首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using two-dimensional gel electrophoresis and MALDI-TOF MS, we identified a protein with a mol wt of 24.5 kD and pI = 7.5 as 1-Cys peroxiredoxin. This protein was present among soluble proteins of morphogenic but not nonmorphogenic calli of tatar buckwheat (Fagopyrum tataricum (L.) Gaertn). Its expression was evidently related to the presence of proembryonal cell complexes in morphogenic calli.  相似文献   

2.
We studied the intracellular content of reduced (GSH) and oxidized (GSSG) glutathione, glutathione reductase activity, glutathione-S-transferase, and ascorbate peroxidase in morphogenic and nonmorphogenic Tatar buckwheat calli during the culture cycle as well as under the treatment with D,L-buthionine-S,R-sulfoximine (BSO), an inhibitor of γ-glutamylcysteine synthase, the first enzyme of glutathione biosynthesis. We found that, during passaging, cultures only slightly differed in total glutathione content; however, the content of GSH was higher in the morphogenic culture, whereas the content of GSSG was higher in the nonmorphogenic culture. In the morphogenic callus, the glutathione-S-transferase activity was 10–20 times higher and the glutathione reductase activity was 2–2.5 times lower than in the nonmorphogenic callus. Under the treatment with BSO, the decrease in the GSH content in the morphogenic callus was temporary (on day 6–8 of passage), whereas that in the nonmorphogenic callus decreased within a day and remained lower than in the control throughout the entire passage. In the morphogenic callus, BSO did not affect the content of GSSG, whereas it caused GSSG accumulation in the nonmorphogenic callus. These differences are probably due to the fact that, in the BSO-containing medium, glutathione reductase is activated in the morphogenic callus and, conversely, inhibited in the nonmorphogenic callus. Although BSO caused a decrease in the total glutathione content only in the nonmorphogenic culture, the cytostatic effect of BSO was more pronounced in the morphogenic callus. In addition, BSO also had a negative effect on the differentiation of proembryonic cell complexes in the morphogenic callus. The role of the glutathione redox status in maintaining the embryogenic activity of cultured plant cells is discussed.  相似文献   

3.
Tissue culture lines (morphogenic and nonmorphogenic) were established in five genotypes of Saccharum officinarum L. Changes in protein expression after dedifferentiation of leaf tissue into callus were investigated by two-dimensional gel electrophoresis of cellular proteins. The findings demonstrated that protein expression was regulated both quantitatively and qualitatively in all five genotypes of sugarcane. Sixty-three dedifferention-proteins were identified, of which thirty-three were common to all genotypes. The expression of the remainder was dependent on the genotype, suggesting that the genotype within the same sugarcane species plays an important role in dedifferentiation. Three of the dedifferentiation-proteins were specific to morphogenic callus lines and one to nonmorphogenic callus lines. These proteins can be useful in characterizing the biochemical, molecular, and genetic properties of cultured cells in sugarcane, and in understanding the influence of genotype in the induction of dedifferentiation-proteins and their role in morphogenesis.  相似文献   

4.
The effect of common intracellular signals (Ca2+ and cAMP) on the activity of protein phosphorylation in mitochondria was investigated in coleoptiles of maize (Zea mays L.). Treatment of isolated mitochondria with 2 mM CaCl2 brought about an increase in the level of phosphorylation of proteins with mol ws of 74, 60, and 33 kD but considerably reduced phosphorylation of the protein with a mol wt of 51.5 kD. In the presence of Ca2+, phosphorylation of polypeptides with mol wts of 59 and 66 kD was also detected. cAMP considerably reduced phosphorylation of essentially all the investigated proteins in isolated mitochondria, which could be explained by activation of their dephosphorylation. Phosphorylation of mitochondrial proteins involves a polypeptide of about 94 kD showing kinase activity, which may be proper protein kinase or one of the subunits of a compound structure. In maize mitochondria, PP1A phosphatases were found. A hypothesis was advanced that redox-dependent phosphorylation/dephosphorylation of mitochondrial proteins plays an important role in mitochondrial signaling in higher plants.  相似文献   

5.
When the plasma membranes of caput and cauda epididymal spermatozoa of hamster were evaluated for their ability to undergo phosphorylation, a differential phosphorylation of the membrane proteins was observed. In the plasma membranes of the caput epididymal spermatozoa (immature), twelve proteins were phosphorylated (100, 76, 67, 65, 55, 52, 47, 42, 38, 32, 30, and 20 kD), whereas in the plasma membranes of cauda epididymal spermatozoa (mature), a differential phosphorylation pattern was observed with respect to the 94, 67, 52, and 47 kD proteins. The 94 kD protein was found to be phosphorylated and the 67 kD protein was found to be not phosphorylated in cauda spermatozoal plasma membrane (Cd SPM) in contrast to this protein in caput spermatozoal plasma membrane (Cpt SPM). The 52 and 47 kD proteins were also more intensely phosphorylated in Cd SPM than Cpt SPM. The 100 kilodalton protein, although present in both Cpt and Cd sperm plasma membranes, was found to be phosphorylated at the tyrosine residues only in the Cd SPM, as indicated by the Western blot using antiphosphotyrosine antibody. Further, a differential phosphorylation of the substrate proteins present in the Cpt and Cd SPM was seen when Mg2+ in the assay buffer was replaced by other divalent cations. For instance, Zn2+ stimulated the phosphorylation of an 85 kD protein in cauda SPM and not in the caput SPM and Ca2+ stimulated the phosphorylation of a 76 kD protein only in the cauda SPM. The phosphoproteins in both the plasma membranes were found to be phosphorylated predominantly at the tyrosine residue. The differential phosphorylation of a 100 kD protein at tyrosine in the Cd SPM (Western blot), which is absent in the immature Cpt SPM, also indicated that certain proteins in the hamster spermatozoa are phosphorylated in a maturation-specific manner. Mol. Reprod. Dev. 47:341–350, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Involvement of tyrosine phosphorylation in osteoclastic bone resorption was examined using osteoclast-like multinucleated cells prepared from co-cultures of mouse osteoblastic cells and bone marrow cells in the presence of 1α,25-dihydroxyvitamin D3. When osteoclast-like cells were plated on culture dishes in the presence of 10% fetal bovine serum, they were sharply stained in their peripheral region by anti-phosphotyrosine antibody. Western blot analysis revealed that 115-to 130-kD proteins were tyrosine-phosphorylated in osteoclast-like cells. Using immunoprecipitation and immunoblotting, one of the proteins with 115–130 kD was identified as focal adhesion kinase (p125FAK), a tyrosine kinase, which is localized in focal adhesions. Immunostaining with anti-p 125FAK antibody revealed that p125FAK was mainly localized at the periphery of osteoclast-like cells. Herbimycin A, a tyrosine kinase inhibitor, not only suppressed tyrosine phosphorylation of p125FAK but also changed the intracellular localization of p125FAK and disrupted a ringed structure of F-actin-containing podosomes in osteoclast-like cells. Antisense oligodeoxynucleotides to p125FAK inhibited dentine resorption by osteoclast-like cells, whereas sense oligodeoxynucleotides did not. These results suggest that p125FAK is involved in osteoclastic bone resorption and that tyrosine phosphorylation of p125FAK is critical for regulating osteoclast function.  相似文献   

7.
This work investigated the role of Ca2+ mobilization and heterotrimeric G protein activation in mediating angiotensin II-dependent tyrosine phosphorylation signaling patterns. We demonstrate that the predominant, angiotensin II-dependent, tyrosine phosphorylation signaling patterns seen in vascular smooth muscle cells are blocked by the intracellular Ca2+ chelator BAPTA-AM, but not by the Ca2+ channel blocker verapamil. Activation of heterotrimeric G proteins with NaF resulted in a divergent signaling effect; NaF treatment was sufficient to increase tyrosine phosphorylation levels of some proteins independent of angiotensin II treatment. In the same cells, NaF alone had no effect on other cellular proteins, but greatly potentiated the ability of angiotensin II to increase the tyrosine phosphorylation levels of these proteins. Two proteins identified in these studies were paxillin and Jak2. We found that NaF treatment alone, independent of angiotensin II stimulation, was sufficient to increase the tyrosine phosphorylation levels of paxillin. Furthermore, the ability of either NaF and/or angiotensin II to increase tyrosine phosphorylation levels of paxillin is critically dependent on intracellular Ca2+. In contrast, angiotensin II-mediated Jak2 tyrosine phosphorylation was independent of intracellular Ca2+ mobilization and extracellular Ca2+ entry. Thus, our data suggest that angiotensin II-dependent tyrosine phosphorylation signaling cascades are mediated through a diverse set of signaling pathways that are partially dependent on Ca2+ mobilization and heterotrimeric G protein activation.  相似文献   

8.
G-protein coupled Angiotensin II receptors (AT1A), mediate cellular responses through multiple signal transduction pathways. In AT1A receptor-transfected CHO-K1 cells (T3CHO/AT1A), angiotensin II (AII) stimulated a dose-dependent (EC50=3.3 nM) increase in cAMP accumulation, which was inhibited by the selective AT1, nonpeptide receptor antagonist EXP3174. Activation of protein kinase C, or increasing intracellular Ca2+ with ATP, the calcium ionophore A23187 or ionomycin failed to stimulate cAMP accumulation. Thus, AII-induced cAMP accumulation was not secondary to activation of a protein kinase C- or Ca2+/calmodulin-dependent pathway. Since cAMP has an established role in cellular growth responses, we investigated the effect of the AII-mediated increase in cAMP on cell number and [3H]thymidine incorporation in T3CHOA/AT1A cells. AII (1 M) significantly inhibited cell number (51% at 96 h) and [3H]thymidine incorporation (68% at 24 h) compared to vehicle controls. These effects were blocked by EXP3174, confirming that these responses were mediated through the AT1 receptor. Forskolin (10 M) and the cAMP analog dibutyryl-cAMP (1 mM) also inhibited [3H]thymidine incorporation by 55 and 25% respectively. We extended our investigation on the effect of AII-stimulated increases in cAMP, to determine the role for established growth related signaling events, i.e., mitogen-activated protein kinase activity and tyrosine phosphorylation of cellular proteins. AII-stimulated mitogen-activated protein kinase activity and phosphorylation of the 42 and 44 kD forms. These events were unaffected by forskolin stimulated increases in cAMP, thus the AII-stimulated mitogen-activated protein kinase activity was independent of cAMP in these cells. AII also stimulated tyrosine phosphorylation of a number of cellular proteins in T3CHO/AT1A cells, in particular a 127 kD protein. The phosphorylation of the 127 kD protein was transient, reaching a maximum at 1 min, and returning to basal levels within 10 min. The dephosphorylation of this protein was blocked by a selective inhibitor of cAMP dependent protein kinase A, H89-dihydrochloride and preexposure to forskolin prevented the AII-induced transient tyrosine phosphorylation of the 127 kD protein. These data suggest that cAMP, and therefore protein kinase A can contribute to AII-mediated growth inhibition by stimulating the dephosphorylation of substrates that are tyrosine phosphorylated in response to AII.  相似文献   

9.
Shan  H. Y.  Li  X. W.  Li  D.  Shao  S. Q.  Liu  B. 《Russian Journal of Plant Physiology》2004,51(3):379-385
The cotyledons of tomato (Lycopersicon esculentum L., cv. Jia Fen-10) seedlings were induced to produce calli and regenerate plants via organogenesis. Utilizing this system, the composition and content of stage-specific proteins associated with organogenesis were analyzed. Moreover, a comparison of the protein composition and content between embryogenic and nonembryogenic calli was conducted. The SDS-PAGE results and laser densitometric scanning maps showed that there were different specific proteins expressed at different stages. Among them, six proteins (61, 54, 38, 37, 35, and 23 kD) were associated with the morphogenesis of organs, and two proteins (39 and 24 kD) were related to the morphogenesis of calli. Although no distinctive difference in protein components of embryogenic calli was noted, there were different trends of changes, both for the content of the proteins 39 and 24 kD, and for the content of the total proteins, at different developmental stages of embryogenic calli. The results obtained from the embryogenic and nonembryogenic calli indicated that these two materials were distinct in the protein components as well as in its content; for example, the protein 54 kD was detected in nonembryogenic but not in embryogenic calli. The total protein content in nonembryogenic calli was lower than that in the embryogenic calli.  相似文献   

10.
The role of protein phosphorylation/ dephosphorylation in the redox regulation of mitochondrial functioning was investigated. Incubation of isolated mitochondria of maize (Zea mays L.) in the presence of γ-32P-ATP revealed phosphorylation of polypeptides with mol wt of 66, 60, 55, 48/50 doublet, 45, 29, 22, and 19 kD. The presence in the incubation medium of oxidized glutathione significantly reduced the level of protein phosphorylation. The addition of reduced glutathione diminished phosphorylation of proteins with mol wt of 60 and 48/50 kD and slightly increased phosphorylation of proteins with mol wt of 66, 55, and 45 kD. The reducing agent, sodium dithionite decreased phosphorylation of proteins with mol wt of 60, 45, 29, 22, and 19 kD but increased phosphorylation of 55 kD protein. The inhibitors of protein kinases and protein phosphatases significantly modified the effects of redox agents. For example, simultaneous action of an oxidant K3[Fe(CN)6] and NaF enhanced phosphorylation level compared to separate treatments with these agents. The combined application of sodium dithionite and NaF elevated phosphorylation level of 55 kD protein. Phosphoprotein with mol wt of about 66 kD was identified immunochemically as a heat shock protein (HSP 60). The results indicate the presence in mitochondria of redox-sensitive protein kinases and protein phosphatases. Differential changes in the pattern of mitochondrial phosphoproteins under the action of various redox agents suggest that phosphorylation is probably involved in the transduction of redox signal in plant mitochondria.  相似文献   

11.
Phosphorylation of erythrocyte membrane proteins has been previously documented following infection and intracellular growth of the malarial parasite, Plasmodium falciparum in red cells. Much of this data dealt with phosphorylation of serine residues. In this study, we report detailed characterization of phosphorylation of serine and tyrosine residues of red cell membrane proteins following infection by P falciparum. Western blot analysis using anti‐phosphotyrosine and anti‐phosphoserine antibodies following 2‐DE in conjunction with double channel laser‐induced infrared fluorescence enabled accurate assessment of phosphorylation changes. Tyrosine phosphorylation of band 3 represented the earliest modification observed during parasite development. Band 3 tyrosine phosphorylation observed at the ring stage appears to be under the control of Syk kinase. Serine and tyrosine phosphorylation of additional cytoskeletal, trans‐membrane and membrane associated proteins was documented as intracellular development of parasite progressed. Importantly, during late schizont stage of parasite maturation, we observed widespread protein dephosphorylation. In vitro treatments that caused distinct activation of red cell tyrosine and serine kinases elicited phosphorylative patterns similar to what observed in parasitized red blood cell, suggesting primary involvement of erythrocyte kinases. Identification of tyrosine phosphorylations of band 3, band 4.2, catalase and actin which have not been previously described in P. falciparum infected red cells suggests new potential regulatory mechanisms that could modify the functions of the host cell membrane.  相似文献   

12.
The ionotropic α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor is densely distributed in the mammalian brain and is primarily involved in mediating fast excitatory synaptic transmission. Recent studies in both heterologous expression systems and cultured neurons have shown that the AMPA receptor can be phosphorylated on their subunits (GluR1, GluR2, and GluR4). All phosphorylation sites reside at serine, threonine, or tyrosine on the intracellular C-terminal domain. Several key protein kinases, such as protein kinase A, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, and tyrosine kinases (Trks; receptor or nonreceptor family Trks) are involved in the site-specific regulation of the AMPA receptor phosphorylation. Other glutamate receptors (N-methyl-d-aspartate receptors and metabotropic glutamate receptors) also regulate AMPA receptors through a protein phosphorylation mechanism. Emerging evidence shows that as a rapid and short-term mechanism, the dynamic protein phosphorylation directly modulates the electrophysiological, morphological (externalization and internalization trafficking and clustering), and biochemical (synthesis and subunit composition) properties of the AMPA receptor, as well as protein-protein interactions between the AMPA receptor subunits and various intracellular interacting proteins. These modulations underlie the major molecular mechanisms that ultimately affect many forms of synaptic plasticity.  相似文献   

13.
Abstract: The effects of the exposure of hippocampal slices to brief periods of ischemic-like conditions on the tyrosine phosphorylation of proteins and glycoproteins were investigated. Freshly prepared hippocampal slices contained a range of tyrosine-phosphorylated proteins and two prominent tyrosine-phosphorylated glycoproteins of apparent Mr 110,000 (GP110) and 180,000, which we have previously shown to correspond to the postsynaptic density (PSD)-associated glycoprotein PSD-GP180. When hippocampal slices were incubated in oxygenated Krebs-Ringer buffer containing 10 mM glucose (KRB), there was a transient increase in the tyrosine phosphorylation of a protein of Mr 42,000 (p42) and a pronounced increase in the tyrosine phosphorylation of GP110. After these initial changes, the tyrosine phosphorylation of all proteins remained constant for at least 60 min. In vitro “ischemia” was achieved by transferring slices that had been preincubated for 60 min in KRB to KRB that had been equilibrated with N2 instead of O2 and that did not contain glucose. Tyrosine-phosphorylated GP110 and PSD-GP180 could no longer be detected after 10 min of exposure of the slices to ischemic-like conditions. GP110 was rapidly rephosphorylated on tyrosine after transfer of slices back to oxygenated, glucose-containing buffer. In contrast, short periods of ischemia (5 or 10 min) resulted in the long-term loss of phosphotyrosine [Tyr(P)]-PSD-GP180 so that it was not detected even after 60 min of reincubation in oxygenated KRB. The sustained decrease in tyrosine phosphorylation of PSD-GP180 after ischemia was Ca2+ dependent, the levels of Tyr(P)-PSD-GP180 slowly increasing to preischemic values if Ca2+ was omitted from the incubation media. Reoxygenation of ischemic slices also resulted in the Ca2+-dependent, transient tyrosine phosphorylation of p42. The major PSD-associated, tyrosine-phosphorylated glycoprotein of molecular mass 180 kDa has recently been identified as the NR2B subunit of the NMDA receptor. The results suggest that changes in tyrosine phosphorylation after an ischemic insult may modulate the NMDA receptor or signal transduction pathways in the postsynaptic cell and are consistent with a role for tyrosine phosphorylation in the sequence of events leading to neuronal cell damage and death.  相似文献   

14.
A wealth of information has suggested the involvement of protein kinase C (PKC) in metamorphosis of Hydractinia echinata and in pattern formation of Hydra magnipapillata. We have identified a Ca2+- and phospholipid-dependent kinase activity in extracts of both species. The enzyme was characterized as being similar to mammalian PKC by ion exchange chromatography. Gel filtration experiments revealed a molecular weight of about 70 kD. In phosphorylation assays of endogenous Hydractinia proteins, a protein with a molecular weight of 22.5 kD was found to be phoshorylated upon addition of phosphatidylserine. Bacterial induction of metamorphosis of Hydractinia echinata caused an increase in endogenous diacylglycerol, the physiological activator of PKC, suggesting that the bacterial inducer acts by activating receptor-regulated phospholipid metabolism. Exogenous diacylglycerol leads to membrane translocation of PKC, indicative of an activation. On the basis of our results and those of Freeman and Ridgway (1990) a model for the biochemical events during metamorphosis is presented.  相似文献   

15.
16.

Background  

The adaptor protein p130 Cas (Cas) has been shown to be involved in different cellular processes including cell adhesion, migration and transformation. This protein has a substrate domain with up to 15 tyrosines that are potential kinase substrates, able to serve as docking sites for proteins with SH2 or PTB domains. Cas interacts with focal adhesion plaques and is phosphorylated by the tyrosine kinases FAK and Src. A number of effector molecules have been shown to interact with Cas and play a role in its function, including c-crk and v-crk, two adaptor proteins involved in intracellular signaling. Cas function is dependent on tyrosine phosphorylation of its substrate domain, suggesting that tyrosine phosphorylation of Cas in part regulates its control of adhesion and migration. To determine whether the substrate domain alone when tyrosine phosphorylated could signal, we have constructed a chimeric Cas molecule that is phosphorylated independently of upstream signals.  相似文献   

17.
18.
In mammals protein tyrosine phosphorylation plays an important role in the activation of apoptosis. However, tyrosine phosphorylation associated with cell death has not been examined in plants. We monitored changes in tyrosine phosphorylation during cell death in rice (Oryza sativa L.) suspension cultures. Cell death was induced in the cell cultures by mannose treatment or by allowing the cultures to senescence. We have demonstrated that both mannose and senescence induced DNA fragmentation in rice suspension cells. In the presence of mannose, the tyrosine phosphorylation patterns of mannose treated and non-treated cell proteins are basically the same, except the tyrosine phosphorylation intensity is considerably different. In aged suspension-cultured cells, the occurrence of DNA fragmentation was detected. In addition, the tyrosine phosphorylation pattern was changed. These results suggest that protein tyrosine phosphorylation may have a role in distinct signal transduction pathways responding to mannose and senescence. The expression of a gene that encodes mitogen-activated protein kinase (MAPK), OsMAPK2, is up-regulated during mannose treatment, suggesting the possible involvement of rice MAPK in pathways associated with rice cell death induced by >d-mannose.  相似文献   

19.
Homogenate fractions (soluble and particulate) from transformed roots of Catharanthus roseus (L.) G. Don showed several phosphorylated proteins when incubated with γ-[32P]ATP. The phosphorylation in the proteins of 55, 40, 25, 18 and 10 kDa in the particulate fraction and 63 kDa in the soluble fraction was resistant to alkali treatment. Several proteins in both fractions gave a positive signal with monoclonal antiphosphotyrosine antibodies. In-situ phosphorylation in both fractions showed several proteins that cross-reacted with the antiphosphotyrosine antibodies. Tyrosine kinase activity was detected using an exogenous substrate RR-SRC, a synthetic peptide derived from the amino acid sequence surrounding the phosphorylation site in pp60src. This activity was inhibited by genistein, a tyrosine kinase inhibitor. These results indicate, for the first time, the presence of protein-tyrosine kinase (EC 2.7.1.112) activity in transformed plant tissues. Received: 29 March 1997 / Accepted: 21 May 1997  相似文献   

20.
Phosphorylation and dephosphorylation of the proteins residing in the outer mitochondrial membrane, mitoplasts and whole mitochondria of maize (Zea mays L.) were investigated in order to reveal the possible participation of these processes in mitochondrial signaling. A mitochondrial protein of around 57 kD was identified by immunocytochemistry as α-subunit of the F1-ATPase complex. In isolated mitochondria of maize, phosphorylation of this protein could be visualized only after treating mitochondria with endotholl, an inhibitor of the PP1a and PP2A protein phosphatases. A phosphorylated protein of 46.6 kD was identified as β-subunit of the F1-ATPase complex. Ca2+ is the most common second messenger participating in mitochondrial signaling. We conclude that the transmission of the Ca2+ signal to the plant mitochondria occurs via proteins of the outer mitochondrial membrane. The systems perceiving this signal could include the protein phosphatases residing in the outer mitochondrial membrane, which preferentially dephosphorylate the proteins in the inner membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号