首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infant formulas supplemented with docosahexaenoic acid (DHA) and arachidonic acid (ARA) are now available in the United States; however, little is known about the factors that affect biosynthesis. Baboon neonates were assigned to one of four treatments: term, breast-fed; term, formula-fed; preterm (155 of 182 days gestation), formula-fed; and preterm, formula+DHA/ARA-fed. Standard formula had no DHA/ARA; supplemented formula had 0.61%wt DHA (0.3% of calories) and 1.21%wt ARA (0.6% of calories), and baboon breast milk contained 0.68 +/- 0.22%wt DHA and 0.62 +/- 0.12%wt ARA. At 14 days adjusted age, neonates received a combined oral dose of [U-13C]alpha-linolenic acid (LNA*) and [U-13C]linoleic acid (LA*), and tissues were analyzed 14 days after dose. Brain accretion of linolenic acid-derived DHA was approximately 3-fold greater for the formula groups than for the breast-fed group, and dietary DHA partially attenuated excess DHA synthesis among preterms. A similar, significant pattern was found in other organs. Brain linoleic acid-derived ARA accretion was significantly greater in the unsupplemented term group but not in the preterm groups compared with the breast-fed group. These data show that formula potentiates the biosynthesis/accretion of DHA/ARA in term and preterm neonates compared with breast-fed neonates and that the inclusion of DHA/ARA in preterm formula partially restores DHA/ARA biosynthesis to lower, breast-fed levels. Current formula DHA concentrations are inadequate to normalize long-chain polyunsaturated fatty acids synthesis to that of breast-fed levels.  相似文献   

2.
Formula supplemented with docosahexaenoic acid (DHA) improves retinal function of preterm infants but the optimal dose is unknown. In a randomized controlled trial we examined the effect of increasing the DHA concentration of human milk and formula on circulating fatty acids of preterm infants. Infants born <33 weeks gestation were fed high-DHA milk (1% total fat as DHA) or standard-DHA milk (0.2-0.3% DHA) until reaching their estimated due date (EDD). Milk arachidonic acid (AA) concentration was approximately 0.5% for both groups. At EDD, erythrocyte membrane phospholipid DHA was elevated in the high-DHA group compared with standard-DHA (mean+/-SD, high-DHA 6.8+/-1.2, standard-DHA 5.2+/-0.7, p<0.0005) but AA was lower (high-DHA 14.9+/-1.3, standard-DHA 16.0+/-1.2, p<0.0005). Feeding preterm infants human milk and formula with 1% DHA raises but does not saturate erythrocyte phospholipids with DHA. Milk exceeding 1% DHA may be required to increase DHA status to levels seen in term infants.  相似文献   

3.
Erythrocyte (RBC) fatty acid compositions from populations with stable dietary habits but large variations in RBC-arachidonic (AA) and RBC-docosahexaenoic acid (DHA) provided us with insight into relationships between DHA and AA. It also enabled us to estimate the maternal RBC-DHA (mRBC-DHA) status that corresponded with no decrease in mRBC-DHA during pregnancy, or in infant (i) RBC-DHA or mRBC-DHA during the first 3 months postpartum (DHA-equilibrium) while exclusively breastfeeding. At delivery, iRBC-AA is uniformly high and independent of mRBC-AA. Infants born to mothers with low RBC-DHA exhibit higher, but infants born to mothers with high RBC-DHA exhibit lower RBC-DHA than their mothers. This switch from ‘biomagnification’ into ‘bioattenuation’ occurs at 6 g% mRBC-DHA. At 6 g%, mRBC-DHA is stable throughout pregnancy, corresponds with postpartum infant DHA-equilibrium of 6 and 0.4 g% DHA in mature milk, but results in postpartum depletion of mRBC-DHA to 5 g%. Postpartum maternal DHA-equilibrium is reached at 8 g% mRBC-DHA, corresponding with 1 g% DHA in mature milk and 7 g% iRBC-DHA at delivery that increases to 8 g% during lactation. This 8 g% RBC-DHA concurs with the lowest risks of cardiovascular and psychiatric diseases in adults. RBC-data from 1866 infants, males and (non-)pregnant females indicated AA vs. DHA synergism at low RBC-DHA, but antagonism at high RBC-DHA. These data, together with high intakes of AA and DHA from our Paleolithic diet, suggest that bioattenuation of DHA during pregnancy and postnatal antagonism between AA and DHA are the physiological standard for humans across the life cycle.  相似文献   

4.

Introduction

The hormonal milieus of pregnancy and lactation are driving forces of nutrient fluxes supporting infant growth and development. The decrease of insulin sensitivity with compensatory hyperinsulinemia with advancing gestation, causes adipose tissue lipolysis and hepatic de novo lipogenesis (DNL).

Subjects and methods

We compared fatty acid (FA) contents and FA-indices for enzyme activities between preterm (28–36 weeks) and term (37–42) milks, and between colostrum (2–5 days), transitional (6–15) and mature (16–56) milks. We interpreted FA differences between preterm and term milks, and their changes with lactation, in terms of the well known decrease of insulin sensitivity during gestation and its subsequent postpartum restoration, respectively.

Results

Compared with term colostrum, preterm colostrum contained higher indices of DNL in the breast (DNL-breast) and medium chain saturated-FA (MCSAFA), and lower DNL-liver and monounsaturated-FA (MUFA). Preterm milk also had higher docosahexaenoic acid (DHA) in colostrum and transitional milk and higher arachidonic acid (AA) in mature milk. Most preterm-term differences vanished with advancing lactation. In both preterm and term milks, DNL-breast and MCSAFA increased with advancing lactation, while DNL-liver, MUFA, long chain SAFA and AA decreased. DHA decreased in term milk. MUFA was inversely related to MCSAFA in all samples, correlated inversely with PUFA in colostrum and transitional milks, but positively in mature milk. MCSAFA correlated inversely with PUFA in mature milk.

Conclusion

Higher maternal insulin sensitivity at preterm birth may be the cause of lower MUFA (a proxy for DNL-liver) and higher MCSAFA (a proxy for DNL-breast) in preterm colostrum, compared with term colostrum. Restoring insulin sensitivity after delivery may be an important driving force for milk FA-changes in early lactation.  相似文献   

5.
We examined the effect of n ?3 PUFAs (polyunsaturated fatty acids) on the growth and maturation of human preadipocyte cell line AML‐I. On day 3 of the culture, n ?3 fatty acids such as DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid), but not n ?6 fatty acid LA (linoleic acid), induced growth arrest accompanied by the appearance of characteristics of apoptosis in AML‐I cells at concentrations between 250 and 500 μM by Annexin V‐FITC staining. In Western blotting analysis, the loss of NF‐κB, Bcl‐2 and p‐Akt and the accumulation of Bad and Akt were observed in the cytoplasmic protein from the EPA‐treated cells. Exposure of AML‐I to EPA or DHA increased the cytoplasmic lipid accumulation compared with the vehicle‐treated cells in a time‐dependent manner during 4 and 6 days culture period by Oil Red O staining. The expression of FAS (fatty acid synthase) and PPAR‐γ (peroxisome proliferator‐activated receptor‐γ) were increased in EPA‐treated cells. These results suggest that EPA and DHA promote differentiation, inhibit proliferation and induce apoptosis in preadipocyte cell line AML‐I.  相似文献   

6.
BackgroundThere are no data on the fatty acid (FA) compositions of preterm and term milks for sub-Saharan African populations with advancing lactation. However, it is generally acknowledged that our ancestors evolved in sub-Saharan East-Africa, where they inhabited the land-water ecosystems.MethodsWe compared the FA-compositions of preterm (28–36 weeks) and term (37–42) colostrum (2–5 day), transitional (6–15) and mature (16–56) milks in rural African women with stable dietary habits and lifelong high freshwater fish intakes.ResultsFrom colostrum to mature milk: the median docosahexaenoic acid (DHA) content decreased from 1.11 to 0.75; and arachidonic acid (AA) from 0.93 to 0.69 g% in preterm milk. In term milk, DHA decreased from 0.81 to 0.53 and AA from 1.08 to 0.55 g%. Medium-chain saturated-FA (MCSAFA) increased from 16.9 to 33.7, and 7.92–29.0 g%, while mono-unsaturated FA (MUFA) decreased from 32.5 to 22.6, and 40.0–26.5 g%, in preterm and term milk, respectively. Consistent with the literature, preterm colostrum contained higher DHA and MCSAFA, and lower MUFA compared to term colostrum. These differences vanished rapidly with advancing lactation. MUFA and MCSAFA were inversely related.ConclusionsThe presently found DHA in preterm colostrum and mature milks and AA in premature mature milk proved the highest reported in the literature so far, as derived from analysis with capillary GC-columns. We confirmed the much higher MCSAFA and lower MUFA contents in milk of rural African, compared to Westernized women. The milk FA composition of this traditional population might show us the FA composition on which our species evolved and consequently to which our genome has become adapted to optimally support (infant) health.  相似文献   

7.
Brain growth in mammals is associated with increased accretion of long-chain polyunsaturated fatty acids (LCPUFA) in brain phospholipids. The period of maximum accumulation is during the brain growth spurt. Humans have a perinatal brain growth spurt, selectively accumulating docosahexaenoic acid (DHA) and other LCPUFA from the third trimester through the second year of life. The emphasis on rapid postnatal brain growth and LCPUFA transfer during lactation has led to the suggestion that human milk LCPUFA composition may be unique. Our study tests this hypothesis by determining fatty acid composition for 11 species of captive anthropoids (n = 53; Callithrix jacchus, Cebus apella, Gorilla gorilla, Hylobates lar, Leontopithecus rosalia, Macaca mulatta, Pan troglodytes, Pan paniscus, Pongo pygmaeus, Saimiri boliviensis, and Symphalangus syndactylus). Results are compared to previously published data on five species of wild anthropoids (n = 28; Alouatta paliatta, Callithrix jacchus, Gorilla beringei, Leontopithecus rosalia, and Macaca sinica) and human milk fatty acid profiles. Milk LCPUFA profiles of captive anthropoids (consuming diets with a preformed source of DHA) are similar to milk from women on a Western diet, and those of wild anthropoids are similar to milk from vegan women. Collectively, the range of DHA percent composition values from nonhuman anthropoid milks (0.03–1.1) is nearly identical to that from a cross-cultural analysis of human milk (0.06–1.4). Humans do not appear to be unique in their ability to secrete LCPUFA in milk but may be unique in their access to dietary LCPUFA.  相似文献   

8.
Gut microbial colonization and immune response may be affected by milk feeding method. The objective of this study was to determine the effects of feeding high or low volumes of milk on fecal bacterial count, inflammatory response, blood metabolites and growth performance of Holstein female calves. Colostrum-fed calves (n = 48) were randomly assigned to either high milk (HM; n = 24) or low milk (LM; n = 24) feeding groups. Low milk-fed calves were fed pasteurized whole milk at 10% of BW until weaning. In HM group, milk was offered to calves at 20% of BW for the first 3 weeks of life. Then, milk allowance was decreased gradually to reach 10% of BW on day 26 and remained constant until weaning on day 51. Calves were allowed free access to water and starter throughout the experiment. Body weight was measured weekly, and blood samples were taken on days 14, 28 and 57. Fecal samples were collected on days 7, 14 and 21 of age for the measurement of selected microbial species. By design, HM calves consumed more nutrients from milk during the first 3 weeks and they were heavier than LM calves on days 21, 56 and 98. High milk-fed calves had greater serum glucose and triglyceride levels on day 14 with no significant difference between groups on days 28 and 57. Blood urea nitrogen was higher in LM calves on day 14, but it was lower in HM calves on day 28. Calves in LM group had significantly greater blood tumor necrosis factor-α (TNF-α) than HM calves throughout the experiment. Serum amyloid A (SAA) concentration was higher in LM calves on day 14. However, HM calves showed higher levels of SAA at the time of weaning. Feeding high volumes of milk resulted in lower serum cortisol levels on days 14 and 28 but not at the time of weaning in HM calves compared to LM counterparts. Lactobacillus count was higher in feces sample of HM calves. Conversely, the numbers of Escherichia coli was greater in the feces of LM calves. Calves in HM group showed fewer days with fever and tended to have fewer days treated compared to LM group. In conclusion, feeding higher amounts of milk during the first 3 weeks of life improved gut microbiota, inflammation and health status and growth performance of Holstein dairy calves.  相似文献   

9.
Measurements of growth, activity and energy consumption and estimates of milk intake were made in free-living, nursing ringed seal (Phoca hispida) pups. This was accomplished through the simultaneous use of time-depth recorders and the doubly labelled water technique. The pups spent an average of 52±7% of their time hauled out on the ice, 37±5% of the time in the water at the surface, and 11±5% of the time diving. Average daily mass gain of the pups (n=3) throughout the duration of the study period was 0.35±0.08 kg. The composition of the mass gain was 76% fat, 6% protein and 18% water. The total water flux was measured to be 52±10 ml·kg-1·day-1. Average CO2 production was 0.85±0.16 ml·g-1·h-1, corresponding to a field metabolic rate of 0.55±0.10 MJ·kg-1·day-1, or 3.8±0.6 times the predicted basal metabolic rate based on body size (Kleiber 1975). Average daily milk intake was estimated to be 1379±390 ml. The field metabolic rate for the different components of seal pup activity budgets were calculated to be FMRhaul out=1.34 BMR, FMRsurface=6.44 BMR, and FMRdiving=5.88 BMR.Abbreviations BMR basal metabolic rate - FMR field metabolic rate - HTO tritiated water - HT18O doubly labelled water - RQ respiration quotient - SDA specific dynamic action - TDR time-depth recorder  相似文献   

10.
A thraustochytrid-like microorganism (strain 12B) was isolated from the mangrove area of Okinawa, Japan. On the basis of its ectoplasmic net structure and biflagellate zoospores we determined strain 12B to be a novel member of the phylum Labyrinthulomycota in the kingdom Protoctista. When grown on glucose/seawater at 28 °C, it had a lipid content of 58% with docosahexaenoic acid (DHA; 22:6 n−3) at 43% of the total fatty acids. It had a growth rate of 0.38 h−1. The DHA production rate of 2.8 ± 0.7 g l−1 day−1 is the highest value reported for any microorganism. Received 7 October 2005; Revisions requested 7 October 2005; Revisions received 15 November 2005; Accepted 15 November 2005  相似文献   

11.
Mehta K 《Amino acids》2009,37(4):709-716
Cholesterol and docosahexaenoic acid (DHA) are important nutrients for neural development of infants. However, little is known about the effect of cholesterol or DHA on concentrations of amino acids (AA) in neonatal tissues. This study was conducted with the piglet (an established model for studying human infant nutrition) to test the hypothesis that dietary supplementation with the lipids may modulate AA availability in tissues. Sixteen newborn pigs were nursed by sows for 24 h and then assigned to one of four treatment groups, representing supplementation with 0.0% (control), 0.2% cholesterol, 0.2% DHA, or cholesterol plus DHA to the basal milk-formula. All piglets were euthanized at 49 days of age. In brain, cholesterol supplementation reduced (P < 0.05) concentrations of glutamate, serine, glutamine, threonine, β-alanine, alanine, methionine, isoleucine, leucine, and γ-aminobutyrate but increased (P < 0.05) concentrations of glycine and lysine, whereas DHA supplementation similarly affected (P < 0.05) concentrations of the same AA (except for isoleucine and lysine) and taurine. In addition, concentrations of most AA in liver, muscle and plasma were substantially altered by dietary supplementation of cholesterol and DHA in a tissue-dependent manner. Further, DHA reduced concentrations of carnosine in skeletal muscle, as well as ammonia in both plasma and brain. The results reveal that cholesterol and DHA can regulate AA metabolism and availability in various tissues of piglets. These novel findings have important implications for designing the next generation of infant formula to optimize neonatal growth and development.  相似文献   

12.
The question of whether a dietary supply of docosahexaenoic acid (DHA) and arachidonic acid (ARA) imparts advantages to visual or cognitive development in term infants has been debated for many years. DHA and ARA are present in human milk, and nursing infants consume these fatty acids needed for rapid synthesis of cell membranes, particularly neural cells. The reported mean DHA and ARA levels of human milk worldwide are 0.32% and 0.47% of total fatty acids, respectively. Prior to 2002 in the US, formula-fed infants did not receive these fatty acids and relied solely on endogenous conversion of the dietary essential omega-3 (n-3) and omega-6 (n-6) fatty acids, α-linolenic and linoleic acids, to DHA and ARA, respectively. Formula-fed infants were found to have significantly less accretion of DHA in brain cortex after death than breastfed infants. Numerous studies have found positive correlations between blood DHA levels and improvements in cognitive or visual function outcomes of breastfed and formula-fed infants. Results of randomized controlled clinical trials of term formula-fed infants evaluating functional benefits of dietary DHA and ARA have been mixed, likely due to study design heterogeneity. A comparison of visual and cognitive outcomes in these trials suggests that dietary DHA level is particularly relevant. Trials with formulas providing close to the worldwide human milk mean of 0.32% DHA were more likely to yield functional benefits attributable to DHA. We agree with several expert groups in recommending that infants receive at least 0.3% DHA, with at least 0.3% ARA, in infant feedings; in addition, some clinical evidence suggests that an ARA:DHA ratio greater than 1:1 is associated with improved cognitive outcomes.  相似文献   

13.
Achieving an appropriate DHA status in the neonatal brain is an important goal of neonatal nutrition. We evaluated how alpha-linolenic acid (ALA), provided for six weeks after weaning by different dietary fat matrix, improved brain DHA content of young male rats born from deficient-dams. The level of ALA achieved was based on the fat composition of usual infant vegetable formula. A palm oil-blend diet thus providing 1.5%ALA was compared to dairy fat-blend-based diets that provided either 1.5%ALA or 2.3%ALA, or a rapeseed oil diet providing 8.3%ALA (n?6/n?3 ratio were, respectively 10,10,5,2.5).The 1.5%ALA-dairy-fat-blend was superior to 1.5%ALA-palm-oil-blend to restore values of brain DHA, while the 2.3%ALA-dairy-fat-blend exhibited a further increase and reached the values obtained with pure rapeseed diet (8.3%ALA).Dairy-fat-blends enriched with ALA appear to be an interesting strategy for achieving optimal DHA levels in the brain of post-weaning rats. Providing dairy fat as well as a reduction of the LA/ALA ratio should be reconsidered to design infant formula.  相似文献   

14.
Long-chain polyunsaturated fatty acids, notably arachidonic (AA) and docosahexaenoic (DHA) acids are abundant in brain and may be conditionally essential in fetal life. We investigated umbilical artery (UA) and vein (UV) fatty acid compositions and early neonatal neurological condition in 317 term infants. Neurological condition was summarized as a clinical classification and a 'neurological optimality score' (NOS). Neurologically abnormal infants (n=27) had lower UV DHA and essential fatty acid (EFA) status. NOS correlated positively with AA (UV), and EFA (UV) and DHA status (UV and UA) and negatively with 18:2omega6 and omega9 (UV), and 20:3omega9, omega7 and C18 trans fatty acids (UV and UA). UV DHA, AA, saturated fatty acids, gestational age and obstetrical optimality score explained 16.2% of the NOS variance. Early postnatal neurological condition seems negatively influenced by lower fetal DHA, AA and EFA status. C18 trans fatty acids and 18:2omega6 may exert negative effects by impairment of LCP status.  相似文献   

15.
In this study we document growth, milk intake and energy consumption in nursing pups of icebreeding grey seals (Halichoerus grypus). Change in body composition of the pups, change in milk composition as lactation progresses, and mass transfer efficiency between nursing mothers and pups are also measured. Mass transfer efficiency between mother-pup pairs (n=8) was 42.5±8.4%. Pups were gaining a daily average of 2.0±0.7 kg (n=12), of which 75% was fat, 3% protein and 22% water. The total water influx was measured to be 43.23±8.07 ml·kg-1·day-1. Average CO2 production was 0.85±0.20 ml·g-1·h-1, which corresponds to a field metabolic rate of 0.55±0.13 MJ·kg-1·day-1, or 4.5±0.9 times the predicted basal metabolic rate based on body size (Kleiber 1975). Water and fat content in the milk changed dramatically as lacation progressed. At day 2 of nursing, fat and water content were 39.5±1.9% and 47.3±1.5%, respectively, while the corresponding figures for day 15 were 59.6±3.6% fat and 28.4±2.6% water. Protein content of the milk remained relatively stable during the lactation period with a value of 11.0±0.8% at day 2 and 10.4±0.3% at day 15. Pups drank an average of 3.5±0.9 kg of milk daily, corresponding to a milk intake of 1.75 kg per kg body mass gained. The average daily energy intake of pups was 82.58±19.80 MJ, while the energy built up daily in the tissue averaged 61.72±22.22 MJ. Thus, pups assimilated 74.7% of the energy they received via milk into body tissue. The lactation energetics of ice-breeding grey seals is very similar to that of their land-breeding counterparts.Abbreviations bm body mass - BMR basal metabolic rate - FMR field metabolic rate - IU international unit - RQ respiration quotient - HTO tritiated water - HT18O doubly labeled water - TBW total body water - VHF very high frequency  相似文献   

16.
Exogenous DHA is converted by human platelets to 14- and 11- HDHE and by human neutrophils mainly to 7- HDHE . Human platelets prelabeled with 14C-DHA, 14C-EPA and 14C-AA and stimulated with thrombin release and metabolize DHA only in trace amounts as compared to EPA and AA. 14C-DHA is incorporated into the 2-position of platelet phospholipids and occurs predominantly in phosphatidylethanolamine. DHA and EPA were also incorporated by dietary means into phospholipids of platelets and neutrophils. In resting platelets free DHA as well as free AA and EPA are not detectable. In platelets stimulated ex vivo with thrombin DHA is not significantly released which is in contrast to EPA and AA. After stimulation, 14- HDHE is found only in trace amounts as compared to 12-HETE and 12- HEPE . In DHA enriched neutrophils formation of HDHEs cannot be demonstrated after stimulation with ionophore A 23187. We conclude that even after dietary enrichment of DHA in phospholipids of platelets and neutrophils the level of free DHA and/or formation of HDHEs might be too low to substantially affect arachidonic acid metabolism and related functions of these cells.  相似文献   

17.
The accretion of docosahexaenoic acid (DHA) in membranes of the central nervous system is required for the optimum development of retina and brain functions. DHA status is determined by the dietary intake of n-3 polyunsaturated fatty acids (PUFA), both the metabolic precursor α-linolenic acid (α-LNA) and DHA. Clinical studies have shown that feeding term or premature infants with formula low in total n-3 PUFA may alter the maturation of visual acuity. Moreover, feeding infants over the first 6 mon of life with formula containing adequate α-LNA, but no DHA, did not sustain the same cerebral accretion of DHA as that of breast-fed infants. Whether lower DHA accretion in brain of formula-fed term infants impairs neurophysiological performances is not clearly established. Contradictory data have been published, possibly owing to confounding factors such as maternal intakes and/or genetic variations in PUFA metabolism. Nevertheless, a large corpus of data is in favor of the recommendation of regular dietary intakes of DHA (during at least the first 6 mon of life) and suggest that DHA should be added in formulas at the level generally found in human milk (0.2-0.3 wt% of total fatty acids). The maternal intake of n-3 PUFA during pregnancy and lactation is also crucial, since the n-3 PUFA are provided during perinatal development through placental transfer and maternal milk, which determines the DHA status of the newborn and consequently impacts on post-natal development of brain and visual functions. Whether more clinical studies are needed to control and improve the impact of DHA maternal intakes on the progeny’s neurodevelopment, several commissions recommended by precaution that DHA average intake for pregnant and lactating women should be of 200-300 mg/day.  相似文献   

18.
Osteoblasts in culture can differentiate into mature mineralizing osteoblasts when stimulated with osteogenic agents. Clinical trials and in vivo animal studies suggest that specific polyunsaturated fatty acids (PUFAs) may benefit bone health. The aim of this study was to investigate whether arachidonic acid (AA) and docosahexaenoic acid (DHA) affect osteogenesis in osteoblasts and the transdifferentiation into adipocytes. Results from this study show that long‐term exposure to AA inhibited alkaline phosphatase (ALP) activity in these cells, which might be prostaglandin E2 (PGE2)‐mediated. DHA exposure also inhibited ALP activity which was evident after both short‐ and long‐term exposures. The mechanism whereby DHA inhibits ALP activity is not clear and needs to be investigated. Although long‐term exposure to PUFAs inhibited ALP activity, the mineralizing properties of these cells were not compromised. Furthermore, PUFA exposure did not induce adipocyte‐like features in these cells as evidenced by the lack of cytoplasmic triacylglycerol accummulation. More research is required to elucidate the cellular mechanisms of action of PUFAs on bone. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
以150g左右、健壮的170只中华鳖为试验动物,随机分为17个组(其中1个组为“对照组)。以饵料能量、蛋白质为试验因素,采用2因子5水平回归正交旋转组合设计,得到9个试验饵料配方及其营养组合,进行60d饲养试验。试验表明,第9组鳖和第10~16组鳖平均体增重最高为2.22g/d,能量(GE)、蛋白质(CP)、脂肪(EE)和氨基酸(AA)沉积率分别达到36.27%、56.48%、55.06%和43.66%。试验条件下鳖体内营养物质沉积率与饵料配方营养水平及其组合有密切相关关系,9号饵料配方、营养水平及其组合比较适宜于生长期鳖的需要。    相似文献   

20.
The levels of ascorbic acid (AA) and dehydroascorbic acid (DHA) in the apoplast of epicotyl segments from Vigna angularis L. cv. Erimoshouzu decreased to nearly zero and about 35%, respectively, of their initial levels, 3 h after the preparation of the epicotyl segments. The decreased level was kept nearly constant between 3 and 7 h. Fusicoccin (FC) and indole-3-acetic acid (IAA) slightly amplified the initial decrease in the level of AA, but suppressed the initial decrease in the level of DHA while enhancing elongation growth. During incubation for 3 and 7 h, FC then increased the levels of both AA and DHA, whereas IAA did so only with DHA. By the addition of FC 4 h after the start of incubation, the levels of both AA and DHA were also increased. The uncoupler carbonylcyanide m -chlorophenyl hydrazone increased the levels of both AA and DHA in the apoplast inhibiting elongation growth. These results suggest that the electrochemical proton gradient across the plasma membrane is one of the factors that control the apoplastic levels of AA and DHA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号