首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulfur cycling in grassland and parkland soils   总被引:3,自引:3,他引:0  
A conceptual diagram of the S cycle in grassland soils is presented as a framework for discussing S cycling process studies. Changes in the mineralization of S and in the redistribution of35S-labeled sulfate among soil organic matter fractions were investigated during incubation of cropped and uncropped soils.Little mineralization or net immobilization of sulfur occurred in closed system incubations where the soils were left undisturbed throughout the incubations. Significantly more S was mineralized in open system incubations where the soils were leached periodically. Net mineralization was significantly greater in cropped soils compared with uncropped soils. The distribution of35S was significantly affected by the addition of various substrates (sulfate, cellulose or a combination of both) and by the presence of plants. Under conditions of high solution sulfate, the majority of35S incorporated was observed in the HI-reducible S fraction. When the solution sulfate concentrations were lower, there was a reduction in the proportion of35S incorporated into the HI-reducible S fraction. The results of these experiment will be discussed in relation to the hypotheses presented by McGill and Cole (1981) and the conceptual diagram of the S cycle in grassland soils.Contribution from a symposium on the role of sulfur in ecosystem processes held August 10, 1983, at the annual meeting of the A.I.B.S., Grand Forks, ND; Myron Mitchell, convenor.Publication No. R 353 of the Saskatchewan Institute of Pedology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N OWO  相似文献   

2.
Concentrations of various sulfur compounds (SO42−, H2S, S0, acid-volatile sulfide, and total sulfur) were determined in the profundal sediments and overlying water column of a shallow eutrophic lake. Low concentrations of sulfate relative to those of acid-volatile sulfide and total sulfur and a decrease in total sulfur with sediment depth implied that the contribution of dissimilatory sulfur reduction to H2S production was relatively minor. Addition of 1.0 mM Na235SO4 to upper sediments in laboratory experiments resulted in the production of H235S with no apparent lag. Kinetic experiments with 35S demonstrated an apparent Km of 0.068 mmol of SO42− reduced per liter of sediment per day, whereas tracer experiments with 35S indicated an average turnover time of the sediment sulfate pool of 1.5 h. Total sulfate reduction in a sediment depth profile to 15 cm was 15.3 mmol of sulfate reduced per m2 per day, which corresponds to a mineralization of 30% of the particulate organic matter entering the sediment. Reduction of 35S0 occurred at a slower rate. These results demonstrated that high rates of sulfate reduction occur in these sediments despite low concentrations of oxidized inorganic compounds and that this reduction can be important in the anaerobic mineralization of organic carbon.  相似文献   

3.
Soil organic sulfur dynamics in a coniferous forest   总被引:3,自引:3,他引:0  
Sulfate microbial immobilization and the mineralization of organic S were measured in vitro in soil horizons (LFH, Ae, Bhf, Bf and C) of the Lake Laflamme watershed (47°17 N, 71°14 O) using 35SO4. LFH samples immobilized from 23 to 77% of the added 35SO4 within 2 to 11 days. The 35SO4 microbial immobilization increased with temperature and reached an asymptote after a few days. The mineral soil generally immobilized less than 20% of the added 35SO4, and an asymptote was reached after 2 days. An isotopic equilibrium was rapidly reached in mineral horizons. A two-compartment (SO4 and organic S) model adequately described 35SO4 microbial immobilization kinetics. The active organic reservoir in the whole soil profile represented less than 1% of the total organic S. The average concentrations of dissolved organic S (DOS) in the soil solutions leaving the LFH, Bhf and Bf horizons were respectively 334, 282 and 143 µgL–1. Assuming that the DOS decrease with soil depth corresponded to the quantities adsorbed in the B horizons, we estimated that 12 800 kgha–1 of organic S could have been formed since the last glaciation, which is about 13 times the size of the actual B horizons reservoirs. Our results suggest that the organic S reservoirs present in mineral forest soils are mostly formed by the DOS adsorption resulting from incomplete litter decomposition in the humus layer. The capability of these horizons to immobilize SO4 from the soil solution would be restricted to a 1% active fraction composed of microorganisms. Despite their refractory nature, these reservoirs can, however, be slowly decomposed by microorganisms and contribute to the S-SO4 export from the watershed in the long term.  相似文献   

4.
Sulphur fractionation and availability to plants are poorly understood in calcareous soils. Sixty-four calcareous soils containing varying amounts of CaCO3 were collected from ten provinces in China and their S fractions determined. Organic S was the predominant fraction of S, accounting for on average 77% of the soil total S. The amounts of adsorbed sulphate were found to be negligible. 1 M HCl extracted substantially more sulphate than either 0.01 M CaCl2 or 0.016 M KH2PO4, indicating the existence of water-insoluble but acid-soluble sulphate, probably in the form of sulphate co-precipitated with CaCO3. The concentrations of water-insoluble sulphate correlated positively with the contents of CaCO3 and accounted for 0.03–40.3% (mean 11.7%) of soil total S. To test the bioavailability of water-insoluble sulphate, a sulphate-CaCO3 co-precipitate labelled with 35S was prepared and added to a calcareous soil in a pot experiment with either NH4+ or NO3 as the N source. In 29 days, wheat plants took up 10.6% and 3.0% of the 35S added to the soil in the NH4+ and NO3 treatments, respectively. At the end of the pot experiment, the decrease of water-insoluble, acid-soluble, sulphate was more apparent in the NH4+ than in the NO3 treatment. The results indicate that sulphate co-precipitated with CaCO3 in calcareous soils may become partly available for plant uptake, depending on rhizosphere pH, if the field precipitate is similar to the laboratory prepared sample studied.  相似文献   

5.
ABSTRACT

In Chinese Hamster Ovary (CHO) cells expressing cloned human 5-hydroxy-tryptamine1A (5-HT1A) receptors, (R)-3-N,N-dicyclobutylamino-8-fluoro-[6-3H]-3,4-dihydro-2H-1-benzopyran-5-carboxamide ([3H]NAD-299) exhibited high affinity (Kd = 0.16?nM) and labeled 34% more receptors than 8-hydroxy-2-([2,3-3H]di-n-propylamino)tetralin ([3H]8-OH-DPAT). NAD-299 behaved as a silent antagonist in [35S]GTPγS binding similar to N-tert-butyl-3-(4-(2-methoxyphenyl)-piperazin-1-yl)-2-phenylpropanamide (WAY-100635) and (S)-5-fluoro-8-hydroxy-2-(di-n-propylamino)tetralin ((S)UH-301). 5-HT and 5-carboxamidotryptamine (5-CT) stimulated [35S]GTPγS binding 2.5-fold while spiperone and methiothepin inhibited [35S]GTPγS binding 1.4-fold. Furthermore, NAD-299 antagonised both the 5-HT stimulated and the spiperone inhibited [35S]GTPγS binding to basal levels. The KiL/KiH ratios for spiperone (0.66), methiothepin (0.39), WAY-100635 (0.32), (S)UH-301 (0.94), NAD-299 (1.29), NAN-190 (1.23), (S)pindolol (5.85), ipsapirone (13.1), buspirone (24.6), (±)8-OH-DPAT (47.3), flesinoxan (55.8), 5-HT (200) and 5-CT (389) correlated highly significantly with the intrinsic activity obtained with [35S] GTPγS (r = 0.97).  相似文献   

6.
Mature leaves of Ricinus communis fed with 35SO 4 2- in the light export labeled sulfate and reduced sulfur compounds by phloem transport. Only 1–2% of the absorbed radiosulfur is exported to the stem within 2–3 h, roughly 12% of 35S recovered was in reduced form. The composition of phloem translocate moving down the stem toward the root was determined from phloem exudate: 20–40% of the 35S moved in the form of organic sulfur compounds, however, the bulk of sulfur was transported as inorganic sulfate. The most important organic sulfur compound translocated was glutathione, carrying about 70% of the label present in the organic fraction. In addition, methionine and cysteine were involved in phloem sulfur transport and accounted for roughly 10%. Primarily, the reduced forms of both, glutathione and cysteine are prsent in the siever tubes.Abbreviations CySH cysteine - GSH glutathione - GSSG glutathione disulfide - NEM N-ethylmaleimide - CyS-SCy cystine  相似文献   

7.
Lupins, canola, ryegrass and wheat fertilized with Na2 35SO4 and either 15NH4Cl or K15NO3(N:S=10:1), were grown in the field in unconfined microplots, and the sources of N and S (fertilizer, soil, atmosphere, seed) in plant tops during crop development were estimated. Modelled estimates of the proportion of lupin N derived from the atmosphere, which were obtained independently of reference plants, were used to calculate the proportion of lupin N derived from the soil. Total uptake of N and S and uptake of labelled N and S increased during crop development. Total uptake of S by canola was higher than lupins, but labelled S uptake by lupins exceeded uptake by canola. The form of N applied had no effect on uptake of labelled and unlabelled forms of N or S. Ratios of labelled to unlabelled S and ratios of labelled to unlabelled N derived from soil sources decreased during growth, and were less for S than for N for each crop at each sampling time. Although ratios of labelled to unlabelled soil-derived N were similar between crops at 155, 176 and 190 days after sowing, ratios of labelled to unlabelled S for lupins were higher than for the reference crops and declined during this period. The ratios of labelled to unlabelled S in lupins and the reference plants therefore bore no relationship either to ratios of labelled to unlabelled soil-derived N in the plants, or to total S uptake by the plants. Therefore the hypothesis that equal ratios of labelled N to unlabelled soil-derived N in legumes (Rleg) and reference plants (Rref) would be indicated by equal ratios of labelled to unlabelled S was not supported by the data. The results therefore show that the accuracy of reference plant-derived values of Rleg cannot be evaluated by labelling with 35S.  相似文献   

8.
The influence of reduced sulfur compounds (including stored S0) on H2 evolution/consumption reactions in the purple sulfur bacterium, Thiocapsa roseopersicina BBS, was studied using mutants containing only one of the three known [NiFe] hydrogenase enzymes: Hox, Hup or Hyn. The observed effects depended on the kind of hydrogenase involved. The mutant harbouring Hox hydrogenase was able to use S2O32−, SO32−, S2− and S0 as electron donors for light-dependent H2 production. Dark H2 evolution from organic substrates via Hox hydrogenase was inhibited by S0. Under light conditions, endogenous H2 uptake by Hox or Hup hydrogenases was suppressed by S compounds. СО2-dependent H2 uptake by Hox hydrogenase in the light required the additional presence of S compounds, unlike the Hup-mediated process. Dark H2 consumption via Hyn hydrogenase was connected to utilization of S0 as an electron acceptor and resulted in the accumulation of H2S. In wild type BBS, with high levels of stored S0, dark H2 production from organic substrates was significantly lower, but H2S accumulation significantly higher, than in the mutant GB1121(Hox+). There is a possibility that H2 produced via Hox hydrogenase is consumed by Hyn hydrogenase to reduce S0.  相似文献   

9.
Concentrations and natural isotope abundance of total sulfur and nitrogen as well as sulfate and nitrate concentrations were measured in needles of different age classes and in soil samples of different horizons from a healthy and a declining Norway spruce (Picea abies (L.) Karst.) forest in the Fichtelgebirge (NE Bavaria, Germany), in order to study the fate of atmospheric depositions of sulfur and nitrogen compounds. The mean δ15N of the needles ranged between −3.7 and −2.1 ‰ and for δ34S a range between −0.4 and +0.9 ‰ was observed. δ34S and sulfur concentrations in the needles of both stands increased continuously with needle age and thus, were closely correlated. The δ15N values of the needles showed an initial decrease followed by an increase with needle age. The healthy stand showed more negative δ15N values in old needles than the declining stand. Nitrogen concentrations decreased with needle age. For soil samples at both sites the mean δ15N and δ34S values increased from −3 ‰ (δ15N) or +0.9 ‰ (δ34S) in the uppermost organic layer to about +4 ‰ (δ15N) or +4.5 ‰ (δ34S) in the mineral soil. This depth-dependent increase in abundance of 15N and 34S was accompanied by a decrease in total nitrogen and sulfur concentrations in the soil. δ15N values and nitrogen concentrations were closely correlated (slope −0.0061 ‰ δ15N per μmol eq N gdw −1), and δ34S values were linearly correlated with sulfur concentrations (slope −0.0576 ‰ δ34S per μmol eq S gdw −1). It follows that in the same soil samples sulfur concentrations were linearly correlated with the nitrogen concentrations (slope 0.0527), and δ34S values were linearly correlated with δ15N values (slope 0.459). A correlation of the sulfur and nitrogen isotope abundances on a Δ basis (which considers the different relative frequencies of 15N and 34S), however, revealed an isotope fractionation that was higher by a factor of 5 for sulfur than for nitrogen (slope 5.292). These correlations indicate a long term synchronous mineralization of organic nitrogen and sulfur compounds in the soil accompanied by element-specific isotope fractionations. Based on different sulfur isotope abundance of the soil (δ34S=0.9 ‰ for total sulfur of the organic layer was assumed to be equivalent to about −1.0 ‰ for soil sulfate) and of the atmospheric SO2 deposition (δ34S=2.0 ‰ at the healthy site and 2.3 ‰ at the declining site) the contribution of atmospheric SO2 to total sulfur of the needles was estimated. This contribution increased from about 20 % in current-year needles to more than 50 % in 3-year-old needles. The proportion of sulfur from atmospheric deposition was equivalent to the age dependent sulfate accumulation in the needles. In contrast to the accumulation of atmospheric sulfur compounds nitrogen compounds from atmospheric deposition were metabolized and were used for growth. The implications of both responses to atmospheric deposition are discussed.  相似文献   

10.
The hydrolysis of p-nitrophenyl sulfate, p-nitrocatechol sulfate, and [35S]sodium dodecyl sulfate was examined in anoxic sediments of Wintergreen Lake, Michigan. Significant levels of sulfhydrolase activity were observed in littoral, transition, and profundal sediment samples. Rates of sulfate formation suggest that the sulfhydrolase system would represent a major source of sulfate within these sediments. Sulfate formed by ester sulfate hydrolysis can support dissimilatory sulfate reduction as shown by the incorporation of 35S from labeled sodium dodecyl sulfate into H235S. Sulfhydrolase activity varied with sediment depth, was greatest in the littoral zone, and was sensitive to the presence of oxygen. Estimations of ester sulfate concentrations in sediments revealed large quantities of ester sulfate (~30% of total sulfur). Both total sulfur and ester sulfate concentrations varied with the sediment type and were two to three orders of magnitude greater than the inorganic sulfur concentration.  相似文献   

11.
The effect of filamentous algae invasion into Zostera marina meadows on water quality, sediment sulfur pools and sulfide invasion into plant tissues was studied experimentally. Sulfide invasion was assessed through analysis of sulfur isotopic composition (δ34S) and total sulfur (TS) concentrations in plant tissues. The algal mats (5 and 10 cm thickness) depleted oxygen in the mats and increased the pools of sulfides in the sediments. Plants exposed to algal mats had δ34S signals closer to the δ34S of sediment sulfide, whereas plants with no mats present had δ34S signals closer to the δ34S of seawater sulfate, indicating a higher sulfide invasion in plants exposed to algal mats. The δ34S varied between the plant tissues with the leaves having more positive δ34S signals than roots and rhizomes, indicating that sulfide was invading into the roots and moved to the other tissues through the lacunae. TS concentrations were higher in plants exposed to algal mats suggesting that sulfur derived from sediment sulfide accumulated in the plants. Fsulfide showed that up to 50% of the sulfides in the plants were derived from sedimentary sulfides. The combined effect of water column anoxia in the lower parts of the meadow and high sulfide invasion into the plants lead to significantly reduced growth rates after 3 weeks and the below-ground tissues showed signs of degradation suggesting that algal mats invasion in to Zostera marina meadows can result in seagrass decline.  相似文献   

12.
We investigated the effects of sulfate concentration on sulfate reduction and net S storage in lake sediments using34S as a tracer. The water overlying intact sediment cores from the hypolimnion of Mares Pond, MA, was replaced with two Na2 34SO4 solutions at either ambient (70 M) or elevated (260 M) sulfate concentrations. The 34S of the added sulfate was 4974 . Over two months, the net sulfate reduction rate in the ambient sulfate treatment was zero, while the net rate for the high sulfate treatment was 140 moles/m2/d. The water overlying the cores was kept under oxic conditions and the sediment received no fresh carbon inputs, thus the net rate reported may underestimate the in situ rate. Gross sulfate reduction rates calculated by isotope dilution were approximately 350 moles/m2/d for both treatments. While the calculation of gross sulfate reduction rates in intact sediment cores can be complicated by differential diffusion of34S and32S, isotopic fractionation, and the possible formation of ester sulfates, we believe these effects to be small. The results suggest that sulfate reduction is not strongly sulfate-limited in Mares Pond. The difference in net sulfate reduction rates between treatments resulted from a decrease in sulfide oxidation and suggests the importance of reoxidation in controlling net S storage in lake sediments. In both treatments the CRS and organic S fractions were measurably labelled in34S. Below the sediment surface, the CRS fraction was the more heavily labelled storage product for reduced sulfides.  相似文献   

13.
Vera Istvánovics 《Hydrobiologia》1993,253(1-3):193-201
In order to estimate microbial P content and biological P uptake in sediments, the tungstate precipitation method of Orrett & Karl (1987) was used in sediment extracts. This method allows a simple and rapid separation of organic and inorganic 32P radioactivity. Either inorganic 32P (as carrierfree H3 32PO4) or organic 32P (as 32P-labelled algal material) was added to surface sediment suspensions of shallow Lake Balaton. Inorganic 32P was rapidly transformed into organic 32P, and this process was completely inhibited by formaline. P content of living benthic microorganisms was estimated from steady state distribution of the radioactivity. Transformation of algal organic P into inorganic P could also be detected.In extremely P limited Lake Balaton benthic microorganisms were shown to supplement their high P requirements by inorganic P uptake. The velocity of the inorganic into organic P transformation, i.e. the rate of microbial P uptake, was comparable to P uptake in the water column. Microbial P uptake contributed significantly to total P fixation by sediments, particularly at low ( 100 µg P l–1) phosphate additions.  相似文献   

14.
We examined polycyclic aromatic hydrocarbon (PAH) attenuation in contaminated field sediments after only 2 years of plant growth. We collected sediments from vegetated and non-vegetated areas at the Indiana Harbor Canal (IHC), an industrialized area with historic petroleum contamination of soils and sediments. PAH concentrations, PAH weathering indices, and organic matter composition in sediments colonized by Phragmites, cattails, or willow trees were compared to the same indices for non-vegetated sediments. We hypothesized that bulk sediment and humin fractions with measurable increases in plant organic matter content would show measurable changes to PAH attenuation as indicated by more weathered PAH diagnostic ratios or reduced PAH concentrations. Carbon-normalized PAH concentrations were lower in vegetated bulk sediments but higher in vegetated humin fractions relative to non-vegetated sediment fractions. Total organic carbon content was not indicative of more weathered N3/P2 ratios or reduced PAH concentrations in vegetated sediment fractions. More weathered N3/P2 ratios were observed with increased modern carbon (plant carbon) content of vegetated sediment fractions. Phragmites sediments contained more modern carbon (plant carbon) and more weathered PAH ratios [C3-naphthalenes and C2-phenanthrenes (N3/P2)] than willow, cattail, and non-vegetated sediments.  相似文献   

15.
Inductively coupled plasma-mass spectrometry (ICP-MS) is a powerful tool for both quantitative multielement analyses of inorganic elements and measurement of isotope ratios (IRs). The main disadvantage of this technique is the existence of polyatomic isobaric interferences at some key masses. Zinc has been investigated for such potential interferences in serum or plasma. The Zn isotopes,66Zn and68Zn, have no apparent interferences, but32S16O2 and32S2 are isobaric with64Zn. The possible effects of S and other major components of blood plasma—Na, K, Cl, P, Ca—on Zn IRs were investigated using a series of mineral solutions which simulated human plasma with respect to these elements. The mixture of all mineral elements interfered only with64Zn (6.66 ng/mL) and70Zn (8.51 ng/mL). Interferences to66Zn,67Zn, and68Zn were minimal containing 0.90, 0.94, and 0.39 ng/mL, respectively. The copresence of Na or S shifted35Cl16O2 (atomic mass 67 coming from Cl solution) to35Cl2 which reduced the contribution to67Zn. The hypothesis that Zn IRs obtained from plasma at various intervals after the intravenous administration of enriched67Zn to humans would reflect those obtained after extraction of Zn was therefore tested. To compare the two pretreatment methods, “extraction” versus “nonextraction,” specimens were collected from 10 human subjects at intervals of 5 min to 24 h postinjection, and in 4 subjects from 5 min to 9 d postinjection. Two separate aliquots of plasma from each time-point were dried and digested with hydrogen peroxide, and the residue dissolved in nitric acid. One specimen was subjected to zinc extraction using ammonium diethyldithiocarbamate chelate followed by back extraction into nitric acid. The matching aliquot received no further pretreatment. The normalized IRs obtained from67Zn/66Zn and67Zn/68Zn in both the “extracted” and “nonextracted” samples agreed well(r 2 = 0.976 andr 2 = 0.985, respectively) compared to those from other ratios (r 2 = 0.838 for67Zn/64Zn andr 2 = 0.747 for67Zn/70Zn). Considering the minimum possibility of isobaric interferences in plasma samples,67Zn/68Zn obtained from “nonextracted” samples is sufficient for routine Zn kinetic analysis by ICP-MS.  相似文献   

16.
Sulfate concentration in the growth medium exerted a strong influence on the sulfur content of protein in two marine bacteria, Pseudomonas halodurans and Alteromonasluteo-violaceus, but the distribution of sulfur in major biochemical fractions was not affected. 90% of the total cellular sulfur was contained in low molecular weight organic compounds and protein; inorganic sulfate was not an important component. The sulfur content of isolated protein and total cellular sulfur increased in proportion to the external sulfate concentration for both bacteria, reaching a maximum at about 100–250 M. The growth rate of P. halodurans only was dependent on the sulfate concentration.Sulfur starvation of cells labeled to equilibrium with 35S-sulfate resulted in a rapid decrease in low molecular weight organic S with a concommitant increase in alcohol soluble (P. halodurans) or residue protein (A. luteo-violaceus). Although cell division was prevented, total protein increased in both bacteria, resulting in synthesis of sulfur-deficient protein. This effect was most pronounced in P. halodurans.Addition of 35S-sulfate to sulfur-starved A. luteo-violaceus further demonstrated that sulfur metabolism was restricted primarily to the synthesis and utilization of sulfurcontaining protein precursors. The low molecular weight organic S pool was replenished rapidly, and the pool size per cell reached twice the normal value before cell division resumed. Incorporation into protein was very rapid.Abbreviations L.M.W. low molecular weight - TCA trichloroacetic acid  相似文献   

17.

Aims

A high consumption of fructose leads not only to peripheral changes in insulin sensitivity and vascular function, but also to central changes in several brain regions. Given the role of the endogenous cannabinoid system in the control of energy intake, we undertook a pilot study to determine whether a high fructose diet produced changes in brain CB1 receptor functionality.

Main methods

Male rats given access ad libitum to normal chow were given either water, glucose or fructose solutions to drink. CB1 receptor functionality was measured autoradiographically as the increase in [35S]GTPγS binding produced by the agonist CP55,940.

Key findings

Seven regions were investigated: the prefrontal cortex, caudate–putamen, hippocampal CA1–CA3, dentate gyrus, amygdala, and dorsomedial and ventromedial hypothalami. Two-way robust Wilcoxon analyses for each brain region indicated that the dietary treatment did not produce significant main effects upon agonist-stimulated [35S]GTPγS binding in any of the regions, in contrast to a significant main effect upon both leptin and adiponectin levels in the blood. However, a MANCOVA of the data controlling for leptin and adiponectin as co-variables identified a significant effect of glucose and fructose treatment for five weeks upon the [35S]GTPγS response in the ventromedial hypothalamus, a region of importance for regulation of appetite.

Significance

It is concluded from this pilot study that palatable solutions do not produce overt changes in brain CB1 receptor functionality, although subtle changes in discrete brain regions may occur.  相似文献   

18.
Contents of organic sulfur, sulfate and the inorganic cations K+, Ca2+, Mg2+, Mn2+ and Na+ were compared in needles of three conifer species differing in tolerance to chronic SO2 immissions. Sulfate and organic sulfur compounds were also measured in bark and wood. Field material was collected from Norway Spruce (Picea abies (L.) Karst.), Colorado Spruce (Picea pungens Engelm.) and Scots Pine (Pinus sylvestris L.) at sites where the SO2 concentration in air was high, and at another site where it was low. In general, sulfate contents were higher but cation contents lower at the sites where SO2 concentrations were high than where they were low. Up to 114mmol · (kg DW)–1 sulfate was measured in fouryear-old needles of Norway Spruce from the Erzgebirge (annual mean of SO2 in air 32 nl · 1–1). Sulfate accumulation in this SO2-sensitive conifer increased with SO2 concentration in ambient air and with needle age, indicating that the main part of the sulfate resulted from the oxidative detoxification of SO2. Loss of inorganic cations from ageing needles was reduced, or cation levels even increased, with increasing needle age, while sulfate accumulated. Apparently, cations served as counter-ions for sulfate, which is sequestered in the vacuoles. Individual trees differed in regard to the nature of cations which accumulated with sulfate. Calcium, potassium and magnesium were the dominating cations. Sodium levels were very low. Needles of the SO2-tolerant conifers Colorado Spruce and Scots Pine growing next to Norway Spruce in the Erzgebirge did not accumulate, or accumulated less, sulfate with increasing needle age as compared to needles of Norway Spruce. However, somewhat more sulfate was found in the bark of the SO2-tolerant species than in the bark of Norway Spruce. Scots Pine contained distinctly more sulfate in the wood than the other conifers. Since accumulation of organic sulfur compounds could not be observed with increasing needle age, or in bark and wood, reduction does not appear to play a major role in the detoxification of SO2 by the investigated species. Physiological mechanisms permitting Colorado Spruce and Scots Pine to avoid the sulfate accumulation in the needles and the accompanying sequestration of cations that are observed in neighbouring Norway Spruce are discussed on the basis of the obtained data.Abbreviations Sorg organic sulfur compounds Died June 10, 1991, aged 29, in a traffic accident. He initiated this work.This work was supported by the Sonderforschungsbereich 251 of the University of Würzburg and by the Projektgruppe Bayern zur Erforschung der Wirkung von Umweltschadstoffen (PBWU). The authors with to thank Prof. Dr. W Kaiser and Prof. Dr. W. Urbach (both Julius-von-Sachs-Institut, University of Würzburg, Germany) for HPLC-analysis and ICP-analysis.  相似文献   

19.
McLaren  R. G.  Cameron  K. C.  Fraser  P. M. 《Plant and Soil》1993,155(1):375-378
Synthetic cow urine labelled with 35S and 15N was applied to large, undisturbed, monolith lysimeters sampled from subsoiled and non-subsoiled areas of a grass/clover pasture. For one year following the urine application, the lysimeters were subjected to a combination of natural rainfall, simulated rainfall and simulated flood irrigations. Drainage from the lysimeters was sampled regularly and monthly (approx.) pasture cuts taken. At the end of the year, the lysimeters were destructively sampled in 50 mm depth increments for soil analysis. Leachates, plant samples and soil samples were analysed for 35S and 15N.There were no significant differences in plant uptake of 35S and 15N between the subsoiled and nonsubsoiled lysimeters. Initially grass showed a higher degree of labelling than clover. Total amounts of 35S and 15N leached from the subsoiled lysimeters were approximately twice that leached from the nonsubsoiled ones. Leaching patterns differed substantially between the two nutrients.Total recoveries of 35S (in plants, leachates and soil extracts) accounted for 82% of the applied 35S for the subsoiled lysimeters and 72% for non-subsoiled ones. The unrecovered 35S is considered to have been incorporated into soil organic matter. Total recoveries of 15N (in plants, soil and leachates) were similar to those for 35S, but unrecovered 15N is attributed to loss by denitrification.  相似文献   

20.
In order to study the expression in plants of therolD promoter ofAgrobacterium rhizogenes, we have constructed chimaeric genes placing the coding region of thegusA (uidA) marker gene under control of tworolD promoter fragments of different length. Similar results were obtained with both genes. Expression studies were carried out in transformed R1 progeny plants. In mature transformed tobacco plants, therolD-gus genes were expressed strongly in roots, and to much lower levels in stems and leaves. This pattern of expression was transmitted to progeny, though the ratio of the level of expression in roots relative to that in leaves was much lower in young seedlings. The degree of root specificity inrolD-gus transformants was less than that of a gene constructed with domain A of the CaMV 35S promoter,domA-gus, but the level of root expression was much higher than with the latter gene. However, the level of expression of therolD-gus genes was less than that of agus gene with a 35S promoter with doubled domain B, 35S2-gus. TherolD-gus genes had a distinctive pattern of expression in roots, compared to that of the two other genes, with the strongest GUS activity observed in the root elongation zone and in vascular tissue, and much less in the root apex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号