced by excess NADH. These results offer a further basis for analysis of the active-site structure and oxygen reactivity of this unique flavoprotein oxidase.  相似文献   

14.
The apoprotein of the FAD-containing flavoenzyme glycine oxidase from Bacillus subtilis was obtained at pH 8.5 by dialyzing the holoenzyme against 2 M KBr in 0.25 M Tris–HCl and 20% glycerol. The apoprotein of glycine oxidase shows high protein fluorescence, high exposure of hydrophobic surfaces, and low temperature stability as compared to the holoenzyme. The isolated apoprotein species is present in solution as a monomer which rapidly recovers its tertiary structure and converts into the tetrameric holoenzyme following incubation with free FAD. The reconstitution process follows a particular two-stage process; the spectral properties of the reconstituted holoenzyme were virtually indistinguishable from those observed with native glycine oxidase, while the activity was only partially (50%) recovered. The urea-induced unfolding process of glycine oxidase can be considered as a two-step (three-state) process: the presence of intermediate(s) in the unfolding process of the holoenzyme at ≈2 M urea is evident in the changes of the flavin fluorescence intensity and can be also inferred from the different urea sensitivities of the spectral probes used. On the other hand, only a single transition at ≈4.5 M urea concentration is observed for the apoprotein form. The chemical denaturation of glycine oxidase holoenzyme is partially reversible (e.g., no activity is recovered when starting the refolding from 4 M urea-denatured holoprotein). Finally, the introduction by site-directed mutagenesis of residues corresponding to those involved in the covalent link with FAD in the related flavoenzyme monomeric sarcosine oxidase failed to convert glycine oxidase into a covalent flavoprotein. These investigations show that the consequences of FAD binding for the stability and folding process distinguish glycine oxidase from enzymes active on similar compounds.  相似文献   

15.
Brevibacterium sterolicum possesses two forms of cholesterol oxidase, one containing noncovalently bound FAD, the second containing a FAD covalently linked to His(69) of the protein backbone. The functional role of the histidyl-FAD bond in the latter cholesterol oxidase was addressed by studying the properties of the H69A mutant in which the FAD is bound tightly, but not covalently, and by comparison with native enzyme. The mutant retains catalytic activity, but with a turnover rate decreased 35-fold; the isomerization step of the intermediate 3-ketosteroid to the final product is also preserved. Stabilization of the flavin semiquinone and binding of sulfite are markedly decreased, this correlates with a lower midpoint redox potential (-204 mV compared with -101 mV for wild-type). Reconstitution with 8-chloro-FAD led to a holoenzyme form of H69A cholesterol oxidase with a midpoint redox potential of -160 mV. In this enzyme form, flavin semiquinone is newly stabilized, and a 3.5-fold activity increase is observed, this mimicking the thermodynamic effects induced by the covalent flavin linkage. It is concluded that the flavin 8alpha-linkage to a (N1)histidine is a pivotal factor in the modulation of the redox properties of this cholesterol oxidase to increase its oxidative power.  相似文献   

16.
Thiamin dehydrogenase, a flavoprotein isolated from an unidentified soil bacterium, contains 1 mol of covalently bound FAD/mol of enzyme. A flavin peptide, isolated from tryptic-chymotryptic digests of the enzyme and hydrolyzed to the FMN level, shows a pH-dependent fluorescence yield being maximal at pH 3.5 to 4.0 and decreasing over 90% at pH 7.5 with a pKa of 5.8. Acid hydrolysis of the peptide results in an aminoacylflavin which shows a pKa of fluorescence quenching of 5.2. Absorption and electron paramagnetic resonance spectral data show the covalent substituent to be at the 8alpha position of the flavin as is the case with all known enzymes containing covalently bound flavin. The aminoacylflavin gives a negative Pauly reaction but yields 1 mol of histidine on drastic acid hydrolysis thus showing an imidazole ring nitrogen as the 8alpha substituent of the flavin. The aminoacylflavin differs from synthetic 8alpha-[N(3)-histidyl]riboflavin or its acid-modified form in pKa of fluorescence quenching, in electrophoretic mobility, in being reduced by borohydride, and in being labile to storage, yielding 8-formylriboflavin. In all of these properties, however, the 8alpha-histidylriboflavin isolated from thiamin dehydrogenase is indistinguishable from 8alpha-[N(1)-histidyl]riboflavin. It is therefore concluded that the FAD moiety of thiamin dehydrogenase is covalently linked via the 8alpha-methylene group to the N(1) position of the imidazole ring of histidine.  相似文献   

17.
Dwyer TM  Rao KS  Goodman SI  Frerman FE 《Biochemistry》2000,39(37):11488-11499
Glutaryl-CoA dehydrogenase catalyzes the oxidation of glutaryl-CoA to crotonyl-CoA and CO(2) in the mitochondrial degradation of lysine, hydroxylysine, and tryptophan. We have characterized the human enzyme that was expressed in Escherichia coli. Anaerobic reduction of the enzyme with sodium dithionite or substrate yields no detectable semiquinone; however, like other acyl-CoA dehydrogenases, the human enzyme stabilizes an anionic semiquinone upon reduction of the complex between the enzyme and 2,3-enoyl-CoA product. The flavin potential of the free enzyme determined by the xanthine-xanthine oxidase method is -0.132 V at pH 7.0, slightly more negative than that of related flavoprotein dehydrogenases. A single equivalent of substrate reduces 26% of the dehydrogenase flavin, suggesting that the redox equilibrium on the enzyme between substrate and product and oxidized and reduced flavin is not as favorable as that observed with other acyl-CoA dehydrogenases. This equilibrium is, however, similar to that observed in isovaleryl-CoA dehydrogenase. Comparison of steady-state kinetic constants of glutaryl-CoA dehydrogenase with glutaryl-CoA and the alternative substrates, pentanoyl-CoA and hexanoyl-CoA, suggests that the gamma-carboxyl group of glutaryl-CoA stabilizes the enzyme-substrate complex by at least 5.7 kJ/mol, perhaps by interaction with Arg94 or Ser98. Glu370 is positioned to function as the catalytic base, and previous studies indicate that the conjugate acid of Glu370 also protonates the transient crotonyl-CoA anion following decarboxylation [Gomes, B., Fendrich, G. , and Abeles, R. H. (1981) Biochemistry 20, 3154-3160]. Glu370Asp and Glu370Gln mutants of glutaryl-CoA dehydrogenase exhibit 7% and 0. 04% residual activity, respectively, with human electron-transfer flavoprotein; these mutations do not grossly affect the flavin redox potentials of the mutant enzymes. The reduced catalytic activities of these mutants can be attributed to reduced extent and rate of substrate deprotonation based on experiments with the nonoxidizable substrate analogue, 3-thiaglutaryl-CoA, and kinetic experiments. Determination of these fundamental properties of the human enzyme will serve as the basis for future studies of the decarboxylation reaction which is unique among the acyl-CoA dehydrogenases.  相似文献   

18.
In the brain, the human flavoprotein D ‐amino acid oxidase (hDAAO) is involved in the degradation of the gliotransmitter D ‐serine, an important modulator of NMDA‐receptor‐mediated neurotransmission; an increase in hDAAO activity (that yields a decrease in D ‐serine concentration) was recently proposed to be among the molecular mechanisms leading to the onset of schizophrenia susceptibility. This human flavoenzyme is a stable homodimer (even in the apoprotein form) that distinguishes from known D ‐amino acid oxidases because it shows the weakest interaction with the flavin cofactor in the free form. Instead, cofactor binding is significantly tighter in the presence of an active site ligand. In order to understand how hDAAO activity is modulated, we investigated the FAD binding process to the apoprotein moiety and compared the folding and stability properties of the holoenzyme and the apoprotein forms. The apoprotein of hDAAO can be distinguished from the holoenzyme form by the more “open” tertiary structure, higher protein fluorescence, larger exposure of hydrophobic surfaces, and higher sensitivity to proteolysis. Interestingly, the FAD binding only slightly increases the stability of hDAAO to denaturation by urea or temperature. Taken together, these results indicate that the weak cofactor binding is not related to protein (de)stabilization or oligomerization (as instead observed for the homologous enzyme from yeast) but rather should represent a means of modulating the activity of hDAAO. We propose that the absence in vivo of an active site ligand/substrate weakens the cofactor binding, yielding the inactive apoprotein form and thus avoiding excessive D ‐serine degradation.  相似文献   

19.
Representative examples of the various classes of flavoproteins have been converted to their apoprotein forms and the native flavin replaced by 8-mercapto-FMN or 8-mercapto-FAD. The spectral and catalytic properties of the modified enzymes are characteristically different from one group to another; the results suggest that flavin interactions at positions N(1) or N(5) of the flavin chromophore have profound influences on the properties of the flavoprotein. 1. The 8-thiolate anion form of 8-mercaptoflavin has an absorption maximum in the region 520 to 550 nm epsilon approximately 30 mM-1 cm-1). This form is retained on binding to flavoproteins whose physiological reactions involve obligatory one-electron transfers (e.g. flavodoxin, NADPH-cytochrome P-450 reductase). In the native form these enzymes stabilize the blue neutral radical of the flavin. A radical form of 8-mercaptoflavin is also stabilized by these proteins. 2. The p-quinoid form of 8-mercaptoflavin has an absorption maximum in the range 560 to 600 nm (epsilon approximately 30 mM-1 cm-1). This form is stabilized on binding to flavoproteins of the dehydrogenase-oxidase class (e.g. glucose oxidase, D-amino acid oxidase, lactate oxidase, Old Yellow Enzyme). These same enzymes in their native flavin form stabilize the red semiquinone, and have a pronounced reactivity with sulfite to form flavin N(5)-sulfite adducts. These properties of the native enzyme, including the ability to react with nitroalkane carbanions, are not exhibited by the 8-mercaptoflavoproteins. 3. A group of flavoenzymes fails to conform strictly to the above classification, exhibiting some properties of both classes. These include the examples of flavoprotein hydroxylases and transhydrogenases studied. 4. The riboflavin-binding protein of hen egg whites binds 8-mercaptoriboflavin preferentially in the unionized state, resulting in a shift in pK from 3.8 with free 8-mercaptoriboflavin to greater than or equal to 9.0 with the protein-bound form.  相似文献   

20.
Ghanem M  Fan F  Francis K  Gadda G 《Biochemistry》2003,42(51):15179-15188
Choline oxidase catalyzes the four-electron oxidation of choline to glycine betaine, with molecular oxygen acting as primary electron acceptor. Recently, the recombinant enzyme expressed in Escherichia coli was purified to homogeneity and shown to contain FAD in a mixture of oxidized and anionic semiquinone redox states [Fan et al. (2003) Arch. Biochem. Biophys., in press]. In this study, methods have been devised to convert the enzyme-bound flavin semiquinone to oxidized FAD and vice versa, allowing characterization of the resulting forms of choline oxidase. The enzyme-bound oxidized flavin showed typical UV-vis absorbance peaks at 359 and 452 nm (with epsilon(452) = 11.4 M(-1) cm(-1)) and emitted light at 530 nm (with lambda(ex) at 452 nm). The affinity of the enzyme for sulfite was high (with a K(d) value of approximately 50 microM at pH 7 and 15 degrees C), suggesting the presence of a positive charge near the N(1)C(2)=O locus of the flavin. The enzyme-bound anionic flavin semiquinone was unusually insensitive to oxygen or ferricyanide at pH 8 and showed absorbance peaks at 372 and 495 nm (with epsilon(372) = 19.95 M(-1) cm(-1)), maximal fluorescence emission at 454 nm (with lambda(ex) at 372 nm), circular dichroic signals at 370 and 406 nm, and an ESR peak-to-peak line width of 13.9 G. Both UV-vis absorbance studies on the enzyme under turnover with choline and steady-state kinetic data with either choline or betaine aldehyde were consistent with the flavin semiquinone being not involved in catalysis. The pH dependence of the kinetic parameters at varying concentrations of both choline and oxygen indicated that a catalytic base is required for choline oxidation but not for oxygen reduction and that the order of the kinetic steps involving substrate binding and product release is not affected by pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号