首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different stages of liver regeneration are regulated by a variety of factors such as the liver growth associated protein ALR, augmenter of liver regeneration. Furthermore, small molecules like polyamines were proven to be essential for hepatic growth and regeneration. Therefore, using primary human hepatocytes in vitro we investigated the effect of ALR on the biosynthesis of polyamines. We demonstrated by HPLC analysis that recombinant ALR enhanced intracellular hepatic putrescine, spermidine, and spermine levels within 9-12h. The activation of polyamine biosynthesis was dose dependent with putrescine showing the strongest increase. Additionally, ALR treatment induced mRNA expression of ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase, both key enzymes of polyamine biosynthesis. Further, ALR induced c-myc mRNA expression, a regulator of ODC expression, and therefore we assume that ALR exerts its liver regeneration augmenting effects through stimulation of its signalling pathway leading in part to enhanced polyamine synthesis.  相似文献   

2.
As previously reported by us, mice with targeted disruption of the CYP8B1 gene (CYP8B1-/-) fail to produce cholic acid (CA), upregulate their bile acid synthesis, reduce the absorption of dietary cholesterol and, after cholesterol feeding, accumulate less liver cholesterol than wild-type (CYP8B1+/+) mice. In the present study, cholesterol-enriched diet (0.5%) or administration of a synthetic liver X receptor (LXR) agonist strongly upregulated CYP7A1 expression in CYP8B1-/- mice, compared to CYP8B1+/+ mice. Cholesterol-fed CYP8B1-/- mice also showed a significant rise in HDL cholesterol and increased levels of liver ABCA1 mRNA. A combined CA (0.25%)/cholesterol (0.5%) diet enhanced absorption of intestinal cholesterol in both groups of mice, increased their liver cholesterol content, and reduced their expression of CYP7A1 mRNA. The ABCG5/G8 liver mRNA was increased in both groups of mice, but cholesterol crystals were only observed in bile from the CYP8B1+/+ mice. The results demonstrate the cholesterol-sparing effects of CA: enhanced absorption and reduced conversion into bile acids. Farnesoid X receptor (FXR)-mediated suppression of CYP7A1 in mice seems to be a predominant mechanism for regulation of bile acid synthesis under normal conditions and, as confirmed, able to override LXR-mediated mechanisms. Interaction between FXR- and LXR-mediated stimuli might also regulate expression of liver ABCG5/G8.  相似文献   

3.
Liver regeneration is a well-orchestrated process that is triggered by tissue loss due to trauma or surgical resection and by hepatocellular death induced by toxins or viral infections. Due to the central role of the liver for body homeostasis, intensive research was conducted to identify factors that might contribute to hepatic growth and regeneration. Using a model of partial hepatectomy several factors including cytokines and growth factors that regulate this process were discovered. Among them, a protein was identified to specifically support liver regeneration and therefore was named ALR (Augmenter of Liver Regeneration). ALR protein is encoded by GFER (growth factor erv1-like) gene and can be regulated by various stimuli. ALR is expressed in different tissues in three isoforms which are associated with multiple functions: The long forms of ALR were found in the inner-mitochondrial space (IMS) and the cytosol. Mitochondrial ALR (23 kDa) was shown to cooperate with Mia40 to insure adequate protein folding during import into IMS. On the other hand short form ALR, located mainly in the cytosol, was attributed with anti-apoptotic and anti-oxidative properties as well as its inflammation and metabolism modulating effects. Although a considerable amount of work has been devoted to summarizing the knowledge on ALR, an investigation of ALR expression in different organs (location, subcellular localization) as well as delineation between the isoforms and function of ALR is still missing. This review provides a comprehensive evaluation of ALR structure and expression of different ALR isoforms. Furthermore, we highlight the functional role of endogenously expressed and exogenously applied ALR, as well as an analysis of the clinical importance of ALR, with emphasis on liver disease and in vivo models, as well as the consequences of mutations in the GFER gene.  相似文献   

4.
5.
6.
The objective of the present study was to investigate the cholesterol-reducing effect of medium-chain fatty acids (MCFAs) completed by elevated excretion of fecal neutral steroids and/or bile acids. Blood and liver lipid profiles, fecal neutral steroids, bile acids, and mRNA and protein expression of the genes relevant to cholesterol homeostasis were measured and analyzed in C57BL/6J mice fed a cholesterol-rich diet with 2% caprylic acid or capric acid for 12 weeks. Blood total cholesterol and low-density lipoprotein cholesterol (LDL-c) levels were reduced significantly as compared to diet with palmitic acid or stearic acid. Caprylic acid promoted the excretion of fecal neutral steroids, especially cholesterol. The excretion of fecal bile acids, mainly in the form of cholic acid was enhanced and accompanied by elevated expression of mRNA and the protein of hepatic cholesterol 7α-hydroxylase (CYP7A1). These results indicate that MCFAs can reduce blood cholesterol by promoting the excretion of fecal cholesterol and cholic acid.  相似文献   

7.
8.
The conversion of cholesterol to bile acids is a key pathway for elimination of cholesterol from the body, thereby reducing the risk of arteriosclerosis. Moderate consumption of ethanol has been shown to have preventive effects on cardiovascular disease and decrease the risk of gallstone formation. In the present study primary human hepatocytes were used to investigate if ethanol affected bile acid synthesis. Hepatocytes were prepared from donor liver (n = 11) and treated with ethanol, 7.7 or 50 mM, for 24 h. mRNA levels for enzymes in bile acid synthesis pathways were studied and bile acid synthesis was analyzed. Treatment with 7.7 mM ethanol increased cholic acid synthesis by 20% and treatment with 50 mM ethanol up-regulated cholic acid formation by 60%. The synthesis of cholic acid increased more than that of chenodeoxycholic acid, indicating that the classical pathway for bile acid synthesis was up-regulated. Increased bile acid levels in the cells treated with ethanol were seen after approximately 20 h. mRNA expression of CYP7A1, CYP27A1, and CYP8B1 in the hepatocytes was not affected by alcohol exposure.  相似文献   

9.
Cerebrotendinous xanthomatosis [CTX] is a rare disease characterized by the accumulation of cholesterol and cholestanol in brain and tendons caused by a mutation in the sterol 27-hydroxylase gene [CYP27A1] involved in bile acid synthesis. Disruption of this gene in mice does not give rise to xanthomas. The gene defect leads to reduced bile acid synthesis with a compensatory increase in the activity of the rate-limiting enzyme in bile acid synthesis, cholesterol 7α-hydroxylase. This leads to a marked accumulation of 7α-hydroxylated bile acid precursors, in particular 7α-hydroxy-4-cholesten-3-one. The latter oxysterol passes the blood-brain barrier and is an efficient precursor to cholestanol. The activity of cholesterol 7α-hydroxylase is normalized by treatment with bile acids. Such treatment reduces the xanthomas in CTX patients in parallel with decreased cholestanol levels. The relationship between the accumulation of cholestanol and the development of cholesterol-rich xanthomas has however not been clarified and a suitable animal model is still lacking.  相似文献   

10.
重组[B18Ile]人胰岛素的鉴定和特征   总被引:4,自引:2,他引:2  
突变体「B18Ile」猪胰岛素前体经分离纯化,转肽,得到重组「B18Ile」人胰素「B18Ile」人胰岛素能结晶,其与受体的结合能力为猪胰岛素的82%,保留了与猪胰岛素基本相同的体内活力,从本文结果和分析表明B18Val可能不是胰岛素表现生物功能所必需的。  相似文献   

11.
杨晶  倪佳良  高越颖 《菌物学报》2021,40(5):1160-1169
本研究探讨虫草素对α-萘异硫氰酸酯(ANIT)诱导胆汁淤积性肝损伤的改善作用及保护机制。首先建立ANIT诱导胆汁淤积性肝损伤模型,通过检测血生化指标、HE染色观察肝脏组织病理的情况评价虫草素的保肝作用,进一步通过Western blot和实时定量PCR技术分析胆汁酸合成、分解、转运以及炎症相关通路的变化。结果显示,与模型组相比,虫草素可以有效降低血清中总胆汁酸水平,改善肝功能,明显降低肝脏病理损伤和炎性细胞浸润。同时,虫草素激活胆汁酸核受体FXR,上调胆汁酸转运体NTCP、BSEP表达,缓解肝内的胆汁酸淤积情况。此外,虫草素还可通过调控NF-κB信号通路抑制肝脏IL-6和IL-1β表达。结果提示,虫草素对ANIT诱导的胆汁淤积模型小鼠肝损伤具有保护作用,其机制可能与其减少肝内胆汁淤积和抑制炎症有关。  相似文献   

12.
肝再生增强因子研究进展   总被引:12,自引:0,他引:12  
肝再生增强因子是新近克隆的蛋白质因子,能特异地刺激肝源细胞的增殖,并对CCl4所引起的急性肝衰竭有效治作用。本文综述了肝再生增强因子的发现、基因克隆及组织分布等。目前已开始了该因子的基因工程产品研制,它有望成为一种治疗肝病的新药。  相似文献   

13.
To gain new insight into the biological function of the human augmenter of liver regeneration (hALR) in HCC, we studied its involvement in radiation-induced damage and recovery of HCC cells. We found that hALR expression was up-regulated in both HCC tissues and multiple hepatoma cell lines and correlated significantly with increased radiation clonogenic survival after radiation treatment. Exogenous expression of hALR increased radiation resistance in SMMC-7721 cells, and the increased survival was accompanied by a decrease in apoptosis and a prolonged G2–M arrest after irradiation. Overexpression of ALR significantly increased the mitochondrial membrane potential, inhibited cytochrome c release, and opposed the loss of intracellular ATP levels after radiation. Moreover, knockdown of ALR by siRNA resulted in inhibition of viability in the absence of exogenously added oxidative stress and radiation sensitization in HepG2 cells. Importantly, hALR expression was very low in normal hepatocyte L02 cells, and hALR silencing had a minimal effect on L02 viability and radiation sensitivity. These results suggest that human ALR is important for hepatoma cell viability and involved in the protection of hepatoma cells against irradiation-induced damage by its association with mitochondria. Targeting hALR may be a promising novel approach to enhance the radiosensitivity of hepatoma cancers.  相似文献   

14.

Background

Augmenter of liver regeneration (ALR) protects liver from various injuries, however, the association of ALR with liver fibrosis, particularly its effect on hepatic stellate cells (HSC), remains unclear. In this study, we investigated the impact of ALR on the activation of HSC, a pivotal event in occurrence of liver fibrosis.

Methods

Liver fibrosis was induced in vivo in mice with heterozygous ALR knockdown (ALR-KD) by administration of CCl4 or bile duct ligation. The effect of ALR-KD and ALR-overexpression on liver fibrosis was studied in mice and in HSC cells as well.

Results

Hepatic collagen deposition and expression of α-smooth muscle actin (α-SMA) were significantly increased in the ALR-KD mice compared to wild-type mice. In vitro, ALR-shRNA resulted in the activation of HSC cell line (LX-2). Furthermore, ALR-shRNA promoted LX-2 cell migration, accompanied by increased filamentous actin (F-actin) assembly. The ALR-KD-mediated increase in HSC migration was associated with mitochondrial fusion, resulting in mitochondria elongation and enhancing ATP production. In contrast, ALR transfection (ALR-Tx) decelerated HSC migration and inhibited F-actin assembly, concomitantly enhancing mitochondrial fission and reducing ATP synthesis. Mechanically, stimulation of HSC migration by ALR-shRNA was attributed to the increased mitochondrial Ca2+ influx in HSCs. Treatment of ALR-shRNA-cells with Ruthenium Red (RuR), a specific inhibitor of mitochondrial calcium uniporter (MCU), significantly suppressed mitochondrial Ca2+ influx, HSC migration, mitochondrial fusion and ATP production. ALR-KD-induced HSC migration was verified in vitro in primary mouse HSCs.

Conclusion

Inhibition of ALR expression aggravates liver fibrosis, probably via promoting HSC migration and mitochondrial fusion.  相似文献   

15.
Prostaglandin E receptor subtype 4 (EP4) knockout mice develops spontaneous hypercholesterolemia but the detailed mechanisms by which EP4 affects cholesterol homeostasis remains unexplored. We sought to determine the cause of hypercholesterolemia in EP4 knockout mice, focusing on the role of EP4 in regulating the synthesis and elimination of cholesterol. Deficiency of EP4 significantly decreased total bile acid levels in the liver by 26.2% and the fecal bile acid content by 27.6% as compared to wild type littermates, indicating that the absence of EP4 decreased hepatic bile acid synthesis and their subsequent excretion in stools. EP4 deficiency negatively regulate bile acid synthesis through repression of phosphorylated extracellular signal-regulated kinase 1/2 (ERK)-mediated cholesterol 7α-hydroxylase (CYP7A1) expression and that the hypercholesterolemia in EP4 knockout mice is due to a defect in cholesterol conversion into bile acids. Deficiency of EP4 also increased de novo cholesterol synthesis and altered cholesterol fluxes in and out of the liver. Treating high fat diet-challenged mice with the pharmacological EP4 agonist, CAY10580 (200?μg/kg body weight/day i.p) for three weeks effectively prevented diet-induced hypercholesterolemia, enhanced endogenous bile acid synthesis and their fecal excretion. In summary, EP4 plays a critical role in maintaining cholesterol homeostasis by regulating the synthesis and elimination of bile acids. Activation of EP4 serves as an effective novel strategy to promote cholesterol disposal in the forms of bile acids in order to lower plasma cholesterol levels.  相似文献   

16.
Liver fibrosis represents a process of healing and scarring in response to chronic liver injury. Augmenter of liver regeneration (ALR) has been shown to protect hepatocytes from various toxins. The aim of this study was to investigate the effects of ALR gene therapy on liver injury and fibrosis induced by CCl4 in rats and further explore the underlying mechanisms. Human ALR expression plasmid was delivered via the tail vein. ALR gene therapy might protect the liver from CCl4-induced injury and fibrogenesis by attenuating the mitochondrial dysfunction, suppressing oxidative stress, and inhibiting activation of HSCs. This report demonstrated that ALR gene therapy protected against the ATP loss, increased the activity of ATPase, decreased intrahepatic reactive oxygen species level, and down-regulated transforming growth factor-β1, platelet-derived growth factor-BB, and α-smooth muscle actin expression. Following gene transfer liver function tests were significantly improved. In brief, ALR gene therapy might be an effective therapeutic reagent for liver fibrosis with potential clinical applications.  相似文献   

17.
Cerebrotendinous xanthomatosis (CTX), sterol 27-hydroxylase (CYP27A1) deficiency, is associated with markedly reduced chenodeoxycholic acid (CDCA), the most powerful activating ligand for farnesoid X receptor (FXR). We investigated the effects of reduced CDCA on FXR target genes in humans. Liver specimens from an untreated CTX patient and 10 control subjects were studied. In the patient, hepatic CDCA concentration was markedly reduced but the bile alcohol level exceeded CDCA levels in control subjects (73.5 vs. 37.8 +/- 6.2 nmol/g liver). Cholesterol 7alpha-hydroxylase (CYP7A1) and Na+/taurocholate-cotransporting polypeptide (NTCP) were upregulated 84- and 8-fold, respectively. However, small heterodimer partner (SHP) and bile salt export pump were normally expressed. Marked CYP7A1 induction with normal SHP expression was not explained by the regulation of liver X receptor alpha (LXRalpha) or pregnane X receptor. However, another nuclear receptor, hepatocyte nuclear factor 4alpha (HNF4alpha), was induced 2.9-fold in CTX, which was associated with enhanced mRNA levels of HNF4alpha target genes, CYP7A1, 7alpha-hydroxy-4-cholesten-3-one 12alpha-hydroxylase, CYP27A1, and NTCP. In conclusion, the coordinate regulation of FXR target genes was lost in CTX. The mechanism of the disruption may be explained by a normally stimulated FXR pathway attributable to markedly increased bile alcohols with activation of HNF4alpha caused by reduced bile acids in CTX liver.  相似文献   

18.
人肝再生增强因子CXXC活性结构域的研究   总被引:2,自引:0,他引:2  
人肝再生增强因子(human augmenter of liver regeneration, hALR)蛋白序列中有一段保守的Cys-Xaa-Xaa-Cys (CXXC)氨基酸序列,针对hALRp的CXXC结构,对hALR分别进行C65A和Q88C突变,表达、纯化突变体蛋白。体外检测hALRp和突变体的黄素腺嘌呤二核苷酸(flavin adenine dinucleotide, FAD)辅助的巯基氧化酶活性,hALR-FAD和hALRQ88C-FAD组与对照组比较有显著差异(P<0.05),hALR-FAD和hALRQ88C-FAD组之间无差异;hALRC65A-FAD组与对照组比较无差异。结果显示,通过C65A突变将CXXC结构破坏后,该突变体的巯基氧化酶活性完全丧失;通过Q88C突变增加一个CXXC序列后,该突变体的巯基氧化酶活性较hALR-FAD未见明显增加;同时,FAD不仅是hALRp发挥巯基氧化酶活性必须的辅助因子,而且有助于hALRp突变体蛋白的复性。  相似文献   

19.
20.
Acute accumulation of bile acids in hepatocytes may cause cell death. However, during long-term exposure due to prolonged cholestasis, hepatocytes may develop a certain degree of chemoresistance to these compounds. Because mitochondrial adaptation to persistent oxidative stress may be involved in this process, here we have investigated the effects of complete mitochondrial genome depletion on the response to bile acid-induced hepatocellular injury. A subline (Rho) of human hepatoma SK-Hep-1 cells totally depleted of mitochondrial DNA (mtDNA) was obtained, and bile acid-induced concentration-dependent activation of apoptosis/necrosis and survival signaling pathways was studied. In the absence of changes in intracellular ATP content, Rho cells were highly resistant to bile acid-induced apoptosis and partially resistant to bile acid-induced necrosis. In Rho cells, both basal and bile acid-induced generation of reactive oxygen species (ROS), such as hydrogen peroxide and superoxide anion, was decreased. Bile acid-induced proapoptotic signals were also decreased, as evidenced by a reduction in the expression ratios Bax-α/Bcl-2, Bcl-xS/Bcl-2, and Bcl-xS/Bcl-xL. This was mainly due to a downregulation of Bax-α and Bcl-xS. Moreover, in these cells the Akt/mTOR pathway was constitutively activated in a ROS-independent manner and remained similarly activated in the presence of bile acid treatment. In contrast, ERK1/2 activation was constitutively reduced and was not activated by incubation with bile acids. In conclusion, these results suggest that impaired mitochondrial function associated with mtDNA alterations, which may occur in liver cells during prolonged cholestasis, may activate mechanisms of cell survival accounting for an enhanced resistance of hepatocytes to bile acid-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号