首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
BRCA1 is a tumor suppressor involved in DNA repair and damage-induced checkpoint controls. In response to DNA damage, BRCA1 relocalizes to nuclear foci at the sites of DNA lesions. However, little is known about the regulation of BRCA1 relocalization following DNA damage. Here we show that mediator of DNA damage checkpoint protein 1 (MDC1), previously named NFBD1 or Kiaa0170, is a proximate mediator of DNA damage responses that regulates BRCA1 function. MDC1 regulates ataxia-telangiectasia-mutated (ATM)-dependent phosphorylation events at the site of DNA damage. Importantly down-regulation of MDC1 abolishes the relocalization and hyperphosphorylation of BRCA1 following DNA damage, which coincides with defective G(2)/M checkpoint control in response to DNA damage. Taken together these data suggest that MDC1 regulates BRCA1 function in DNA damage checkpoint control.  相似文献   

2.
Non-homologous end joining (NHEJ) is one of the primary pathways for the repair of ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) in mammalian cells. Proteins required for NHEJ include the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), Ku, XRCC4 and DNA ligase IV. Current models predict that DNA-PKcs, Ku, XRCC4 and DNA ligase IV assemble at DSBs and that the protein kinase activity of DNA-PKcs is essential for NHEJ-mediated repair of DSBs in vivo. We previously identified a cluster of autophosphorylation sites between amino acids 2609 and 2647 of DNA-PKcs. Cells expressing DNA-PKcs in which these autophosphorylation sites have been mutated to alanine are highly radiosensitive and defective in their ability to repair DSBs in the context of extrachromosomal assays. Here, we show that cells expressing DNA-PKcs with mutated autophosphorylation sites are also defective in the repair of IR-induced DSBs in the context of chromatin. Purified DNA-PKcs proteins containing serine/threonine to alanine or aspartate mutations at this cluster of autophosphorylation sites were indistinguishable from wild-type (wt) protein with respect to protein kinase activity. However, mutant DNA-PKcs proteins were defective relative to wt DNA-PKcs with respect to their ability to support T4 DNA ligase-mediated intermolecular ligation of DNA ends. We propose that autophosphorylation of DNA-PKcs at this cluster of sites is important for remodeling of DNA-PK complexes at DNA ends prior to DNA end joining.  相似文献   

3.
The protein kinase activity of the DNA-dependent protein kinase (DNA-PK) is required for the repair of DNA double-strand breaks (DSBs) via the process of nonhomologous end joining (NHEJ). However, to date, the only target shown to be functionally relevant for the enzymatic role of DNA-PK in NHEJ is the large catalytic subunit DNA-PKcs itself. In vitro, autophosphorylation of DNA-PKcs induces kinase inactivation and dissociation of DNA-PKcs from the DNA end-binding component Ku70/Ku80. Phosphorylation within the two previously identified clusters of phosphorylation sites does not mediate inactivation of the assembled complex and only partially regulates kinase disassembly, suggesting that additional autophosphorylation sites may be important for DNA-PK function. Here, we show that DNA-PKcs contains a highly conserved amino acid (threonine 3950) in a region similar to the activation loop or t-loop found in the protein kinase domain of members of the typical eukaryotic protein kinase family. We demonstrate that threonine 3950 is an in vitro autophosphorylation site and that this residue, as well as other previously identified sites in the ABCDE cluster, is phosphorylated in vivo in irradiated cells. Moreover, we show that mutation of threonine 3950 to the phosphomimic aspartic acid abrogates V(D)J recombination and leads to radiation sensitivity. Together, these data suggest that threonine 3950 is a functionally important, DNA damage-inducible phosphorylation site and that phosphorylation of this site regulates the activity of DNA-PKcs.  相似文献   

4.
DNA-dependent protein kinase (DNA-PK) is composed of a 460-kDa catalytic subunit and the regulatory subunits Ku70 and Ku80. The complex is activated on DNA damage and plays an essential role in double-strand-break repair and V(D)J recombination. In addition, DNA-PK is involved in S-phase checkpoint arrest following irradiation, although its role in damage-induced checkpoint arrest is not clear. In an effort to understand the role of DNA-PK in damage signaling, human and mouse cells containing the DNA-PK catalytic subunit (DNA-PKcs proficient) were compared with those lacking DNA-PKcs for c-Jun N-terminal kinase (JNK) activity that mediates physiologic responses to DNA damage. The DNA-PKcs-proficient cells showed much tighter regulation of JNK activity after DNA damage, while the level of JNK protein in both cell lines remained unchanged. The JNK proteins physically associated with DNA-PKcs and Ku70/Ku80 heterodimer, and the interaction was significantly stimulated after DNA damage. Various JNK isoforms not only contained a DNA-PK phosphorylation consensus site (serine followed by glutamine) but also were phosphorylated by DNA-PK in vitro. Together, our results suggest that DNA damage induces physical interaction between DNA-PK and JNK, which may in turn negatively affect JNK activity through JNK phosphorylation by DNA-PK.  相似文献   

5.
DNA-dependent protein kinase (DNA-PK), consisting of Ku and DNA-PKcs subunits, is the key component of the non-homologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair. Although the kinase activity of DNA-PKcs is essential for NHEJ, thus far, no in vivo substrate has been conclusively identified except for an autophosphorylation site on DNA-PKcs itself (threonine 2609). Here we report the ionizing radiation (IR)-induced autophosphorylation of DNA-PKcs at a novel site, serine 2056, the phosphorylation of which is required for the repair of DSBs by NHEJ. Interestingly, IR-induced DNA-PKcs autophosphorylation is regulated in a cell cycle-dependent manner with attenuated phosphorylation in the S phase. In contrast, DNA replication-associated DSBs resulted in DNA-PKcs autophosphorylation and localization to DNA damage sites. These results indicate that although IR-induced DNA-PKcs phosphorylation is attenuated in the S phase, DNA-PKcs is preferentially activated by the physiologically relevant DNA replication-associated DSBs at the sites of DNA synthesis.  相似文献   

6.
Huen MS  Grant R  Manke I  Minn K  Yu X  Yaffe MB  Chen J 《Cell》2007,131(5):901-914
DNA-damage signaling utilizes a multitude of posttranslational modifiers as molecular switches to regulate cell-cycle checkpoints, DNA repair, cellular senescence, and apoptosis. Here we show that RNF8, a FHA/RING domain-containing protein, plays a critical role in the early DNA-damage response. We have solved the X-ray crystal structure of the FHA domain structure at 1.35 A. We have shown that RNF8 facilitates the accumulation of checkpoint mediator proteins BRCA1 and 53BP1 to the damaged chromatin, on one hand through the phospho-dependent FHA domain-mediated binding of RNF8 to MDC1, on the other hand via its role in ubiquitylating H2AX and possibly other substrates at damage sites. Moreover, RNF8-depleted cells displayed a defective G2/M checkpoint and increased IR sensitivity. Together, our study implicates RNF8 as a novel DNA-damage-responsive protein that integrates protein phosphorylation and ubiquitylation signaling and plays a critical role in the cellular response to genotoxic stress.  相似文献   

7.
DNA double strand break (DSB) repair by non-homologous end joining (NHEJ) is initiated by DSB detection by Ku70/80 (Ku) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) recruitment, which promotes pathway progression through poorly defined mechanisms. Here, Ku and DNA-PKcs solution structures alone and in complex with DNA, defined by x-ray scattering, reveal major structural reorganizations that choreograph NHEJ initiation. The Ku80 C-terminal region forms a flexible arm that extends from the DNA-binding core to recruit and retain DNA-PKcs at DSBs. Furthermore, Ku- and DNA-promoted assembly of a DNA-PKcs dimer facilitates trans-autophosphorylation at the DSB. The resulting site-specific autophosphorylation induces a large conformational change that opens DNA-PKcs and promotes its release from DNA ends. These results show how protein and DNA interactions initiate large Ku and DNA-PKcs rearrangements to control DNA-PK biological functions as a macromolecular machine orchestrating assembly and disassembly of the initial NHEJ complex on DNA.  相似文献   

8.
Aprataxin, defective in the neurodegenerative disorder ataxia oculomotor apraxia type 1, resolves abortive DNA ligation intermediates during DNA repair. Here, we demonstrate that aprataxin localizes at sites of DNA damage induced by high LET radiation and binds to mediator of DNA-damage checkpoint protein 1 (MDC1/NFBD1) through a phosphorylation-dependent interaction. This interaction is mediated via the aprataxin FHA domain and multiple casein kinase 2 di-phosphorylated S-D-T-D motifs in MDC1. X-ray structural and mutagenic analysis of aprataxin FHA domain, combined with modelling of the pSDpTD peptide interaction suggest an unusual FHA binding mechanism mediated by a cluster of basic residues at and around the canonical pT-docking site. Mutation of aprataxin FHA Arg29 prevented its interaction with MDC1 and recruitment to sites of DNA damage. These results indicate that aprataxin is involved not only in single strand break repair but also in the processing of a subset of double strand breaks presumably through its interaction with MDC1.  相似文献   

9.
The DNA-dependent protein kinase functions in the repair of DNA double strand breaks (DSBs) and in V(D)J recombination. To gain insight into the function of DNA-PK in this process we have carried out a mutation analysis of Ku80 and DNA-PKcs. Mutations at multiple sites within the N-terminal two thirds of Ku80 result in loss of Ku70/80 interaction, loss of DNA end-binding activity and inability to complement Ku80 defective cell lines. In contrast, mutations in the carboxy terminal region of the protein do not impair DNA end-binding activity but decrease the ability of Ku to activate DNA-PK. To gain insight into important functional domains within DNA-PKcs, we have analysed defective mutants, including the mouse scid cell line, and the rodent mutants, irs-20 and V-3. Mutational changes in the carboxy terminal region have been identified in all cases. Our results strongly suggest that the C-terminus of DNA-PKcs is required for kinase activity.  相似文献   

10.
Telomeres are key structural elements for the protection and maintenance of linear chromosomes, and they function to prevent recognition of chromosomal ends as DNA double-stranded breaks. Loss of telomere capping function brought about by telomerase deficiency and gradual erosion of telomere ends or by experimental disruption of higher-order telomere structure culminates in the fusion of defective telomeres and/or the activation of DNA damage checkpoints. Previous work has implicated the nonhomologous end-joining (NHEJ) DNA repair pathway as a critical mediator of these biological processes. Here, employing the telomerase-deficient mouse model, we tested whether the NHEJ component DNA-dependent protein kinase catalytic subunit (DNA-PKcs) was required for fusion of eroded/dysfunctional telomere ends and the telomere checkpoint responses. In late-generation mTerc(-/-) DNA-PKcs(-/-) cells and tissues, chromosomal end-to-end fusions and anaphase bridges were readily evident. Notably, nullizygosity for DNA Ligase4 (Lig4)--an additional crucial NHEJ component--was also permissive for chromosome fusions in mTerc(-/-) cells, indicating that, in contrast to results seen with experimental disruption of telomere structure, telomere dysfunction in the context of gradual telomere erosion can engage additional DNA repair pathways. Furthermore, we found that DNA-PKcs deficiency does not reduce apoptosis, tissue atrophy, or p53 activation in late-generation mTerc(-/-) tissues but rather moderately exacerbates germ cell apoptosis and testicular degeneration. Thus, our studies indicate that the NHEJ components, DNA-PKcs and Lig4, are not required for fusion of critically shortened telomeric ends and that DNA-PKcs is not required for sensing and executing the telomere checkpoint response, findings consistent with the consensus view of the limited role of DNA-PKcs in DNA damage signaling in general.  相似文献   

11.
DNA-PKcs-dependent signaling of DNA damage in Dictyostelium discoideum   总被引:1,自引:0,他引:1  
DNA double-strand breaks (DSBs) can be repaired by either homologous recombination (HR) or nonhomologous end-joining (NHEJ). In vertebrates, the first step in NHEJ is recruitment of the DNA-dependent protein kinase (DNA-PK) to DNA termini. DNA-PK consists of a catalytic subunit (DNA-PKcs) that is recruited to DNA ends by the Ku70/Ku80 heterodimer. Although Ku has been identified in a wide variety of organisms, to date DNA-PKcs has only been identified experimentally in vertebrates. Here, we report the identification of DNA-PK in the nonvertebrate Dictyostelium. Dictyostelium Ku80 contains a conserved domain previously implicated in recruiting DNA-PKcs to DNA and consistent with this observation, we have identified DNA-PKcs in the Dictyostelium genome. Disruption of the gene encoding Dictyostelium DNA-PKcs results in sensitivity to DNA DSBs and defective H2AX phosphorylation in response to this form of DNA damage. However, these phenotypes are only apparent when DNA damage is administered in G(1) phase of the cell cycle. These data illustrate a cell cycle-dependent requirement for Dictyostelium DNA-PK in signaling and combating DNA DSBs and represent the first experimental verification of DNA-PKcs in a nonvertebrate organism.  相似文献   

12.
MDC1 functions in checkpoint activation and DNA repair following DNA damage. To address the physiological role of MDC1, we disrupted the MDC1 gene in mice. MDC1-/- mice recapitulated many phenotypes of H2AX-/- mice, including growth retardation, male infertility, immune defects, chromosome instability, DNA repair defects, and radiation sensitivity. At the molecular level, H2AX, MDC1, and ATM form a positive feedback loop, with MDC1 directly mediating the interaction between H2AX and ATM. MDC1 binds phosphorylated H2AX through its BRCT domain and ATM through its FHA domain. Through these interactions, MDC1 accumulates activated ATM flanking the sites of DNA damage, facilitating further ATM-dependent phosphorylation of H2AX and the amplification of DNA damage signals. In the absence of MDC1, many downstream ATM signaling events are defective. These results suggest that MDC1, as a signal amplifier of the ATM pathway, is vital in controlling proper DNA damage response and maintaining genomic stability.  相似文献   

13.
DNA-PK autophosphorylation facilitates Artemis endonuclease activity   总被引:1,自引:0,他引:1  
The Artemis nuclease is defective in radiosensitive severe combined immunodeficiency patients and is required for the repair of a subset of ionising radiation induced DNA double-strand breaks (DSBs) in an ATM and DNA-PK dependent process. Here, we show that Artemis phosphorylation by ATM and DNA-PK in vitro is primarily attributable to S503, S516 and S645 and demonstrate ATM dependent phosphorylation at serine 645 in vivo. However, analysis of multisite phosphorylation mutants of Artemis demonstrates that Artemis phosphorylation is dispensable for endonuclease activity in vitro and for DSB repair and V(D)J recombination in vivo. Importantly, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) autophosphorylation at the T2609-T2647 cluster, in the presence of Ku and target DNA, is required for Artemis-mediated endonuclease activity. Moreover, autophosphorylated DNA-PKcs stably associates with Ku-bound DNA with large single-stranded overhangs until overhang cleavage by Artemis. We propose that autophosphorylation triggers conformational changes in DNA-PK that enhance Artemis cleavage at single-strand to double-strand DNA junctions. These findings demonstrate that DNA-PK autophosphorylation regulates Artemis access to DNA ends, providing insight into the mechanism of Artemis mediated DNA end processing.  相似文献   

14.
Rad9是一种重要的细胞周期监控点调控蛋白.越来越多的证据显示,Rad9也可与多种DNA损伤修复通路中的蛋白质相互作用,并调节其功能,在DNA损伤修复中发挥重要作用.非同源末端连接修复是DNA双链断裂的一条重要修复途径.Ku70、Ku80和DNA依赖的蛋白激酶催化亚基(DNA-PKcs)共同组成DNA依赖的蛋白激酶复合物(DNA-PK),在非同源末端修复连接中起重要作用.本研究中,检测到Rad9与Ku70有直接的物理相互作用和功能相互作用.我们在不同的细胞模型中发现,Rad9基因敲除、Rad9蛋白去除或Rad9表达降低会导致非同源末端连接效率明显下降.已有的研究表明,DNA损伤可导致细胞中Ku70与染色质结合增加及DNA-PKcs激酶活性增强.我们的结果显示,与野生小鼠细胞相比,Rad9基因敲除的小鼠细胞中, DNA损伤诱导的上述效应均减弱.综上所述,我们的研究首次报道了Rad9与非同源末端连接修复蛋白Ku70间有相互作用,并提示Rad9可通过调节Ku70/Ku80/DNA-PKcs复合物功能参与非同源末端连接修复.  相似文献   

15.
DNA double-strand breaks are a serious threat to genome stability and cell viability. One of the major pathways for the repair of DNA double-strand breaks in human cells is nonhomologous end-joining. Biochemical and genetic studies have shown that the DNA-dependent protein kinase (DNA-PK), XRCC4, DNA ligase IV, and Artemis are essential components of the nonhomologous end-joining pathway. DNA-PK is composed of a large catalytic subunit, DNA-PKcs, and a heterodimer of Ku70 and Ku80 subunits. Current models predict that the Ku heterodimer binds to ends of double-stranded DNA, then recruits DNA-PKcs to form the active protein kinase complex. XRCC4 and DNA ligase IV are subsequently required for ligation of the DNA ends. Magnesium-ATP and the protein kinase activity of DNA-PKcs are essential for DNA double-strand break repair. However, little is known about the physiological targets of DNA-PK. We have previously shown that DNA-PKcs and Ku undergo autophosphorylation, and that this correlates with loss of protein kinase activity. Here we show, using electron spectroscopic imaging, that DNA-PKcs and Ku interact with multiple DNA molecules to form large protein-DNA complexes that converge at the base of multiple DNA loops. The number of large protein complexes and the amount of DNA associated with them were dramatically reduced under conditions that promote phosphorylation of DNA-PK. Moreover, treatment of autophosphorylated DNA-PK with the protein phosphatase 1 catalytic subunit restored complex formation. We propose that autophosphorylation of DNA-PK plays an important regulatory role in DNA double-strand break repair by regulating the assembly and disassembly of the DNA-PK-DNA complex.  相似文献   

16.
The ubiquitin–proteasome pathway plays an important role in DNA damage signaling and repair by facilitating the recruitment and activation of DNA repair factors and signaling proteins at sites of damaged chromatin. Proteasome activity is generally not thought to be required for activation of apical signaling kinases including the PI3K-related kinases (PIKKs) ATM, ATR, and DNA-PK that orchestrate downstream signaling cascades in response to diverse genotoxic stimuli. In a previous work, we showed that inhibition of the proteasome by MG-132 suppressed 53BP1 (p53 binding protein1) phosphorylation as well as RPA2 (replication protein A2) phosphorylation in response to the topoisomerase I (TopI) poison camptothecin (CPT). To address the mechanism of proteasome-dependent RPA2 phosphorylation, we investigated the effects of proteasome inhibitors on the upstream PIKKs. MG-132 sharply suppressed CPT-induced DNA-PKcs autophosphorylation, a marker of the activation, whereas the phosphorylation of ATM and ATR substrates was only slightly suppressed by MG-132, suggesting that DNA-PK among the PIKKs is specifically regulated by the proteasome in response to CPT. On the other hand, MG-132 did not suppress DNA-PK activation in response to UV or IR. MG-132 blocked the interaction between DNA-PKcs and Ku heterodimer enhanced by CPT, and hydroxyurea pre-treatment completely abolished CPT-induced DNA-PKcs autophosphorylation, indicating a requirement for ongoing DNA replication. CPT-induced TopI degradation occurred independent of DNA-PK activation, suggesting that DNA-PK activation does not require degradation of trapped TopI complexes. The combined results suggest that CPT-dependent replication fork collapse activates DNA-PK signaling through a proteasome dependent, TopI degradation-independent pathway. The implications of DNA-PK activation in the context of TopI poison-based therapies are discussed.  相似文献   

17.
Mammalian cells respond to DNA double-strand breaks (DSBs) by recruiting DNA repair and cell-cycle checkpoint proteins to such sites. Central to these DNA damage response (DDR) events is the DNA damage mediator protein MDC1. MDC1 interacts with several DDR proteins, including the MRE11–RAD50–NBS1 (MRN) complex. Here, we show that MDC1 is phosphorylated on a cluster of conserved repeat motifs by casein kinase 2 (CK2). Moreover, we establish that this phosphorylation of MDC1 promotes direct, phosphorylation-dependent interactions with NBS1 in a manner that requires the closely apposed FHA and twin BRCT domains in the amino terminus of NBS1. Finally, we show that these CK2-targeted motifs in MDC1 are required to mediate NBS1 association with chromatin-flanking sites of unrepaired DSBs. These findings provide a molecular explanation for the MDC1–MRN interaction and yield insights into how MDC1 coordinates the focal assembly and activation of several DDR factors in response to DNA damage.  相似文献   

18.
Akt phosphorylation has previously been described to be involved in mediating DNA damage repair through the nonhomologous end-joining (NHEJ) repair pathway. Yet the mechanism how Akt stimulates DNA-protein kinase catalytic subunit (DNA-PKcs)-dependent DNA double-strand break (DNA-DSB) repair has not been described so far. In the present study, we investigated the mechanism by which Akt can interact with DNA-PKcs and promote its function during the NHEJ repair process. The results obtained indicate a prominent role of Akt, especially Akt1 in the regulation of NHEJ mechanism for DNA-DSB repair. As shown by pull-down assay of DNA-PKcs, Akt1 through its C-terminal domain interacts with DNA-PKcs. After exposure of cells to ionizing radiation (IR), Akt1 and DNA-PKcs form a functional complex in a first initiating step of DNA-DSB repair. Thereafter, Akt plays a pivotal role in the recruitment of AKT1/DNA-PKcs complex to DNA duplex ends marked by Ku dimers. Moreover, in the formed complex, Akt1 promotes DNA-PKcs kinase activity, which is the necessary step for progression of DNA-DSB repair. Akt1-dependent DNA-PKcs kinase activity stimulates autophosphorylation of DNA-PKcs at S2056 that is needed for efficient DNA-DSB repair and the release of DNA-PKcs from the damage site. Thus, targeting of Akt results in radiosensitization of DNA-PKcs and Ku80 expressing, but not of cells deficient for, either of these proteins. The data showed indicate for the first time that Akt through an immediate complex formation with DNA-PKcs can stimulate the accumulation of DNA-PKcs at DNA-DSBs and promote DNA-PKcs activity for efficient NHEJ DNA-DSB repair.  相似文献   

19.
Topoisomerase II (Top2) is a nuclear enzyme involved in several metabolic processes of DNA. Chemotherapy agents that poison Top2 are known to induce persistent protein-mediated DNA double strand breaks (DSB). In this report, by using knock down experiments, we demonstrated that Top2α was largely responsible for the induction of γH2AX and cytotoxicity by the Top2 poisons idarubicin and etoposide in normal human cells. As DSB resulting from Top2 poisons-mediated damage may be repaired by non-homologous end joining (NHEJ) or homologous recombination (HR), we aimed to analyze both DNA repair pathways. We found that DNA-PKcs was rapidly activated in human cells, as evidenced by autophosphorylation at serine 2056, following Top2-mediated DNA damage. The chemical inhibition of DNA-PKcs by wortmannin and vanillin resulted in an increased accumulation of DNA DSB, as evaluated by the comet assay. This was supported by a hypersensitive phenotype to Top2 poisons of Ku80- and DNA-PKcs- defective Chinese hamster cell lines. We also showed that Rad51 protein levels, Rad51 foci formation and sister chromatid exchanges were increased in human cells following Top2-mediated DNA damage. In support, BRCA2- and Rad51C- defective Chinese hamster cells displayed hypersensitivity to Top2 poisons. The analysis by immunofluorescence of the DNA DSB repair response in synchronized human cell cultures revealed activation of DNA-PKcs throughout the cell cycle and Rad51 foci formation in S and late S/G2 cells. Additionally, we found an increase of DNA-PKcs-mediated residual repair events, but not Rad51 residual foci, into micronucleated and apoptotic cells. Therefore, we conclude that in human cells both NHEJ and HR are required, with cell cycle stage specificity, for the repair of Top2-mediated reversible DNA damage. Moreover, NHEJ-mediated residual repair events are more frequently associated to irreversibly damaged cells.  相似文献   

20.
The multi-subunit DNA-dependent protein kinase (DNA-PK), a crucial player in DNA repair by non-homologous end-joining in higher eukaryotes, consists of a catalytic subunit (DNA-PKcs) and the Ku heterodimer. Ku recruits DNA-PKcs to double-strand breaks, where DNA-PK assembles prior to DNA repair. The interaction of DNA-PK with DNA is regulated via autophosphorylation. Recent SAXS data addressed the conformational changes occurring in the purified catalytic subunit upon autophosphorylation. Here, we present the first structural analysis of the effects of autophosphorylation on the trimeric DNA-PK enzyme, performed by electron microscopy and single particle analysis. We observe a considerable degree of heterogeneity in the autophosphorylated material, which we resolved into subpopulations of intact complex, and separate DNA-PKcs and Ku, by using multivariate statistical analysis and multi-reference alignment on a partitioned particle image data set. The proportion of dimeric oligomers was reduced compared to non-phosphorylated complex, and those dimers remaining showed a substantial variation in mutual monomer orientation. Together, our data indicate a substantial remodelling of DNA-PK holo-enzyme upon autophosphorylation, which is crucial to the release of protein factors from a repaired DNA double-strand break.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号