首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of a continuous bioreactor containing Clostridium beijerinckii BA101 adsorbed onto clay brick was examined for the fermentation of acetone, butanol, and ethanol (ABE). Dilution rates from 0.3 to 2.5 h–1 were investigated with the highest solvent productivity of 15.8 g l–1 h–1 being obtained at 2.0 h–1. The solvent yield at this dilution rate was found to be 0.38 g g–1 and total solvent concentration was 7.9 g l–1. The solvent yield was maximum at 0.45 at a dilution rate of 0.3 h–1. The maximum solvent productivity obtained was found to be 2.5 times greater than most other immobilized continuous and cell recycle systems previously reported for ABE fermentation. A higher dilution rate (above 2.0 h–1) resulted in acid production rather than solvent production. This reactor was found to be stable for over 550 h. Scanning electron micrographs (SEM) demonstrated that a large amount of C. beijerinckii cells were adsorbed onto the brick support.  相似文献   

2.
Lovastatin, a hypocholesterolemic agent, is a secondary metabolite produced by filamentous microorganism Aspergillus terreus in submerged batch cultivation. Lovastatin production by pellets and immobilized siran cells was investigated in an airlift reactor. The process was carried out by submerged cultivation in continuous mode with the objective of increasing productivity using pellet and siran supported growth of A terreus. The continuous mode of fermentation improves the rate of lovastatin production. The effect of dilution rate and aeration rate were studied in continuous culture. The optimum dilution rate for pellet was 0.02 h−1 and for siran carrier was 0.025 h−1. Lovastatin productivity using immobilized siran carrier (0.0255 g/L/h) was found to be greater than pellets (0.022 g/L/h). The productivity by both modes of fermentation was found higher than that of batch process which suggests that continuous cultivation is a promising strategy for lovastatin production.  相似文献   

3.
Conventional acetone–butanol–ethanol (ABE) fermentation is severely limited by low solvent titer and productivities. Thus, this study aims at developing an improved Clostridium acetobutylicum strain possessing enhanced ABE production capability followed by process optimization for high ABE productivity. Random mutagenesis of C. acetobutylicum PJC4BK was performed by screening cells on fluoroacetate plates to isolate a mutant strain, BKM19, which exhibited the total solvent production capability 30.5% higher than the parent strain. The BKM19 produced 32.5 g L?1 of ABE (17.6 g L?1 butanol, 10.5 g L?1 ethanol, and 4.4 g L?1 acetone) from 85.2 g L?1 glucose in batch fermentation. A high cell density continuous ABE fermentation of the BKM19 in membrane cell‐recycle bioreactor was studied and optimized for improved solvent volumetric productivity. Different dilution rates were examined to find the optimal condition giving highest butanol and ABE productivities. The maximum butanol and ABE productivities of 9.6 and 20.0 g L?1 h?1, respectively, could be achieved at the dilution rate of 0.85 h?1. Further cell recycling experiments were carried out with controlled cell‐bleeding at two different bleeding rates. The maximum solvent productivities were obtained when the fermenter was operated at a dilution rate of 0.86 h?1 with the bleeding rate of 0.04 h?1. Under the optimal operational condition, butanol and ABE could be produced with the volumetric productivities of 10.7 and 21.1 g L?1 h?1, and the yields of 0.17 and 0.34 g g?1, respectively. The obtained butanol and ABE volumetric productivities are the highest reported productivities obtained from all known‐processes. Biotechnol. Bioeng. 2013; 110: 1646–1653. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
A 30-l hollow fibre reactor with continuous fermentation for cell recycling of Escherichia coli AS 1.183 was used to remove the inhibitory effects on cell growth and extend the fast growth phase to increase the yield of polynucleotide phosphorylase (PNPase) in E. coli cells. When the dilution rate was 1.5 h−1, the cell concentration of E. coli reached 235 g/l (wet wt, 70% moisture content), with PNPase activity above 90 u/g (wet wt). With the dilution rate is 1.0 h−1, the fermentor volumetric productivity of PNPase in a hollow fiber reactor can reach 974 (u/h * l) compared to 20 (u/h * l) in a conventional batch culture.  相似文献   

5.
Batch, fed-batch, and continuous A-B-E fermentations were conducted and compared with pH controlled at 4.5, the optimal range for solvent production. While the batch mode provides the highest solvent yield, the continuous mode was preferred in terms of butanol yield and productivity. The highest butanol yield and productivity found in the continuous fermentation at dilution rate of 0.1 h−1 were 0.21 g-butanol/g-glucose and 0.81 g/L/h, respectively. In the continuous and fed-batch fermentation, the time needed for passing acidogenesis to solventogenesis was an intrinsic hindrance to higher butanol productivity. Therefore, a low dilution rate is suggested for the continuous A-B-E fermentation, while the fed-batch mode is not suggested for solvent production. While 3:6:1 ratio of acetone, butanol, and ethanol is commonly observed from A-B-E batch fermentation by Clostridium acetobutylicum when the pH is uncontrolled, up to 94% of the produced solvent was butanol in the chemostat with pH controlled at 4.5.  相似文献   

6.
In these studies, butanol (acetone butanol ethanol or ABE) was produced from wheat straw hydrolysate (WSH) in batch cultures using Clostridium beijerinckii P260. In control fermentation 48.9 g L−1 glucose (initial sugar 62.0 g L−1) was used to produce 20.1 g L−1 ABE with a productivity and yield of 0.28 g L−1 h−1 and 0.41, respectively. In a similar experiment where WSH (60.2 g L−1 total sugars obtained from hydrolysis of 86 g L−1 wheat straw) was used, the culture produced 25.0 g L−1 ABE with a productivity and yield of 0.60 g L−1 h−1 and 0.42, respectively. These results are superior to the control experiment and productivity was improved by 214%. When WSH was supplemented with 35 g L−1 glucose, a reactor productivity was improved to 0.63 g L−1 h−1 with a yield of 0.42. In this case, ABE concentration in the broth was 28.2 g L−1. When WSH was supplemented with 60 g L−1 glucose, the resultant medium containing 128.3 g L−1 sugars was successfully fermented (due to product removal) to produce 47.6 g L−1 ABE, and the culture utilized all the sugars (glucose, xylose, arabinose, galactose, and mannose). These results demonstrate that C. beijerinckii P260 has excellent capacity to convert biomass derived sugars to solvents and can produce over 28 g L−1 (in one case 41.7 g L−1 from glucose) ABE from WSH. Medium containing 250 g L−1 glucose resulted in no growth and no ABE production. Mixtures containing WSH + 140 g L−1 glucose (total sugar approximately 200 g L−1) showed poor growth and poor ABE production. Mention of trade names or commercial products in this article is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture.  相似文献   

7.
The continuous production of citric acid from dairy wastewater was investigated using calcium-alginate immobilizedAspergillus niger ATCC 9142. The citric acid productivity and yield were strongly affected by the culture conditions. The optimal pH, temperature, and dilution rate were 3.0, 30°C, and 0.025 h−1, respectively. Under optimal culture conditions, the maximum productivity, concentration, and yield of citric acid produced by the calcium-alginate immobilizedAspergillus niger were 160 mg L−1 h−1, 4.5 g/L, and 70.3% respectively. The culture was continuously perfored for 20 days without any apparent loss in citric acid productivity. Conversely, under the same conditions with a batch shake-flask culture, the maximum productivity, citric acid concentration, and yield were only 63.3 mg L−1 h−1, 4.7 g/L and 51.4%, respectively. Therefore, the results suggest that the bioreactor used in this study could be potentially used for continuous citric acid production from dairy wastewater by applying calcium-alginate immobilizedAspergillus niger.  相似文献   

8.
Acetone butanol ethanol (ABE) was produced in an integrated fed-batch fermentation-gas stripping product-recovery system using Clostridium beijerinckii BA101, with H2 and CO2 as the carrier gases. This technique was applied in order to eliminate the substrate and product inhibition that normally restricts ABE production and sugar utilization to less than 20 g l–1 and 60 g l–1, respectively. In the integrated fed-batch fermentation and product recovery system, solvent productivities were improved to 400% of the control batch fermentation productivities. In a control batch reactor, the culture used 45.4 g glucose l–1 and produced 17.6 g total solvents l–1 (yield 0.39 g g–1, productivity 0.29 g l–1 h–1). Using the integrated fermentation-gas stripping product-recovery system with CO2 and H2 as carrier gases, we carried out fed-batch fermentation experiments and measured various characteristics of the fermentation, including ABE production, selectivity, yield and productivity. The fed-batch reactor was operated for 201 h. At the end of the fermentation, an unusually high concentration of total acids (8.5 g l–1) was observed. A total of 500 g glucose was used to produce 232.8 g solvents (77.7 g acetone, 151.7 g butanol, 3.4 g ethanol) in 1 l culture broth. The average solvent yield and productivity were 0.47 g g–1 and 1.16 g l–1 h–1, respectively.  相似文献   

9.
A novel UV-induced mutant strain of recombinant Bacillus subtilis MUR1 was used for the production of l-LA in continuous cultures with a variety of culture conditions. The maximal productivity of 17.6 g/L/h was obtained with a l-LA concentration of 44.1 g/L at the dilution rate of 0.4 h−1. The highest concentration of l-LA (77.1 g/L) was produced at the dilution rate of 0.05 h−1. This study showed that the maximum l-LA productivity of B. subtilis MUR1 which can only last for a very short period of time during the exponential phase in fed-batch cultures, can be extended indefinitely at steady state in continuous cultures. l-LA production increased with the increase of yeast extract concentrations in the medium. Moreover, temperature, agitation rate and various glucose concentrations in the feed were compared in continuous cultures. Different nitrogen sources (lysine, glutamine, ammonium sulphate and corn steep liquor) were studied to partly or completely replace yeast extract in the medium, most of them showed positive effects on l-LA production and cell growth. The l-LA productivities from continuous cultures in this study are higher than the productivity of current microbial industrial processes which use Lactobacillus to produce l-LA.  相似文献   

10.
Continuous production of acetone, n-butanol, and ethanol (ABE) was carried out using immobilized cells of Clostridium acetobutylicum DSM 792 using glucose and sugar mixture as a substrate. Among various lignocellulosic materials screened as a support matrix, coconut fibers and wood pulp fibers were found to be promising in batch experiments. With a motive of promoting wood-based bio-refinery concept, wood pulp was used as a cell holding material. Glucose and sugar mixture (glucose, mannose, galactose, arabinose, and xylose) comparable to lignocellulose hydrolysate was used as a substrate for continuous production of ABE. We report the best solvent productivity among wild-type strains using column reactor. The maximum total solvent concentration of 14.32 g L−1 was obtained at a dilution rate of 0.22 h−1 with glucose as a substrate compared to 12.64 g L−1 at 0.5 h−1 dilution rate with sugar mixture. The maximum solvent productivity (13.66 g L−1 h−1) was obtained at a dilution rate of 1.9 h−1 with glucose as a substrate whereas solvent productivity (12.14 g L−1 h−1) was obtained at a dilution rate of 1.5 h−1 with sugar mixture. The immobilized column reactor with wood pulp can become an efficient technology to be integrated with existing pulp mills to convert them into wood-based bio-refineries.  相似文献   

11.
We examined the effect of gas-stripping on the in situ removal of acetone, butanol, and ethanol (ABE) from batch reactor fermentation broth. The mutant strain (Clostridium beijerinckii BA101) was not affected adversely by gas stripping. The presence of cells in the fermentation broth affected the selectivities of ABE. A considerable improvement in the productivity and yield was recorded in this work in comparison with the non-integrated process. In an integrated process of ABE fermentation-recovery using C. beijerinckii BA101, ABE productivities and yield were improved up to 200 and 118%, respectively, as compared to control batch fermentation data. In a batch reactor C. beijerinckii BA101 utilized 45.4 g glucose l–1 and produced 17.7 g total ABE l–1, while in the integrated process it utilized 161.7 g glucose l–1 and produced total ABE of 75.9 g l–1. In the integrated process, acids were completely converted to solvents when compared to the non-integrated process (batch fermentation) which contained residual acids at the end of fermentation. In situ removal of ABE by gas stripping has been reported to be one of the most important techniques of solvent removal. During these studies we were able to maintain the ABE concentration in the fermentation broth below toxic levels.  相似文献   

12.
Lactic acid production was investigated for batch and repeated batch cultures of Enterococcus faecalis RKY1, using wood hydrolyzate and corn steep liquor. When wood hydrolyzate (equivalent to 50 g l−1 glucose) supplemented with 15–60 g l−1 corn steep liquor was used as a raw material for fermentation, up to 48.6 g l−1 of lactic acid was produced with, volumetric productivities ranging between 0.8 and 1.4 g l−1 h−1. When a medium containing wood hydrolyzate and 15 g l−1 corn steep liquor was supplemented with 1.5 g l−1 yeast extract, we observed 1.9-fold and 1.6-fold increases in lactic acid productivity and cell growth, respectively. In this case, the nitrogen source cost for producing 1 kg lactic acid can be reduced to 23% of that for fermentation from wood hydrolyzate using 15 g l−1 yeast extract as a single nitrogen source. In addition, lactic acid productivity could be maximized by conducting a cell-recycle repeated batch culture of E. faecalis RKY1. The maximum productivity for this process was determined to be 4.0 g l−1 h−1.  相似文献   

13.
Candida utilis was grown on a pineapple cannery effluent in a chemostat at dilution rates ranging between 0.05 and 0.65 h–1 to establish optimal conditions for biomass production and chemical oxygen demand (COD) reduction. Sucrose, fructose and glucose were the main sugars in the effluent. Maximum value for cell yield coefficient and productivity were (0.686, gx/gs) and (2.96, gx/l/h) at a dilution rate of 0.425 and 0.475 h–1, respectively, while maximum COD reduction (98%) was attained at a dilution rate of 0.1 h–1. The maintenance coefficient attained a value of (0.093, gs/gx/h). An increase in dilution rate produced a higher protein content of the biomass.  相似文献   

14.
The production of chitosan from the mycelia ofAbsidia coerulea was studied to improve cell growth and chitosan productivity. Culture conditions were optimized in batch cultivation (pH 4.5 agitator speed of 250 rpm, and aeration rate of, 2 vvm) and the maximum chitosan concentration achieved was 2.3 g/L under optimized conditions. Continuous culture was carried out successfully by the formation of new growth spots under optimized conditions, with a chitosan productivity of 0.052 gL−1 h−1, which is the highest value to date, and was obtained at a dilution rate of 0.05 h−1. Cell chitosan concentrations reached about 14% in the steady state, which is similar to that achieved in batch culture. This study shows that for the continuous culture ofAbsidia coerulea it is vital to control the medium composition.  相似文献   

15.
Continuous lactic acid fermentations were conducted using lignocellulosic hydrolyzates and corn steep liquor as inexpensive raw materials. Lactic acid concentrations decreased with increases in the dilution rate, whereas the residual substrate concentrations increased. However, lactic acid yields were maintained at more than 0.90 g g−1 over all cases experimented. The cell-recycle cultivation system exerted positive effects on fermentation efficiency, including volumetric productivity, which is attributable to the retention of cells in the bioreactor. The cell-recycle continuous fermentation of lignocellulosic hydrolyzates yielded a lactic acid productivity of 6.7 g l−1 h−1 for a dilution rate of 0.16 h−1 using 30 g l−1 of corn steep liquor and 1.5 g l−1 of yeast extract as nutrients. The productivity (6.7 g l−1 h−1) acquired by the cell-recycle continuous fermentation of lignocellulosic hydrolyzates was 1.6 times higher than the lactic acid productivity yielded in the continuous fermentation without cell-recycle system.  相似文献   

16.
The study was focused on developing a continuous method to produce an alcohol mixture suitable to be used as a gasoline supplement. The immobilized column reactor with wood pulp fibers was successfully used for the continuous production of butanol and isopropanol using Clostridium beijerinckii DSM 6423. A sugar mixture (glucose, mannose, galactose, arabinose and xylose) representing lignocellulose hydrolysate was used as a substrate for the production of solvents. The effect of dilution rate on solvent production was studied during continuous operation. The maximum total solvent concentration of 11.99 g/l was obtained at a dilution rate of 0.16 h?1. The maximum solvent productivity (5.58 g/l h) was obtained at a dilution rate of 1.5 h?1. The maximum solvent yield of 0.45 g/g from sugar mixture was observed at 0.25 h?1. The system will be further used for the solvent production using wood hydrolysate as a substrate.  相似文献   

17.
Xylitol was produced a in two-substrate, batch fermentation with cell recycling of Candida tropicalis ATCC 13803. A series of cell-recycle experiments showed that the feeding of xylose, glucose and yeast extract in the xylitol production phase was most effective in enhancing xylitol productivity. The optimized cell recycle fermentation resulted in 0.82 g xylitol/g xylose yield, 4.94 g xylitol l–1 h–1 productivity, and final xylitol concentration of 189 g l–1. These results were 1.3 times higher in volumetric xylitol productivity and 2.2 times higher in final product concentration compared with the corresponding values of the optimized two-substrate batch culture.  相似文献   

18.
The effects of dilution rate and substrate feed concentration on continuous glycerol fermentation by Clostridium butyricum VPI 3266, a natural 1,3-propanediol producer, were evaluated in this work. A high and constant 1,3-propanediol yield (around 0.65 mol/mol), close to the theoretical value, was obtained irrespective of substrate feed concentration or dilution rate. Improvement of 1,3-propanediol volumetric productivity was achieved by increasing the dilution rate, at a fixed feed substrate concentration of 30, 60 or 70 g l−1. Higher 1,3-propanediol final concentrations and volumetric productivities were also obtained when glycerol feed concentration was increased from 30 to 60 g l−1, at D=0.05–0.3 h−1, and from 60–70 g l−1, at D=0.05 and 0.1 h−1·30 g l−1 of 1,3-propanediol and the highest reported value of productivity, 10.3 g l−1 h−1, was achieved at D=0.30 h−1 and 60 g l−1 of feed glycerol. A switch to an acetate/butyrate ratio higher than one was observed for 60 g l−1 of feed glycerol and a dilution rate higher than 0.10 h−1; moreover, at D=0.30 h−1 3-hydroxypropionaldehyde accumulation was observed for the first time in the fermentation broth of C. butyricum.  相似文献   

19.
The kinetics of continuous l-sorbose fermentation using Acetobacter suboxydans with and without cell recycle (100%) were investigated at dilution rates (D) of 0.05, 0.10, 0.15 and 0.3 h–1. The biomass and sorbose concentrations for continuous fermentation without recycle increased as the dilution rate was increased from 0.05 to 0.10 h–1. A maximum biomass concentration of 8.44 g l–1 and sorbose concentration of 176.90 g l–1 were obtained at D=0.10 h–1. The specific rate of sorbose production and volumetric sorbose productivity at this dilution rate were 2.09 g g–1 h–1 and 17.69 g l–1 h–1. However, on further increasing the dilution rate to 0.3 h–1, both biomass and sorbose concentrations decreased to 2.93 and 73.20 g l–1 respectively, mainly due to washout of the reactor contents. However, the specific rate of sorbose formation and volumetric sorbose productivity at this dilution rate increased to 7.49 g g–1 h–1 and 21.96 g l–1 h–1 respectively. Continuous fermentation with 100% cell recycle served to further enhance the concentration of biomass and sorbose to 28.27 and 184.32 g l–1 respectively (in the reactor at a dilution rate of 0.05 h–1). Even though, there was a decline in the biomass and sorbose concentrations to 6.8 and 83.40 g l–1 at a dilution rate of 0.3 h–1, the specific rates of sorbose formation and volumetric sorbose productivity increased to 3.67 g g–1h–1 and 25.02 g l–1 h–1.  相似文献   

20.
Various processes which producel-lactic acid using ammonia-tolerant mutant strain,Rhizopus sp. MK-96-1196, in a 3 L airlift bioreactor were evaluated. When the fed-batch culture was carried out by keeping the glucose concentration at 30 g/l, more than 140 g/l ofl-lactic acid was produced with a product yield of 83%. In the case of the batch culture with 200 g/l of initial glucose concentration, 121 g/L ofl-lactic acid was obtained but the low product yield based on the amount of glucose consumed. In the case of a continuous culture, 1.5 g/l/h of the volumetric productivity with a product yield of 71% was achieved at dilution rate of 0.024 h−1. Basis on these results three processes were evaluated by simple variable cost estimation including carbon source, steam, and waste treatment costs. The total variable costs of the fed-batch and continuous cultures were 88% and 140%, respectively, compared to that of batch culture. The fed-batch culture with highl-lactic acid concentration and high product yield decreased variable costs, and was the best-suited for the industrial production ofl-lactic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号