首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several quantitative trait loci (QTL) have been detected on SSC1qter (Sus scrofa chromosome 1qter), including QTL for the number of vertebrae, as reported in our previous study. To provide the tools for analysis of QTLs on SSC1qter, we constructed a comparative map of swine and human. In addition, we identified 26 swine STSs and mapped 16 of them on SSC1qter using the INRA - University of Minnesota porcine radiation hybrid (IMpRH) panel. We screened a BAC library using these swine STSs and developed 35 new polymorphic microsatellite markers from the BAC clones, of which 26 were informative in our reference family. We also mapped nine microsatellite markers we had isolated previously. Consequently a total of 44 new polymorphic microsatellite markers were located within a 60-cM region of SSC1qter, spanning from SW1092 to the telomere.  相似文献   

2.
The porcine PER1 gene was mapped to chromosome 12q1.4-->q1.5 using fluorescence in situ hybridisation. A polymorphic microsatellite marker (S0601) was isolated from a BAC clone shown to contain the PER1 gene. Linkage analysis assigned S0601 distal to ALOX12 on SSC12, providing further evidence for the conservation of synteny between HSA17 and SSC12. RT-PCR analysis demonstrated the expression of PER1 in all 11 tissues tested, consistent with the data from other mammalian species. Part of the PER1 gene was sequenced, homologous to exons 2-14 of the human gene and encoding the N-terminus of porcine PER1. The predicted amino acid sequence of the partial pig PER1 protein shares over 96% identity with its human orthologue.  相似文献   

3.
We have cloned and characterized the gene encoding the porcine cationic amino acid transporter, member 1 (CAT-1) (HGMW-approved gene symbol SLC7A1) from porcine pulmonary artery endothelial cells. The porcine SLC7A1 encodes 629 deduced amino acid residues showing a higher degree of sequence similarity with the human counterpart (91.1%) than with the rat (87.3%) and mouse (87.6%) counterparts. Confocal microscopic examination of porcine CAT-1-GFP-expressing HEK293 cells revealed that porcine CAT-1 localizes on the plasma membrane. Amino acid uptake studies in Xenopus oocytes injected with cRNA encoding this protein demonstrated transport properties consistent with system y(+). Radiation hybrid mapping data indicate that the porcine SLC7A1 maps to the distal end of the short arm of pig chromosome 11 (SSC11). This map location is consistent with the known conservation of genome organization between human and pig and provides further confirmation that we have characterized the porcine orthologue of the human SLC7A1.  相似文献   

4.
5.
6.
A partial genome scan using microsatellite markers was conducted to detect quantitative trait loci (QTLs) for 10 fatty acid contents of backfat on 15 chromosomes in a porcine resource population. Two QTLs were discovered on Sus scrofa chromosome 4 (SSC4) and SSC7. The QTL on SSC4 was located between marker loci sw1336 and sw512, and this QTL was detected (P < 0.05) only for linoleic acid. Its position was in proximity of those mapped for linoleic acid content in previous studies. The QTL on SSC7 was mapped between markers swr1343 and sw2155, and it was significant (P < 0.05) only for oleic acid. A novelty of the QTL for oleic acid was suggested because the QTL was located far from any other QTLs previously mapped for fatness traits. The QTL on SSC7 explained 19% of phenotypic variation for oleic acid content. Further studies on fine mapping and positional comparative candidate gene analysis would be the next step toward better understanding of the genetic architecture of fatty acid contents.  相似文献   

7.
A partial genome scan using microsatellite markers was conducted in order to detect quantitative trait loci (QTLs) for 10 fatty acid contents of the backfat in a pig reference population. Two QTLs were found by studying SSC1, SSC13, and SSC18, where QTLs had already been identified for backfat thickness. A QTL was located between marker loci S0113 and SW974 on chromosome 1; this QTL was only significantly detected (P < 0.05) for linoleic acid. The other QTL was discovered between markers S0062 and S0120 on chromosome 18, and its significance only showed (P < 0.05) for myristic acid. The two QTLs mapped to the same location as the backfat thickness QTL. A third of the phenotypic variation was explained for linoleic acid by the QTL on chromosome 1, and a quarter for myristic acid by the QTL on chromosome 18. Further studies on fine mapping and positional comparative candidate gene analyses will be the next step toward a better understanding of the genetic architecture of fatty acid contents.  相似文献   

8.
ZOO-FISH mapping shows human chromosomes 1, 9 and 10 share regions of homology with pig chromosome 10 (SSC10). A more refined comparative map of SSC10 has been developed to help identify positional candidate genes for QTL on SSC10 from human genome sequence. Genes from relevant chromosomal regions of the public human genome sequence were used to BLAST porcine EST databases. Primers were designed from the matching porcine ESTs to assign them to porcine chromosomes using the INRA somatic cell hybrid panel (INRA-SCHP) and the INRA-University of Minnesota Radiation Hybrid Panel (IMpRH). Twenty-eight genes from HSA1, 9 and 10 were physically mapped: fifteen to SSC10 (ACO1, ATP5C1, BMI1, CYB5R1, DCTN3, DNAJA1, EPHX1, GALT, GDI2, HSPC177, OPRS1, NUDT2, PHYH, RGS2, VIM), eleven to SSC1 (ADFP, ALDHIB1, CLTA, CMG1, HARC, PLAA, STOML2, RRP40, TESK1, VCP and VLDLR) and two to SSC4 (ALDH9A1 and TNRC4). Two anonymous markers were also physically mapped to SSC10 (SWR1849 and S0070) to better connect the physical and linkage maps. These assignments have further refined the comparative map between SSC1, 4 and 10 and HSA1, 9 and 10.  相似文献   

9.
The porcine orthologues of human chromosome HSA9q22.31 genes osteoglycin (OGN) and asporin (ASPN) were mapped to porcine chromosome SSC3 using linkage analysis and a somatic cell hybrid panel. This mapping was refined to SSC3q11 using fluorescence in situ hybridization. These results confirm the existence of a small conserved synteny group between SSC3 and HSA9. Polymorphisms were revealed in both genes, including a pentanucleotide microsatellite (SCZ003) in OGN and two single nucleotide polymorphisms (AM181682.1:g.780G>T and AM181682.1:g.825T>C) in ASPN. The two genes were included in a set of markers for quantitative trait loci (QTL) mapping on SSC3 in the Hohenheim Meishan x Piétrain F2 family. Major QTL for growth and carcass traits were centred in the ASPN-SW902 region.  相似文献   

10.
Conserved segments have been identified by ZOO-FISH between pig chromosome 9 (SSC9) and human chromosomes 1, 7 and 11. To assist in the identification of positional candidate genes for QTL on SSC9, the comparative map was further developed. Primers were designed from porcine EST sequence homologous to genes in regions of human chromosomes 1, 7 and 11. Porcine ESTs were then physically assigned using the INRA somatic cell hybrid panel (INRASCHP) and the high-resolution radiation hybrid panel (IMpRH). Seventeen genes (PEPP3, RAB7L1, FNBP2, MAPKAPK2, GNAI1, ABCB1, STEAP, AKAP9, CYP51A1, SGCE, ROBO4, SIAT4C, GLUL, CACNA1E, PTGS2, C1orf16 and ETS1) were mapped to SSC9, while GUSB, CPSF4 and THG-1 were assigned to SSC3.  相似文献   

11.
A high-resolution radiation hybrid map of porcine chromosome 6   总被引:2,自引:0,他引:2  
A high-resolution comprehensive map was constructed for porcine chromosome (SSC) 6, where quantitative trait loci (QTL) for reproduction and meat quality traits have been reported to exist. A radiation hybrid (RH) map containing 105 gene-based markers and 15 microsatellite markers was constructed for this chromosome using a 3000-rad porcine/hamster RH panel. In total, 40 genes from human chromosome (HSA) 1p36.3-p22, 29 from HSA16q12-q24, 17 from HSA18p11.3-q12 and 19 from HSA19q13.1-q13.4 were assigned to SSC6. All primers for these gene markers were designed based on porcine gene or EST sequences, and the orthologous status of the gene markers was confirmed by direct sequencing of PCR products amplified from separate Meishan and Large White genomic DNA pools. The RH map spans SSC6 and consists of six linkage groups created by using a LOD score threshold of 4. The boundaries of the conserved segments between SSC6 and HSA1, 16, 18 and 19 were defined more precisely than previously reported. This represents the most comprehensive RH map of SSC6 reported to date. Polymorphisms were detected for 38 of 105 gene-based markers placed on the RH map and these are being exploited in ongoing chromosome wide scans for QTL and eventual fine mapping of genes associated with prolificacy in a Meishan x Large White multigenerational commercial population.  相似文献   

12.
In the present study we show FISH localization of 4 porcine BAC clones harbouring potential candidate genes for fatness traits: DGAT1 (SSC4p15), PPARA (SSC5p15), ADIPOR1 (SSC10p13) and CREB (SSC15q24). Until now the CREB and ADIPOR1 genes are considered to be monomorphic, DGAT1 is highly polymorphic, while for the PPARA gene only 1 SNP was identified. Assignment of the studied genes in relation to QTL chromosome regions for meat quality in pig chromosomes SSC4, SSC5, SSC10 and SSC15 is discussed.  相似文献   

13.
Small GTP-binding proteins play critical roles in signal transduction in mammalian and plant systems. In this study, sequence variation of a small GTP-binding protein identified in the subgenomic region was analyzed. The major quantitative trait locus (QTL) controlling submergence tolerance on the 6.5-cM region of chromosome 9 was previously mapped, sequenced, and annotated. One of the most interesting candidate genes located in this QTL was a 5.2-kb sequence, which included a coding sequence consisting of two exons and a promoter. The deduced amino acid sequence corresponded to a 24.8 kD protein consisting of 226 amino acids, with 98% identity to RGP1, a small GTP-binding protein involved in a signal pathway responding to hormones, such as cytokinin and ethylene. According to the amino acid sequence, a putative small G-protein was classified as a small Ras-related GTP-binding protein. DNA gel blot analysis showed that the putative gene encoding the Ras-related GTP-binding protein was present as a single copy in the rice genome. Comparison of genomic sequences from several rice cultivars tolerant to submergence identified single nucleotide polymorphisms located in the TATA box of the Ras promoter region. Linkage analysis showed that the putative gene for GTP-binding protein was tightly linked to the peak of the QTL previously mapped on the long arm of chromosome 9. The single strand conformation polymorphism of the putative GTP-binding protein gene can be used for allele discrimination and marker assisted selection for tolerance to flash flooding.  相似文献   

14.
Adenylosuccinate synthetase (ADSS) catalyzes the key step of AMP synthesis. Vertebrates have two isozymes of ADSS, which are named ADSS1 and ADSS2, respectively. In this study, we cloned porcine ADSS1 and ADSS2 genes and comparatively analyzed their sequence, chromosome mapping, mRNA distribution and subcellular localization. According to our results, the ADSS1 gene was predominantly expressed in the striated muscle tissues, while ADSS2 gene distributed widely in all the tissues detected. Additionally, ADSS1 gene was up-regulated significantly along with porcine muscle growth, and ADSS2 gene expression was more constant during the muscle development. Porcine ADSS1 gene was assigned to SSC7q and the linked marker was SSC12B09, ADSS2 gene was mapped on SSC10p and the linked marker was SW497, and porcine ADSS2 protein was subcellular localized in mitochondria. Moreover, we found that one single nucleotide polymorphism (SNP, T/C(70)) in the ninth intron of ADSS2 gene was significantly associated with average daily gain trait (ADG, P<0.05) and loin muscle area trait (P<0.05).  相似文献   

15.
To evaluate whether a structural defect in the human glucose transporter gene GLUT1 could be involved in the aetiology of insulin resistance, a key factor of non-insulin-dependent diabetes mellitus (NIDDM) and obesity, we performed single-strand conformation polymorphism (SSCP) analysis in 40 subjects (20 NIDDM patients and 20 subjects with familial obesity). The GLUT1 gene, which is involved in basal glucose transport in most tissues, consists of ten exons and encodes a 492 amino acid protein. Population studies have shown a strong association between the X1 allele of an XbaI restriction fragment length polymorphism of the GLUT1 gene and NIDDM. We therefore performed SSCP analysis in NIDDM subjects known to carry at least one X1 allele. Variant SSCP patterns were detected in exons 2, 4, 5 and 9. Sequence analysis of the SSCP variants revealed the presence, in all exons examined, of silent mutations consisting of single-nucleotide substitutions with no amino acid changes. Both NIDDM and obese patients showed a high frequency of polymorphism in the sequence (50% and 35%, respectively). We conclude that the GLUT1 gene is unlikely to play a role in the aetiology of NIDDM and obesity. However, the strong association between the GLUT1 gene and NIDDM, together with the recent family studies showing linkage between chromosome 1p and NIDDM warrant further studies on this chromosomal region. Received: 18 August 1997 / Accepted: 10 December 1997  相似文献   

16.
Numerous mapping studies of complex traits in the pig have resulted in quantitative trait loci (QTL) intervals of 10-20 cM. To improve the chances to identify the genes located in such intervals, increased expressed sequence tags (EST)-based marker density, coupled with comparative mapping with species whose genomes have been sequenced such as human and mouse, is the most efficient tool. In this study, we mapped 443 porcine EST with a radiation hybrid (RH) panel (384 had LOD > 6.0) and a somatic cell hybrid panel. Requiring no discrepancy between two-point and multipoint RH data allowed robust assignment of 309 EST, of which most were located on porcine chromosomes (SSC) 1, 4, 7, 8 and X. Moreover, we built framework maps for two chromosomes, SSC1 and SSC7, with mapped QTL in regions with known rearrangement between pig and human genomes. Using the Blast tool, we found orthologies between 407 of the 443 pig cDNA sequences and human genes, or to existing pig genes. Our porcine/human comparative mapping results reveal possible new homologies for SSC1, SSC3, SSC5, SSC6, SSC12 and SSC14 and add markers in synteny breakpoints for chromosome 7.  相似文献   

17.
Ai H  Ren J  Zhang Z  Ma J  Guo Y  Yang B  Huang L 《Animal genetics》2012,43(4):383-391
Growth and fatness are economically important traits in pigs. In this study, a genome scan was performed to detect quantitative trait loci (QTL) for 14 growth and fatness traits related to body weight, backfat thickness and fat weight in a large-scale White Duroc × Erhualian F(2) intercross. A total of 76 genome-wide significant QTL were mapped to 16 chromosomes. The most significant QTL was found on pig chromosome (SSC) 7 for fatness with unexpectedly small confidence intervals of ~2 cM, providing an excellent starting point to identify causal variants. Common QTL for both fatness and growth traits were found on SSC4, 5, 7 and 8, and shared QTL for fat deposition were detected on SSC1, 2 and X. Time-series analysis of QTL for body weight at six growth stages revealed the continuously significant effects of the QTL on SSC4 at the fattening period and the temporal-specific expression of the QTL on SSC7 at the foetus and fattening stages. For fatness traits, Chinese Erhualian alleles were associated with increased fat deposition except that at the major QTL on SSC7. For growth traits, most of White Duroc alleles enhanced growth rates except for those at three significant QTL on SSC6, 7 and 9. The results confirmed many previously reported QTL and also detected novel QTL, revealing the complexity of the genetic basis of growth and fatness in pigs.  相似文献   

18.
19.
Knowing the large difference in daily feed intake (DFI) between Large White (LW) and Piétrain (PI) growing pigs, a backcross (BC) population has been set up to map QTL that could be used in marker assisted selection strategies. LW × PI boars were mated with sows from two LW lines to produce 16 sire families. A total of 717 BC progeny were fed ad libitum from 30 to 108 kg BW using single-place electronic feeders. A genome scan was conducted using genotypes for the halothane gene and 118 microsatellite markers spread on the 18 porcine autosomes. Interval mapping analyses were carried out, assuming different QTL alleles between sire families to account for within breed variability using the QTLMap software. The effects of the halothane genotype and of the dam line on the QTL effect estimates were tested. One QTL for DFI (P < 0.05 at the chromosome-wide (CW) level) and one QTL for feed conversion ratio (P < 0.01 at the CW level) were mapped to chromosomes SSC6 - probably due to the halothane alleles - and SSC7, respectively. Three putative QTL for feed intake traits were detected (P < 0.06 at the CW level) on SSC2, SSC7 and SSC9. QTL on feeding traits had effects in the range of 0.20 phenotypic s.d. The relatively low number of QTL detected for these traits suggests a large QTL allele variability within breeds and/or low effects of individual loci. Significant QTL were detected for traits related to carcass composition on chromosomes SSC6, SSC15 and SSC17, and to meat quality on chromosome SSC6 (P < 0.01 at the genome-wide level). QTL effects for body composition on SSC13 and SSC17 differed according to the LW dam line, which confirmed that QTL alleles were segregating in the LW breed. An epistatic effect involving the halothane locus and a QTL for loin weight on SSC7 was identified, the estimated substitution effects for the QTL differing by 200 g between Nn and NN individuals. The interactions between QTL alleles and genetic background or particular genes suggest further work to validate QTL segregations in the populations where marker assisted selection for the QTL would be applied.  相似文献   

20.
GRN has been shown to have roles in multiple processes involved in cell growth, development and wound repair in rodents and humans. We have isolated the full-length cDNA of GRN gene encoding porcine granulin protein by in silico cloning, RT-PCR and RACE. The deduced amino acid indicated 71.5% identity with the corresponding human sequence and the seven and one-half granulins showed highly conservative between pig, human and murine. A single nucleotide substitution resulting in the amino acid change (ATG/Met --> TTG/Leu) was detected within exon 5. Allele frequencies in six pig breeds showed distinctive differences between those Chinese indigenous pig breeds and European pigs. Using the IMpRH panel, we mapped the porcine GRN gene to porcine chromosome 12p11-p13. Our data provide basic molecular information useful for the further investigation on the function of GRN gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号