首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagy is a cellular response to adverse environment and stress, but its significance in cell survival is not always clear. Here we show that autophagy could be induced in the mammalian cells by chemicals, such as A23187, tunicamycin, thapsigargin, and brefeldin A, that cause endoplasmic reticulum stress. Endoplasmic reticulum stress-induced autophagy is important for clearing polyubiquitinated protein aggregates and for reducing cellular vacuolization in HCT116 colon cancer cells and DU145 prostate cancer cells, thus mitigating endoplasmic reticulum stress and protecting against cell death. In contrast, autophagy induced by the same chemicals does not confer protection in a normal human colon cell line and in the non-transformed murine embryonic fibroblasts but rather contributes to cell death. Thus the impact of autophagy on cell survival during endoplasmic reticulum stress is likely contingent on the status of cells, which could be explored for tumor-specific therapy.  相似文献   

2.
内质网应激与自噬及其交互作用影响内皮细胞凋亡   总被引:1,自引:0,他引:1  
内质网应激是普遍存在于真核细胞中的应激-防御机制。在内环境稳态遭到破坏的情况下,未折叠蛋白质反应的3条信号通路,分别通过增强蛋白质折叠能力、减少蛋白质生成和促进内质网相关蛋白质降解等途径缓解细胞内压力。同时,也通过多种分子信号机制调控细胞凋亡。自噬是一种生理性的降解机制。通过形成自噬泡并与溶酶体结合摄取并水解胞内受损细胞器和蛋白质等,清除代谢废物,维持细胞正常功能。自噬缺陷或过度激活均可导致细胞凋亡或非程序性死亡。自噬的程度和细胞内压力水平有关。内质网应激通过未折叠蛋白质反应和Ca2+浓度变化及其相关分子信号调控自噬。自噬又可反馈性调节内质网应激反应,二者相互作用,在内皮细胞凋亡过程中发挥重要作用。未来内质网应激和自噬可作为药物靶点为内皮相关性疾病提供诊疗策略。  相似文献   

3.
Podocyte apoptosis is a major factor inducing podocyte depletion that predicts the progressive course of glomerulosclerosis. However, the molecular mechanisms underlying podocyte apoptosis are still not well understood. Autophagy is a lysosomal degradation system involving the degradation and recycling of obsolete, damaged, or harmful cytoplasmic materials and organelles. Recent advances in the understanding of the molecular processes contributing to autophagy have provided insight into the relationship between autophagy and apoptosis. However, their cross-talk remains largely obscure until now. Here, we found that podocytes both in vivo and in vitro always exhibited high basal levels of autophagy, whereas autophagy inhibition could induce podocyte apoptosis, suggesting the pro-survival role of autophagy in podocytes. Besides, we found that autophagy inhibition by 3-methyladenine (3-MA) could induce the activation of endoplasmic reticulum stress even without any external stimulations, whereas knockdown of CHOP could effectively improve podocyte apoptosis and down-regulated expression of slit-diaphragm proteins induced by autophagy inhibition. Collectively, this study demonstrated that autophagy might act as a crucial regulatory mechanism of apoptotic cell death by modulating the balance between the pro-survival pathway and the pro-apoptotic pathway of endoplasmic reticulum stress, which might provide a novel mechanistic insight into the interface between autophagy and apoptosis in the progression of podocyte injury.  相似文献   

4.
Endoplasmic reticulum stress is defined as the accumulation of unfolded proteins in the endoplasmic reticulum, and is caused by conditions such as heat or agents that cause endoplasmic reticulum stress, including tunicamycin and dithiothreitol. Autophagy, a major pathway for degradation of macromolecules in the vacuole, is activated by these stress agents in a manner dependent on inositol‐requiring enzyme 1b (IRE1b), and delivers endoplasmic reticulum fragments to the vacuole for degradation. In this study, we examined the mechanism for activation of autophagy during endoplasmic reticulum stress in Arabidopsis thaliana. The chemical chaperones sodium 4–phenylbutyrate and tauroursodeoxycholic acid were found to reduce tunicamycin‐ or dithiothreitol‐induced autophagy, but not autophagy caused by unrelated stresses. Similarly, over‐expression of BINDING IMMUNOGLOBULIN PROTEIN (BIP), encoding a heat shock protein 70 (HSP70) molecular chaperone, reduced autophagy. Autophagy activated by heat stress was also found to be partially dependent on IRE1b and to be inhibited by sodium 4–phenylbutyrate, suggesting that heat‐induced autophagy is due to accumulation of unfolded proteins in the endoplasmic reticulum. Expression in Arabidopsis of the misfolded protein mimics zeolin or a mutated form of carboxypeptidase Y (CPY*) also induced autophagy in an IRE1b‐dependent manner. Moreover, zeolin and CPY* partially co‐localized with the autophagic body marker GFP–ATG8e, indicating delivery to the vacuole by autophagy. We conclude that accumulation of unfolded proteins in the endoplasmic reticulum is a trigger for autophagy under conditions that cause endoplasmic reticulum stress.  相似文献   

5.

Introduction

Synovial fibroblasts from rheumatoid arthritis show resistance to apoptotic stimuli, indicating they may be difficult to treat. To clearly understand these mechanisms of resistance, rheumatoid and osteoarthritis synovial fibroblasts (RASF and OASF) were exposed to endoplasmic reticulum (ER) stress such as thapsigargin, Ca2+-ATPase inhibitor.

Methods

Fibroblasts were assessed microscopically for cell viability by trypan blue exclusion and for autophagic cells by LC-3II formation. Caspase-3 activity was measured as aminomethyl-coumarin (AMC) liberated from AC-DEVD-AMC. Immunoblotting was performed to compare protein expression in OASF and RASF.

Results

ER stress caused cell death in OASF but not in RASF. Thapsigargin, a Ca2+-ATPase inhibitor, did not change the expression of GRP78, an ER chaperone in OASF and RASF, but induced another ER stress protein, CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) differently, showing high levels in OASF and low levels in RASF. Thapsigargin increased the autophagy response in RASF, with autophagosome formation, beclin expression, and LC3-II conversion. Transfection with beclin siRNA inhibited autophagy and increased the susceptibility to ER stress-induced cell death. On the other hand, CHOP siRNA increased autophagy and improved cell survival, especially in RASF, indicating that CHOP is involved in regulation of autophagy and cell death, but that low expression of CHOP protects RASF from apoptosis.

Conclusions

Autophagy induction and CHOP under-expression increases cell resistance against ER stress-induced cell death in fibroblasts from rheumatoid arthritis patients.  相似文献   

6.
内质网是真核细胞的重要细胞器。某些细胞内外因素如病原体感染等能引起从内质网到胞浆和胞核的信号传导途径活化,即内质网应激反应。但是,目前国内外尚无针对内质网应激反应的基因表达谱分析报道。本研究中,用3种已报道的内质网应激反应诱导剂,包括蛋白质糖基化抑制剂衣霉素(tunicamycin)、内质网Ca 2+-ATPases抑制剂毒胡萝卜素(thapsigargin)和乙脑病毒(Japanese encephalitis virus, JEV),分别处理小鼠颅腔和小鼠脑神经瘤细胞(Neuro-2a),试剂处理组与未处理组的第二代RNA测序分析发现,衣霉素、毒胡萝卜素和乙脑病毒在体外和体内均引起分子伴侣基因Hsp70表达上调,诱导内质网应激反应。衣霉素、毒胡萝卜素和乙脑病毒体外处理诱导的内质网应激反应信号通路中,基因差异表达相似性高于体内处理组。乙脑病毒和糖基化抑制剂衣霉素体内外处理,主要诱导内质网应激反应的非折叠蛋白质反应信号通路,引起相关基因Atf4、Bip、Edem和Perk等表达上调。内质网Ca 2+-ATPases抑制剂毒胡萝卜素主要诱导内质网超负荷反应,激活NF-κB信号通路。乙脑病毒诱导的内质网应激反应相关差异表达基因数量最多,体外与体内合计有40种。乙脑病毒体内外处理上调的基因包括Bax、Casp12、Atf4、Bip、Edem和Perk等,下调的基因包括Sec23/24、Nef、Svip和Jnk等。糖基化抑制剂衣霉素体内外处理上调基因包括Gadd34、Atf4、Ermani和Bip等,下调基因包括Grp94、Atf6、Sec23/24和Nef等。内质网Ca -2+-ATPases抑制剂毒胡萝卜素体内外处理上调的基因包括Sec61、Trap和Ask1等。衣霉素、毒胡萝卜素和乙脑病毒体内外处理也通过内质网应激反应,调控与炎症或凋亡相关的MAPK信号通路和P53信号通路。本研究首次通过使用3种内质网应激反应诱导剂分别处理小鼠和细胞,揭示了体内外内质网应激反应引起的基因表达谱变化,为内质网应激反应相关疾病的治疗提供了新思路。  相似文献   

7.
Autophagy is an evolutionally conserved process for the bulk degradation of cytoplasmic proteins and organelles. Recent observations indicate that autophagy is induced in response to cellular insults that result in the accumulation of misfolded proteins in the lumen of the endoplasmic reticulum (ER). However, the signaling mechanisms that activate autophagy under these conditions are not understood. Here, we report that ER stress-induced autophagy requires the activation of protein kinase C (PKC), a member of the novel-type PKC family. Induction of ER stress by treatment with either thapsigargin or tunicamycin activated autophagy in immortalized hepatocytes as monitored by the conversion LC3-I to LC3-II, clustering of LC3 into dot-like cytoplasmic structures, and electron microscopic detection of autophagosomes. Pharmacological inhibition of PKC or small interfering RNA-mediated knockdown of PKC prevented the autophagic response to ER stress. Treatment with ER stressors induced PKC phosphorylation within the activation loop and localization of phospho-PKC to LC3-containing dot structures in the cytoplasm. However, signaling through the known unfolded protein response sensors was not required for PKC activation. PKC activation and stress-induced autophagy were blocked by chelation of intracellular Ca(2+) with BAPTA-AM. PKC was not activated or required for autophagy in response to amino acid starvation. These observations indicate that Ca(2+)-dependent PKC activation is specifically required for autophagy in response to ER stress but not in response to amino acid starvation.  相似文献   

8.
We examined whether endoplasmic reticulum (ER) stress-induced autophagy provides cytoprotection from renal tubular epithelial cell injury due to oxidants and chemical hypoxia in vitro, as well as from ischemia-reperfusion (IR) injury in vivo. We demonstrate that the ER stress inducer tunicamycin triggers an unfolded protein response, upregulates ER chaperone Grp78, and activates the autophagy pathway in renal tubular epithelial cells in culture. Inhibition of ER stress-induced autophagy accelerated caspase–3 activation and cell death suggesting a pro-survival role of ER stress-induced autophagy. Compared to wild-type cells, autophagy-deficient MEFs subjected to ER stress had enhanced caspase–3 activation and cell death, a finding that further supports the cytoprotective role of ER stress-induced autophagy. Induction of autophagy by ER stress markedly afforded cytoprotection from oxidants H2O2 and tert-Butyl hydroperoxide and from chemical hypoxia induced by antimycin A. In contrast, inhibition of ER stress-induced autophagy or autophagy-deficient cells markedly enhanced cell death in response to oxidant injury and chemical hypoxia. In mouse kidney, similarly to renal epithelial cells in culture, tunicamycin triggered ER stress, markedly upregulated Grp78, and activated autophagy without impairing the autophagic flux. In addition, ER stress-induced autophagy markedly ameliorated renal IR injury as evident from significant improvement in renal function and histology. Inhibition of autophagy by chloroquine markedly increased renal IR injury. These studies highlight beneficial impact of ER stress-induced autophagy in renal ischemia-reperfusion injury both in vitro and in vivo.  相似文献   

9.
10.
11.
Endoplasmic reticulum (ER) stress is triggered by various cellular stresses that disturb protein folding or calcium homeostasis in the ER. To cope with these stresses, ER stress activates the unfolded protein response (UPR) pathway, but unresolved ER stress induces reactive oxygen species (ROS) accumulation leading to apoptotic cell death. However, the mechanisms that underlie protection from ER stress-induced cell death are not clearly defined. The nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway plays a crucial role in the protection of cells against ROS-mediated oxidative damage. Keap1 acts as a negative regulator of Nrf2 activation. In this study, we investigated the role of the Nrf2-Keap1 pathway in protection from ER stress-induced cell death using tunicamycin (TM) as an ER stress inducer. We found that Nrf2 is an essential protein for the prevention from TM-induced apoptotic cell death and its activation is driven by autophagic Keap1 degradation. Furthermore, ablation of p62, an adapter protein in the autophagy process, attenuates the Keap1 degradation and Nrf2 activation that was induced by TM treatment, and thereby increases susceptibility to apoptotic cell death. Conversely, reinforcement of p62 alleviated TM-induced cell death in p62-deficient cells. Taken together, these results demonstrate that p62 plays an important role in protecting cells from TM-induced cell death through Nrf2 activation.  相似文献   

12.
13.

Purpose

Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells.

Methods

Human colorectal cancer cell lines (HCT-116 and HT-29) were treated with sodium butyrate at concentrations ranging from 0.5–5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining), and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot.

Results

Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II), beclin-1, and autophagocytosis-associated protein (Atg)3. The autophagy inhibitors 3-methyladenine (3-MA) and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin) and genetic (siRNA targeting BIP and CHOP) methods, the induction of BIP, PDI, IRE1a, and LC3-II was blocked, but PARP cleavage was markedly enhanced.

Discussion

Taken together, these results suggested that sodium butyrate-induced autophagy was mediated by endoplasmic reticulum stress, and that preventing autophagy by blocking the endoplasmic reticulum stress response enhanced sodium butyrate-induced apoptosis. These results provide novel insights into the anti-tumor mechanisms of butyric acid.  相似文献   

14.
Autophagy, a catabolic pathway that delivers cellular components to lysosomes for degradation, can be activated by stressful conditions such as nutrient starvation and endoplasmic reticulum (ER) stress. We report that thapsigargin, an ER stressor widely used to induce autophagy, in fact blocks autophagy. Thapsigargin does not affect autophagosome formation but leads to accumulation of mature autophagosomes by blocking autophagosome fusion with the endocytic system. Strikingly, thapsigargin has no effect on endocytosis-mediated degradation of epidermal growth factor receptor. Molecularly, while both Rab7 and Vps16 are essential regulatory components for endocytic fusion with lysosomes, we found that Rab7 but not Vps16 is required for complete autophagy flux, and that thapsigargin blocks recruitment of Rab7 to autophagosomes. Therefore, autophagosomal-lysosomal fusion must be governed by a distinct molecular mechanism compared to general endocytic fusion.  相似文献   

15.
The second messenger myo-inositol-1,4,5-trisphosphate (IP(3)) acts on the IP(3) receptor (IP(3)R), an IP(3)-activated Ca(2+) channel of the endoplasmic reticulum (ER). The IP(3)R agonist IP(3) inhibits starvation-induced autophagy. The IP(3)R antagonist xestospongin B induces autophagy in human cells through a pathway that requires the obligate contribution of Beclin-1, Atg5, Atg10, Atg12 and hVps34, yet is inhibited by ER-targeted Bcl-2 or Bcl-XL, two proteins that physically interact with IP(3)R. Autophagy can also be induced by depletion of the IP(3)R by small interfering RNAs. Autophagy induction by IP(3)R blockade cannot be explained by changes in steady state levels of Ca(2+) in the endoplasmic reticulum (ER) and the cytosol. Autophagy induction by IP(3)R blockade is effective in cells lacking the obligate mediator of ER stress IRE1. In contrast, IRE1 is required for autophagy induced by ER stress-inducing agents such a tunicamycin or thapsigargin. These findings suggest that there are several distinct pathways through which autophagy can be initiated at the level of the ER.  相似文献   

16.
Autophagy can promote cell survival or death, but the molecular basis of its dual role in cancer is not well understood. Here, we report that glucosamine induces autophagic cell death through the stimulation of endoplasmic reticulum (ER) stress in U87MG human glioma cancer cells. Treatment with glucosamine reduced cell viability and increased the expression of LC3 II and GFP-LC3 fluorescence puncta, which are indicative of autophagic cell death. The glucosamine-mediated suppression of cell viability was reversed by treatment with an autophagy inhibitor, 3-MA, and interfering RNA against Atg5. Glucosamine-induced ER stress was manifested by the induction of BiP, IRE1α, and phospho-eIF2α expression. Chemical chaperon 4-PBA reduced ER stress and thereby inhibited glucosamine-induced autophagic cell death. Taken together, our data suggest that glucosamine induces autophagic cell death by inducing ER stress in U87MG glioma cancer cells and provide new insight into the potential anticancer properties of glucosamine.  相似文献   

17.
《Autophagy》2013,9(4):350-353
The second messenger myo-inositol-1,4,5-trisphosphate (IP3) acts on the IP3 receptor (IP3R), an IP3-activated Ca2+ channel of the endoplasmic reticulum (ER). The IP3R agonist IP3 inhibits starvation-induced autophagy. The IP3R antagonist xestospongin B induces autophagy in human cells through a pathway that requires the obligate contribution of Beclin-1, Atg5, Atg10, Atg12 and hVps34, yet is inhibited by ER-targeted Bcl-2 or Bcl-XL, two proteins that physically interact with IP3R. Autophagy can also be induced by depletion of the IP3R by small interfering RNAs. Autophagy induction by IP3R blockade cannot be explained by changes in steady state levels of Ca2+ in the endoplasmic reticulum (ER) and the cytosol. Autophagy induction by IP3R blockade is effective in cells lacking the obligate mediator of ER stress IRE1. In contrast, IRE1 is required for autophagy induced by ER stress-inducing agents such a tunicamycin or thapsigargin. These findings suggest that there are several distinct pathways through which autophagy can be initiated at the level of the ER.

Addendum to:

Regulation of Autophagy by the Inositol Trisphosphate Receptor

A. Criollo, M.C. Maiuri, E. Tasdemir, I. Vitale, A.A. Fiebig, D. Andrews, J. Molgo, J. Diaz, S. Lavandero, F. Harper, G. Pierron, D. di Stefano, R. Rizzuto, G. Szabadkai and G. Kroemer

Cell Death Differ 2007; In press  相似文献   

18.
Indirubin and its derivatives have been reported to exhibit anti-cancer and anti-inflammatory activities. Recently, some of its derived analogs have been shown to have neuroprotective potential. Endoplasmic reticulum (ER) stress has been demonstrated to contribute to the pathogenesis of various neurodegenerative diseases, whereas the effects of indirubin derivatives on ER stress-induced cell death have not been addressed. In the present study, a series of 44 derivatives of indirubin was prepared to search for a novel class of neuroprotective agents against ER stress-induced neuronal death. The MTT reduction assay indicated that tunicamycin (TM), an inducer of ER stress, significantly decreased the viability of hippocampal neuronal HT22 cells. Among the compounds tested, eight showed significant inhibitory activity against TM-induced cell death. Western blot analysis showed that application of these analogs to the cells simultaneously with TM reduced the TM-induced expression of CHOP, an established mediator of ER stress. Our results suggest that the preventive effect of these indirubin derivatives against ER stress-induced neuronal death may be due, at least in part, to attenuation of the CHOP-dependent signaling system.  相似文献   

19.
The reduction of intracellular 1,4,5-inositol trisphosphate (IP(3)) levels stimulates autophagy, whereas the enhancement of IP(3) levels inhibits autophagy induced by nutrient depletion. Here, we show that knockdown of the IP(3) receptor (IP(3)R) with small interfering RNAs and pharmacological IP(3)R blockade is a strong stimulus for the induction of autophagy. The IP(3)R is known to reside in the membranes of the endoplasmic reticulum (ER) as well as within ER-mitochondrial contact sites, and IP(3)R blockade triggered the autophagy of both ER and mitochondria, as exactly observed in starvation-induced autophagy. ER stressors such as tunicamycin and thapsigargin also induced autophagy of ER and, to less extent, of mitochondria. Autophagy triggered by starvation or IP(3)R blockade was inhibited by Bcl-2 and Bcl-X(L) specifically targeted to ER but not Bcl-2 or Bcl-X(L) proteins targeted to mitochondria. In contrast, ER stress-induced autophagy was not inhibited by Bcl-2 and Bcl-X(L). Autophagy promoted by IP(3)R inhibition could not be attributed to a modulation of steady-state Ca(2+) levels in the ER or in the cytosol, yet involved the obligate contribution of Beclin-1, autophagy-related gene (Atg)5, Atg10, Atg12 and hVps34. Altogether, these results strongly suggest that IP(3)R exerts a major role in the physiological control of autophagy.  相似文献   

20.
Autophagic (type II) cell death, characterized by the massive accumulation of autophagic vacuoles in the cytoplasm of cells, has been suggested to play pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is an illicit drug causing long-term neurotoxicity in the brain. Apoptotic (type I) and necrotic (type III) cell death have been implicated in MDMA-induced neurotoxicity, while the role of autophagy in MDMA-elicited neurotoxicity has not been investigated. The present study aimed to evaluate the occurrence and contribution of autophagy to neurotoxicity in cultured rat cortical neurons challenged with MDMA. Autophagy activation was monitored by expression of microtubule-associated protein 1 light chain 3 (LC3; an autophagic marker) using immunofluorescence and western blot analysis. Here, we demonstrate that MDMA exposure induced monodansylcadaverine (MDC)- and LC3B-densely stained autophagosome formation and increased conversion of LC3B-I to LC3B-II, coinciding with the neurodegenerative phase of MDMA challenge. Autophagy inhibitor 3-methyladenine (3-MA) pretreatment significantly attenuated MDMA-induced autophagosome accumulation, LC3B-II expression, and ameliorated MDMA-triggered neurite damage and neuronal death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in neurons and aggravated neurite degeneration, indicating that excessive autophagosome accumulation contributes to MDMA-induced neurotoxicity. Furthermore, MDMA induced phosphorylation of AMP-activated protein kinase (AMPK) and its downstream unc-51-like kinase 1 (ULK1), suggesting the AMPK/ULK1 signaling pathway might be involved in MDMA-induced autophagy activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号