首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endothelin 1 (ET-1) is a potent pulmonary vasoconstrictor and mediator of lung diseases. Antagonism of the ET-1-mediated effects has become an important therapeutic approach. ET-1 (A and B) receptors are differentially distributed in the lung vasculature. Whereas the ET(A) receptors mainly mediate vasoconstriction, the endothelial ET(B) receptor seems to have vasodilative properties. We sought to determine if antagonism of ET receptors can be achieved by inhalation of specific blockers in a model of ET-1-mediated pulmonary hypertension.  相似文献   

2.
Endothelin (ET)-1 contributes to the regulation of pulmonary vascular tone by stimulation of the ET(A) and ET(B) receptors. Although activation of the ET(A) receptor causes vasoconstriction, stimulation of the ET(B) receptors can elicit either vasodilation or vasoconstriction. To examine the physiological role of the ET(B) receptor in the pulmonary circulation, we studied a genetic rat model of ET(B) receptor deficiency [transgenic(sl/sl)]. We hypothesized that deficiency of the ET(B) receptor would predispose the transgenic(sl/sl) rat lung circulation to enhanced pulmonary vasoconstriction. We found that the lungs of transgenic(sl/sl) rats are ET(B) deficient because they lack ET(B) mRNA in the pulmonary vasculature, have minimal ET(B) receptors as determined with an ET-1 radioligand binding assay, and lack ET-1-mediated pulmonary vasodilation. The transgenic(sl/sl) rats have higher basal pulmonary arterial pressure and vasopressor responses to brief hypoxia or ET-1 infusion. Plasma ET-1 levels are elevated and endothelial nitric oxide synthase protein content and nitric oxide production are diminished in the transgenic(sl/sl) rat lung. These findings suggest that the ET(B) receptor plays a major physiological role in modulating resting pulmonary vascular tone and reactivity to acute hypoxia. We speculate that impaired ET(B) receptor activity can contribute to the pathogenesis of pulmonary hypertension.  相似文献   

3.
Endothelin has been implicated in the pathogenesis of experimental and human Chagas' disease (American trypanosomiasis). In the present study, we tested the effect of bosentan, an antagonist of both ET(A) and ET(B) endothelin receptors, on parasitemia, histopathology (heart and diaphragm), heart levels of tumor necrosis factor (TNF)-alpha, interleukin (IL)-10, interferon (IFN)-gamma, CCL2, CCL3 and CCL5, and the serum levels of nitrate/nitrite (NOx). Bosentan treatment was accompanied by a significant increase in parasitemia and tissue parasitism or inflammation. In vehicle-treated rats, Trypanosoma cruzi infection increased the cardiac levels of TNF-alpha, IFN-gamma and IL-10, at day 9 post inoculation, and the TNF-alpha remained elevated until day 13. The infection also caused a significant increase in the cardiac levels of the chemokines CCL2 (9, 13 and 18 days) and CCL3 (13 and 18 days). Bosentan-treatment had no significant effect on the infection-associated increase in IFN-gamma and chemokine concentrations. There was a lower increase in IL-10 at day 9 and this was mirrored by a greater increase of TNF-alpha at day 13, in comparison with vehicle-treated rats. These latter findings correlated well with the enhanced inflammatory process in hearts of bosentan-treated infected rats. Bosentan treatment reduced the infection-associated increase in NOx serum concentration. Altogether, our data suggest that ET action on ET(A) and ET(B) receptors may play a role in the initial control of T. cruzi infection in rats probably by interfering in NO production.  相似文献   

4.
Circulating plasma endothelin (ET)-1 concentrations are substantially elevated, and correlate with the hemodynamic severity and New York Heart Association (NYHA) class, in patients with chronic heart failure (CHF). In early preclinical studies involving different models of experimental heart failure, ET antagonists reduced cardiac pressures, increased cardiac output, and prolonged survival. ET receptor antagonists also impressively improved systemic and pulmonary hemodynamics in patients with CHF, without causing neurohormonal activation. However, recent clinical trials, including the ENABLE (Endothelin Antagonist Bosentan for Lowering Cardiac Events in Heart Failure) and EARTH (Endothelin A Receptor Antagonist Trial in Heart Failure) studies, have shown neutral effects in terms of mortality and symptoms. This paper describes the possible reasons why benefit was not seen in these clinical studies, and suggests what lessons can be learnt from the way the studies were undertaken to apply to future studies.  相似文献   

5.
Regulation of vascular tone and blood flow involves interactions between numerous local and systemic vascular control signals, many of which are altered by Type 2 diabetes (T2D). Vascular responses to endothelin-1 (ET-1) are mediated by endothelin type A (ET(A)) and type B (ET(B)) receptors that have been implicated in cross talk with alpha(1)-adrenoceptors (alpha(1)-AR). ET(A) and ET(B) receptor expression and plasma ET-1 levels are elevated in T2D; however, whether this influences coronary alpha(1)-AR function has not been examined. Therefore, we examined the effect of ET(A) and ET(B) receptor inhibition on coronary vasoconstriction to ET-1 and alpha(1)-AR activation in a mouse model of T2D. Coronary vascular responses were examined in isolated mouse hearts from control and diet-induced T2D C57BL/6J mice. Responses to ET-1 and the selective alpha(1)-AR agonist phenylephrine (PE) were examined alone and in the presence of the nitric oxide synthase inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME) alone or in combination with selective ET(A) or ET(B) receptor inhibitors BQ-123 and BQ-788, respectively. Vasoconstriction to ET-1 was enhanced, whereas ET(B), but not ET(A), receptor blockade reduced basal coronary tone in T2D hearts. In the presence of l-NAME, ET(A) receptor inhibition attenuated ET-1 vasoconstriction in both groups, whereas ET(B) inhibition abolished this response only in control hearts. In addition, ET(A) inhibition enhanced alpha(1)-AR-mediated vasoconstriction in T2D, but not control, hearts following l-NAME treatment. Therefore, in this model, enhanced coronary ET-1 responsiveness is mediated primarily through smooth muscle ET(B) receptors, whereas the interaction with alpha(1)-ARs is mediated solely through the ET(A) receptor subtype.  相似文献   

6.
Radiation-induced heart disease is a severe side effect of thoracic radiotherapy. Studies suggest that mast cells play a protective role in radiation-induced heart disease and that the endothelin (ET) system mediates protective effects of mast cells in other disorders. This study examined whether mast cells modulate the cardiac ET system and examined the effects of ET receptor inhibition in a rat model of radiation-induced heart disease. Mast cell-deficient (Ws/Ws), mast cell-competent (+/+) and Sprague-Dawley rats received 18 Gy irradiation to the heart. Left ventricular mRNA of ET1 and its receptors (ETA and ETB) was measured in Ws/Ws and +/+ rats at 1 week and 3 months. Sprague-Dawley rats were treated with the ETA/ETB antagonist bosentan, and at 6 months cardiac changes were assessed using the Langendorff perfused rat heart preparation, immunohistochemistry and real-time PCR. Ws/Ws and +/+ rat hearts did not differ in baseline mRNA. In contrast, +/+ rats hearts exhibited up-regulation of ET1 after irradiation, whereas Ws/Ws rats hearts did not, suggesting the possibility of interactions between mast cells and the cardiac ET system. Bosentan induced reductions in left ventricular systolic pressure, developed pressure and +dP/dtmax but did not affect fibrosis. Because of the known opposing effects of ETA and ETB, studies with selective antagonists may clarify the role of each receptor.  相似文献   

7.
Distribution of endothelin receptor subtypes ETA and ETB in the rat kidney.   总被引:2,自引:0,他引:2  
The endothelin (ET) receptor system is markedly involved in the regulation of renal function under both physiological and pathophysiological conditions. The present study determined the detailed cellular localization of both ET receptor subtypes, ET(A) and ET(B), in the vascular and tubular system of the rat kidney by immunofluorescence microscopy. In the vascular system we observed both ET(A) and ET(B) receptors in the media of interlobular arteries and afferent and efferent arterioles. In interlobar and arcuate arteries, only ET(A) receptors were present on vascular smooth muscle cells. ET(B) receptor immunoreactivity was sparse on endothelial cells of renal arteries, whereas there was strong labeling of peritubular and glomerular capillaries as well as vasa recta endothelium. ET(A) receptors were evident on glomerular mesangial cells and pericytes of descending vasa recta bundles. In the renal tubular system, ET(B) receptors were located in epithelial cells of proximal tubules and inner medullary collecting ducts, whereas ET(A) receptors were found in distal tubules and cortical collecting ducts. Distribution of ET(A) and ET(B) receptors in the vascular and tubular system of the rat kidney reported in the present study supports the concept that both ET receptor subtypes cooperate in mediating renal cortical vasoconstriction but exert differential and partially antagonistic effects on renal medullary function.  相似文献   

8.
Endothelin (ET)-1 contributes to regulation of pulmonary vascular tone and structure in the normal ovine fetus and in models of perinatal pulmonary hypertension. The hemodynamic effects of ET-1 are due to activation of its receptors. The ET(A) receptor mediates vasoconstriction and smooth muscle cell proliferation, whereas the ET(B) receptor mediates vasodilation. In a lamb model of chronic intrauterine pulmonary hypertension, ET(B) receptor activity and gene expression are decreased. To determine whether prolonged ET(B) receptor blockade causes pulmonary hypertension, we studied the hemodynamic effects of selective ET(B) receptor blockade with BQ-788. Animals were treated with an infusion of either BQ-788 or vehicle for 7 days. Prolonged BQ-788 treatment increased pulmonary arterial pressure and pulmonary vascular resistance (P < 0.05). The pulmonary vasodilator response to sarafotoxin 6c, a selective ET(B) receptor agonist, was attenuated after 7 days of BQ-788 treatment, demonstrating pharmacological blockade of the ET(B) receptor. Animals treated with BQ-788 had greater right ventricular hypertrophy and muscularization of small pulmonary arteries (P < 0. 05). Lung ET-1 levels were threefold higher in the animals treated with BQ-788 (P < 0.05). We conclude that prolonged selective ET(B) receptor blockade causes severe pulmonary hypertension and pulmonary vascular remodeling in the late-gestation ovine fetus.  相似文献   

9.
A model of the endothelin G-protein-coupled receptor (ET(A)) has been constructed using a segmented approach. The model was produced using a bovine rhodopsin model as a template for the seven transmembrane alpha-helices. The three cytoplasmic loop regions and the C-terminal region were modeled on NMR structures of corresponding segments from bovine rhodopsin. The three extracellular loops were modeled on homologous loop regions in other proteins of known structure. The N-terminal region was modeled as a three-helix domain based on its homology with a hydrolase protein. To test the model, the FTDOCK algorithm was used to predict the ligand-binding site for the crystal structure of human endothelin. The site of docking is consistent with mutational and biochemical data. The principal sites of interaction in the endothelin ligand all lie on one face of a helix that has been implicated by structure-activity relationship studies as being essential for binding. As further support for the model, attempts to dock bigET, an inactive precursor to endothelin that does not bind to the receptor, found no sites for tight binding. The model of the receptor-ligand complex produced forms a basis for rational drug design of agonists and antagonists for this G-protein-coupled receptor.  相似文献   

10.
11.
Mechanisms that regulate endothelin (ET) in the perinatal lung are complex and poorly understood, especially with regard to the role of ET before and after birth. We hypothesized that the ET system is developmentally regulated and that the balance of ET(A) and ET(B) receptor activity favors vasoconstriction. To test this hypothesis, we performed a series of molecular and physiological studies in the fetal lamb, newborn lamb, and adult sheep. Lung preproET-1 mRNA levels, tissue ET peptide levels, and cellular localization of ET-1 expression were determined by Northern blot analysis, peptide assay, and immunohistochemistry in distal lung tissue from fetal lambs between 70 and 140 days (term = 145 days), newborn lambs, and ewes. Lung mRNA expression for the ET(A) and ET(B) receptors was also measured at these ages. We found that preproET-1 mRNA expression increased from 113 to 130 days gestation. Whole lung ET protein content was highest at 130 days gestation but decreased before birth in the fetal lamb lung. Immunolocalization of ET-1 protein showed expression of ET-1 in the vasculature and bronchial epithelium at all gestational ages. ET(A) receptor mRNA expression and ET(B) receptor mRNA increased from 90 to 125 and 135 days gestation. To determine changes in activity of the ET(A) and ET(B) receptors, we studied the effect of selective antagonists to the ET(A) or ET(B) receptors at 120, 130, and 140 days of fetal gestation. ET(A) receptor-mediated vasoconstriction increased from 120 to 140 days, whereas blockade of the ET(B) receptor did not change basal fetal pulmonary vascular tone at any age examined. We conclude that the ET system is developmentally regulated and that the increase in ET(A) receptor gene expression correlates with the onset of the vasodilator response to ET(A) receptor blockade. Although ET(B) receptor gene expression increases during late gestation, the balance of ET receptor activity favors vasoconstriction under basal conditions. We speculate that changes in ET receptor activity play important roles in regulation of pulmonary vascular tone in the ovine fetus.  相似文献   

12.
Recently, it has been shown that brain topical superfusion of endothelin (ET)-1 at concentrations around 100 nM induces repetitive cortical spreading depressions (CSDs) in vivo. It has remained unclear whether this effect of ET-1 is related to a primary neuronal/astroglial effect, such as an increase in neuronal excitability or induction of interastroglial calcium waves, or a penumbra-like condition after vasoconstriction. In vitro, ET-1 regulates interastroglial communication via combined activation of ET(A) and ET(B) receptors, whereas it induces vasoconstriction via single activation of ET(A) receptors. We have determined the ET receptor profile and intracellular signaling pathway of ET-1-induced CSDs in vivo. In contrast to the ET(B) receptor antagonist BQ-788 and concentration dependently, the ET(A) receptor antagonist BQ-123 completely blocked the occurrence of ET-1-induced CSDs. The ET(B) receptor antagonist did not increase the efficacy of the ET(A) receptor antagonist. Direct stimulation of ET(B) receptors with the selective ET(B) agonist BQ-3020 did not trigger CSDs. The phospholipase C (PLC) antagonist U-73122 inhibited CSD occurrence in contrast to the protein kinase C inhibitor G?-6983. Our findings indicate that ET-1 induces CSDs through ET(A) receptor and PLC activation. We conclude that the induction of interastroglial calcium waves is unlikely the primary cause of ET-1-induced CSDs. On the basis of the receptor profile, likely primary targets of ET-1 mediating CSD are either neurons or vascular smooth muscle cells.  相似文献   

13.
Endothelin, a vasoconstrictor peptide, plays important roles not only in the mammalian circulatory system but also in non-mammalian systems, such as the gill lamellar vascular network with complex structural characteristics. Here, we show that (i) the contraction of pillar cells that delimit the lamellar vasculature is controlled by endothelin through the type A endothelin receptor (ET(A)) linked to the intracellular calcium signaling system and (ii) ET(A) receptor is also highly expressed on fugu erythrocytes, a hitherto unexpected finding. Database mining revealed the presence of five endothelin receptor (ETR) sequences in the fugu genome. By Northern blotting, cDNA cloning, and fura-2 monitoring, the branchial ETR subtype was shown to be ET(A) able to induce a Ca(2+) transit. Immunohistochemistry revealed its pillar cell and erythrocyte localization. These results suggest an endothelin/ET(A)-mediated coordinated regulation of the pillar cell shape and erythrocyte membrane flexibility.  相似文献   

14.
Mechanisms by which endothelin (ET)-1 mediates chronic pulmonary hypertension remain incompletely understood. Although activation of the ET type A (ET(A)) receptor causes vasoconstriction, stimulation of ET type B (ET(B)) receptors can elicit vasodilation or vasoconstriction. We hypothesized that the ET(B) receptor attenuates the development of hypoxic pulmonary hypertension and studied a genetic rat model of ET(B) receptor deficiency (transgenic sl/sl). After 3 wk of severe hypoxia, the transgenic sl/sl pulmonary vasculature lacked expression of mRNA for the ET(B) receptor and developed exaggerated pulmonary hypertension that was characterized by elevated pulmonary arterial pressure, diminished cardiac output, and increased total pulmonary resistance. Plasma ET-1 was fivefold higher in transgenic sl/sl rats than in transgenic controls. Although mRNA for prepro-ET-1 was not different, mRNA for ET-converting enzyme-1 was higher in transgenic sl/sl than in transgenic control lungs. Hypertensive lungs of sl/sl rats also produced less nitric oxide metabolites and 6-ketoprostaglandin F(1alpha), a metabolite of prostacyclin, than transgenic controls. These findings suggest that the ET(B) receptor plays a protective role in the pulmonary hypertensive response to chronic hypoxia.  相似文献   

15.
It has been proposed that alpha-adrenoceptor vasoconstriction in coronary resistance vessels results not from alpha-adrenoceptors on coronary smooth muscle but from alpha-adrenoceptors on cardiac myocytes that stimulate endothelin (ET) release. The present experiments tested the hypothesis that the alpha-adrenoceptor-mediated coronary vasoconstriction that normally occurs during exercise is due to endothelin. In conscious dogs (n = 10), the endothelin ET(A)/ET(B) receptor antagonist tezosentan (1 mg/kg iv) increased coronary venous oxygen tension at rest but not during treadmill exercise. This result indicates that basal endothelin levels produce a coronary vasoconstriction at rest that is not observed during the coronary vasodilation during exercise. In contrast, the alpha-adrenoceptor antagonist phentolamine increased coronary venous oxygen tension during exercise but not at rest. The difference between the endothelin blockade and alpha-adrenoceptor blockade results indicates that alpha-adrenoceptor coronary vasoconstriction during exercise is not due to endothelin. However, in anesthetized dogs, bolus intracoronary injections of the alpha-adrenoceptor agonist phenylephrine produced reductions in coronary blood flow that were partially antagonized by endothelin receptor blockade with tezosentan. These results are best explained if alpha-adrenoceptor-induced endothelin release requires high pharmacological concentrations of catecholamines that are not reached during exercise.  相似文献   

16.
Endothelin (ET), which is known as a vasoconstrictive peptide, is associated with a lot of biological functions. Although endothelin receptors are expressed in the central nervous system (CNS), little is known about the effects of endothelin on neuronal function. In this study, we reported that endothelins elongate cortical neurites via the endothelin A receptor. All the endothelin isoforms tested, endothelin-1, endothelin-2, and endothelin-3, promoted neurite elongation. ET-1-induced neurite elongation was specifically inhibited by treatment with BQ123, an antagonist for the endothelin A receptor. In addition, inhibition of ET-1-induced c-Jun N-terminal kinase (JNK) activation by treatment with SP600125, a JNK inhibitor, also prevented the ET-1-mediated promotion of neurite elongation. Thus, endothelin induces cortical neurite elongation through the endothelin A receptor by a mechanism dependent on JNK.  相似文献   

17.
18.
Vascular endothelin (ET) type B (ET(B)) receptors exert dilator and constrictor actions in a complex interaction with ET(A) receptors. We aimed to clarify the presence and relative importance of nitric oxide (NO) and other mechanisms underlying the dilator effects of ET(B) receptors in rat kidneys. Complete inhibition of NO production with Nomega-nitro-L-arginine methyl ester (L-NAME, 25 mg/kg iv) enhanced the renal vasoconstriction elicited by ET-1 injected into the renal artery from -15 to -30%. Additional infusion of the NO donor nitroprusside (NP) into the renal artery did not reverse this effect (-29%) but effectively buffered ANG II-mediated vasoconstriction. Similarly, ET-1 responses were enhanced after a smaller intrarenal dose of L-NAME (-22 vs. -15%) and were unaffected by subsequent NP infusion (-21%). These results indicate that the responsiveness to ET-1 is buffered by ET(B) receptor-stimulated phasic release of NO, rather than its static mean level. Infusion of the ET(B) receptor antagonist BQ-788 into the renal artery further enhanced the ET-1 constrictor response to NP+L-NAME (-92 vs. -49%), revealing an NO-independent dilator component. In controls, vasoconstriction to ET-1 was unaffected by vehicle (-27 vs. -20%) and markedly enhanced by BQ-788 (-70%). The same pattern was observed when indomethacin (Indo) was used to inhibit cyclooxygenase (-20% for control, -22% with Indo, and -56% with ET(B) antagonist) or methylsulfonyl-6-(2-propargyloxyphenyl)-hexanamide (MS-PPOH) or miconazole+Indo was used to inhibit epoxygenase alone (-10% for control, -11% with MS-PPOH, and -35% with ET(B) antagonist) or in combination (-14% for control, -20% with Indo + miconazole, and -43% with ET(B) antagonist). We conclude that phasic release of NO, but not its static level, mediates part of the dilator effect of ET(B) receptors and that an NO-independent mechanism, distinct from prostanoids and epoxyeicosatetraenoic acids, perhaps ET(B) receptor clearance of ET-1, plays a major buffering role.  相似文献   

19.
20.
Sauvageau S  Thorin E  Villeneuve L  Dupuis J 《Peptides》2008,29(11):2039-2045
Blockade of the endothelin (ET) system is beneficial in pulmonary arterial hypertension (PAH). The contribution of ET-3 and its interactions with ET receptors have never been evaluated in the monocrotaline (MCT)-induced model of PAH. Vasoreactivity of pulmonary arteries was investigated; ET-3 localization was determined by confocal imaging and gene expression of prepro-ET-3 quantified using RT-PCR. ET-3 plasma levels tended to increase in PAH. ET-3 localized in the media of pulmonary arteries, where gene expression of prepro-ET-3 was reduced in PAH. ET-3 induced similar pulmonary vasoconstrictions in sham and PAH rats. In sham rats, the ET(A) antagonist A-147627 (10nmol/l) significantly reduced the maximal response to ET-3 (E(max) 77+/-1 to 46+/-2%, mean+/-S.E.M., P<0.001), while the ET(B) antagonist A-192621 (1mumol/l) reduced the sensitivity (EC(50) 21+/-7 to 59+/-16nmol/l, P<0.05) without affecting E(max). The combination of both antagonists completely abolished ET-3-induced pulmonary vasoconstriction. In PAH, the ET(A) antagonist further reduced the maximal response to ET-3 and shifted the EC(50) (E(max) 23+/-2%, P<0.001, EC(50) 104+/-24nmol/l, P<0.05), while the ET(B) antagonist only shifted the EC(50) (123+/-36nmol/l, P<0.05) without affecting the E(max). In PAH, dual ET receptor inhibition did not further reduce constriction compared to selective ET(A) inhibition. ET-3 significantly contributes to pulmonary vasoconstriction by activating the ET(B) at low concentration, and the ET(A) at high concentration. The increased inhibitory effect of the ET(A) antagonist in PAH suggests that the contribution of ET(B) to ET-3-induced vasoconstriction is reduced. Although ET-3 is a potent pulmonary vasoconstrictor in PAH, its potential pathophysiologic contribution remains uncertain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号