首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.

Background

Bioturbators affect multiple biogeochemical interactions and have been suggested as suitable candidates to mitigate organic matter loading in marine sediments. However, predicting the effects of bioturbators at an ecosystem level can be difficult due to their complex positive and negative interactions with the microbial community.

Methodology/Principal Findings

We quantified the effects of deposit-feeding sea cucumbers on benthic algal biomass (microphytobenthos, MPB), bacterial abundance, and the sediment–seawater exchange of dissolved oxygen and nutrients. The sea cucumbers increased the efflux of inorganic nitrogen (ammonium, NH4 +) from organically enriched sediments, which stimulated algal productivity. Grazing by the sea cucumbers on MPB (evidenced by pheopigments), however, caused a net negative effect on primary producer biomass and total oxygen production. Further, there was an increased abundance of bacteria in sediment with sea cucumbers, suggesting facilitation. The sea cucumbers increased the ratio of oxygen consumption to production in surface sediment by shifting the microbial balance from producers to decomposers. This shift explains the increased efflux of inorganic nitrogen and concordant reduction in organic matter content in sediment with bioturbators.

Conclusions/Significance

Our study demonstrates the functional role and potential of sea cucumbers to ameliorate some of the adverse effects of organic matter enrichment in coastal ecosystems.  相似文献   

2.
This study presents a comprehensive analysis ofnitrogen (N) cycling in a second-order forestedstream in southern Michigan that has moderatelyhigh concentrations of ammonium (mean,16 g N/L) and nitrate (17 g N/L). Awhole-stream 15NH4 + addition wasperformed for 6 weeks in June and July, and thetracer 15N was measured downstream inammonium, nitrate, and detrital and livingbiomass. Ancillary measurements includedbiomass of organic matter, algae, bacteria andfungi, nutrient concentrations, hydrauliccharacteristics, whole-stream metabolism, andnutrient limitation assays. The resultsprovide insights into the heterotrophic natureof woodland streams and reveal the rates atwhich biological processes alter nitrogentransport through stream systems.Ammonium uptake lengths were 766–1349 m anduptake rates were 41–60 g N m–2min–1. Nitrate uptake could not bedetected. Nitrification rates were estimatedfrom the downstream increase in15N-enriched nitrate using a simulationmodel. The ammonium was removed bynitrification (57% of total uptake),heterotrophic bacteria and fungi associatedwith detritus (29%), and epilithic algae(14%). Growth of algae was likely limited bylight rather than nutrients, and dissolvedO2 revealed that the stream metabolism washeterotrophic overall (P:R = 0.2). Incubationsof detritus in darkened chambers showed thatuptake of 15N was mostly heterotrophic.Microbial N in detritus and algal N inepilithon appeared to reach isotopic steadystate with the dissolved ammonium, but theisotopic enrichment of the bulk detritus andepilithon did not approach that of ammonium,probably due to a large fraction of organic Nin the bulk samples that was not turning over. The actively cycling fraction of total N inorganic compartments was estimated from theisotopic enrichment, assuming uptake ofammonium but not nitrate, to be 23% forepilithon, 1% for fine benthic organic matter,5% for small woody debris, and 7% for leaves. These percentages agree with independentestimates of epilithic algal biomass, whichwere based on carbon:chlorophyll ratios in bulksamples and in algal fractions separated bydensity-gradient centrifugation in colloidalsilica, and of microbial N in the detritus,which were based on N released by chloroformfumigations.  相似文献   

3.
Effects of light on the short term competition for organic and inorganic nitrogen between maize and rhizosphere microorganisms were investigated using a mixture of amino acid, ammonium and nitrate under controlled conditions. The amount and forms of N added in the three treatments was identical, but only one of the three N forms was labeled with 15N. Glycine was additionally labeled with 14C to prove its uptake by maize and incorporation into microbial biomass in an intact form. Maize out-competed microorganisms for during the whole experiment under low and high light intensity. Microbial uptake of 15N and 14C was not directly influenced by the light intensity, but was indirectly related to the impact the light intensity had on the plant. More was recovered in microbial biomass than in plants in the initial 4 h under the two light intensities, although more 15N-glycine was incorporated into microbial biomass than in plants in the initial 4 h under low light intensity. Light had a significant effect on uptake by maize, but no significant effects on the uptake of or 15N-glycine. High light intensity significantly increased plant uptake of and glycine 14C. Based on 14C to 15N recovery ratios of plants, intact glycine contributed at least 13% to glycine-derived nitrogen 4 h after tracer additions, but it contributed only 0.5% to total nitrogen uptake. These findings suggest that light intensity alters the competitive relationship between maize roots and rhizosphere microorganisms and that C4 cereals such as maize are able to access small amounts of intact glycine. We conclude that roots were stronger competitor than microorganisms for inorganic N, but microorganisms out competed plants during a short period for organic N, which was mineralized into inorganic N within a few hours of application to the soil and was thereafter available for root uptake.  相似文献   

4.
We report here the first comprehensive seasonal study of benthic microbial activity in an Antarctic coastal environment. Measurements were made from December 1990 to February 1992 of oxygen uptake and sulfate reduction by inshore coastal sediments at Signy Island, South Orkney Islands, Antarctica. From these measurements the rate of benthic mineralization of organic matter was calculated. In addition, both the deposition rate of organic matter to the bottom sediment and the organic carbon content of the bottom sediment were measured during the same period. Organic matter input to the sediment was small under winter ice cover, and the benthic respiratory activity and the organic content of the surface sediment declined during this period as available organic matter was depleted. On an annual basis, about 32% of benthic organic matter mineralization was anoxic, but the proportion of anoxic compared with oxic mineralization increased during the winter as organic matter was increasingly buried by the amphipod infauna. Fresh organic input occurred as the sea ice melted and ice algae biomass sedimented onto the bottom, and input was sustained during the spring after ice breakup by continued primary production in the water column. The benthic respiratory rate and benthic organic matter content correspondingly increased towards the end of winter with the input of this fresh organic matter. The rates of oxygen uptake during the southern summer (80 to 90 mmol of O2 m-2 day-1) were as high as those reported for other sediments at much higher environmental temperatures, and the annual mineralization of organic matter was equally high (12 mol of C m-2 year-1). Seasonal variations of benthic activity in this antarctic coastal sediment were regulated by the input and availability of organic matter and not by seasonal water temperature, which was relatively constant at between -1.8 and 0.5°C. We conclude that despite the low environmental temperature, organic matter degradation broadly balanced organic matter production, although there may be significant interrannual variations in the sources of the organic matter inputs.  相似文献   

5.
Olila  O. G.  Reddy  K. R. 《Hydrobiologia》1997,345(1):45-57
Biogeochemical reactions in shallow eutrophic lakes areaffected bythe changes in redox potential (Eh) as bottom sedimentsundergotemporal resuspension and settling. The stability of varioussediment P fractions and kinetics of P-uptake were evaluatedfortwo sub-tropical lakes (Lake Apopka and Lake Okeechobee,Florida)using sediment suspensions in closed systems maintained atvariousEh levels ranging from –235 to 555 mV. Redox potential hadminimal effect on the stability of NaOH-P (Fe-/Al-bound P plusmoderately resistant organic P) and HCl-P (Ca-/Mg-P) fractionsinLake Apopka sediments. Increases in ortho-P and NH4Cl-P(loosely-bound P plus labile organic P) concentrations wereobserved in highly reduced (Eh=–225 mV) Apopkasediments.Phosphate solubility diagrams and mineral equilibriacalculationssuggest that P-uptake by Apopka bottom sediments at elevated Pconcentrations (ortho-P110 M) was due toformationof Ca-P compounds and/or co-precipitation of P withCaCO3. Incontrast, the ortho-P concentrations for Lake Okeechobeebottomsediments increased exponentially with decreasing Eh. Thequantityof NaOH-P fractions for these sediments decreased withdecreasingEh, suggesting the release of Fe- and Mn-bound P intosolution.Phosphate-uptake by Okeechobee bottom sediments (pH 7.5,ambient)followed first order kinetics, yielding a rate constant (k)of 0.51±0.05 h-1. Unlike that of Apopka, the mudsediments in Lake Okeechobee have strong affinity for P ineitheraerobic or anaerobic conditions. Results suggest that even incalcareous systems, Fe and Al, when present in highconcentrations(as in the case of Lake Okeechobee), are actively involved inregulating P-uptake and geochemistry.  相似文献   

6.
Benthic community oxygen uptake of Lake Attersee sediments was measured between 1976 and 1979, along two profiles at 25, 50 and 100 m depth. Profile I was situated in the bay of Unterach into which the main tributary, Mondsee-Ache, discharges a high load of organic matter. Profile II was chosen at Weyregg to avoid the eutrophying effect of Mondsee-Ache. Oxygen uptake rates of Unterach sediments at 25 and 50 m depth were found to be higher when compared to the other sites (mean rates: Unterach 25 m = 15.56, 50 m = 11.05 mg O2 · m−2 · h−1; Weyregg 25 m = 6.43, 50 m = 5.14 mg O2 · m−2 · h−1). Organic content of the uppermost sediment layer was also higher in the bay of Unterach than at Weyregg. Oxygen uptake rates of undisturbed sediment cores vary considerably throughout the year, but no simple correlation existed with variations in organic content of the sediments. Peaks of organic matter were found to concur with following peaks of oxygen uptake rates, which implies that a certain time span is necessary for transforming freshly sedimented organic matter into a state digestable for the benthic community. The retardation between increasing organic matter of the sediment and the corresponding increase of benthic oxygen uptake was different at Unterach and Weyregg respectively, which is explained by the different quality of sedimenting material.  相似文献   

7.
The areal distribution of organic C contents, 13C values, total N and P and biogenic Si contents in surficial sediments were used to study the distribution, origin and diagenetic transformations of sedimented biogenic debris in the eutrophic subalpine Lake Bled (Slovenia), which for most of the yearhas an anoxic hypolimnion. The influence of an allochthonous input, restricted to the western basin, was clearly traced by higher organic C and total N and P contents, higher 13C values, and higher sedimentation rate in comparison to the eastern basin. The low 13C values of sedimentary organic matter in the major part of the lake, lower than the 13C values of different types of organic matter, suggest that this sedimentary organic matter is most probably the product of a microbial community and not a residue of primary production.The temporal variation of benthic diffusive fluxes of NH4, Si and PO4, derived from modelling the pore water profiles, was related to sedimentation of phytoplanktonic blooms, while the PO4 fluxes were also dependent on changing redox conditions at the sediment-water interface in the period of the winter-spring overtum. The removal of PO4 in pore waters is probably due to the adsorption of phosphate and precipitation of apatite and vivianite. The budget of C, N and P at the sediment-water interface revealed a high recycling efficiency (>70%), also confirmed by the rather uniform (or only slightly decreasing) vertical profiles of organic C, total N and P in sediment cores and C/N and C/P ratios. The percentage of biogenic Si recycling is low (<10%), suggesting its removal in sediments.  相似文献   

8.
Soil organic sulfur dynamics in a coniferous forest   总被引:3,自引:3,他引:0  
Sulfate microbial immobilization and the mineralization of organic S were measured in vitro in soil horizons (LFH, Ae, Bhf, Bf and C) of the Lake Laflamme watershed (47°17 N, 71°14 O) using 35SO4. LFH samples immobilized from 23 to 77% of the added 35SO4 within 2 to 11 days. The 35SO4 microbial immobilization increased with temperature and reached an asymptote after a few days. The mineral soil generally immobilized less than 20% of the added 35SO4, and an asymptote was reached after 2 days. An isotopic equilibrium was rapidly reached in mineral horizons. A two-compartment (SO4 and organic S) model adequately described 35SO4 microbial immobilization kinetics. The active organic reservoir in the whole soil profile represented less than 1% of the total organic S. The average concentrations of dissolved organic S (DOS) in the soil solutions leaving the LFH, Bhf and Bf horizons were respectively 334, 282 and 143 µgL–1. Assuming that the DOS decrease with soil depth corresponded to the quantities adsorbed in the B horizons, we estimated that 12 800 kgha–1 of organic S could have been formed since the last glaciation, which is about 13 times the size of the actual B horizons reservoirs. Our results suggest that the organic S reservoirs present in mineral forest soils are mostly formed by the DOS adsorption resulting from incomplete litter decomposition in the humus layer. The capability of these horizons to immobilize SO4 from the soil solution would be restricted to a 1% active fraction composed of microorganisms. Despite their refractory nature, these reservoirs can, however, be slowly decomposed by microorganisms and contribute to the S-SO4 export from the watershed in the long term.  相似文献   

9.
We investigated the effects of sulfate concentration on sulfate reduction and net S storage in lake sediments using34S as a tracer. The water overlying intact sediment cores from the hypolimnion of Mares Pond, MA, was replaced with two Na2 34SO4 solutions at either ambient (70 M) or elevated (260 M) sulfate concentrations. The 34S of the added sulfate was 4974 . Over two months, the net sulfate reduction rate in the ambient sulfate treatment was zero, while the net rate for the high sulfate treatment was 140 moles/m2/d. The water overlying the cores was kept under oxic conditions and the sediment received no fresh carbon inputs, thus the net rate reported may underestimate the in situ rate. Gross sulfate reduction rates calculated by isotope dilution were approximately 350 moles/m2/d for both treatments. While the calculation of gross sulfate reduction rates in intact sediment cores can be complicated by differential diffusion of34S and32S, isotopic fractionation, and the possible formation of ester sulfates, we believe these effects to be small. The results suggest that sulfate reduction is not strongly sulfate-limited in Mares Pond. The difference in net sulfate reduction rates between treatments resulted from a decrease in sulfide oxidation and suggests the importance of reoxidation in controlling net S storage in lake sediments. In both treatments the CRS and organic S fractions were measurably labelled in34S. Below the sediment surface, the CRS fraction was the more heavily labelled storage product for reduced sulfides.  相似文献   

10.
An experiment was set up to investigate the role of arbuscular mycorrhiza (AM) in utilization of P from organic matter during mineralization in soil. Cucumber (Cucumis sativus L.) inoculated with one of two AM fungi or left uninoculated were grown for 30 days in cross-shaped PVC pots. One of two horizontal compartments contained 100 g soil (quartz sand: clay loam, 1:1) with 0.5 g ground clover leaves labelled with32P. The labelled soil received microbial inoculum without AM fungi to ensure mineralization of the added organic matter. The labelling compartment was separated from a central root compartment by either 37 m or 700 m nylon mesh giving only hyphae or both roots and hyphae, respectively, access to the labelled soil. The recovery of32P from the hyphal compartment was 5.5 and 8.6% for plants colonized withGlomus sp. andG. caledonium, respectively, but only 0.6 % for the non-mycorrhizal controls. Interfungal differences were not related to root colonization or hyphal length densities, which were lowest forG. caledonium. Both fungi depleted the labelled soil of NaHCO3-extractable P and32P compared to controls. A 15–25% recovery of32P by roots was not enhanced in the presence of mycorrhizas, probably due to high root densities in the labelled soil. The experiment confirms that AM fungi differ in P uptake characteristics, and that mycorrhizal hyphae can intercept some P immobilization by other microorganisms and P-sorbing clay minerals.  相似文献   

11.
The fate of lignin in water and sediment of the Garonne river (France) and of a pond in its floodplain was examined using specifically labeled [14C-lignin] lignocelluloses. No significant differences appeared in the mineralization rate of alder, poplar or willow [14C-lignin] in running water samples. Conversion of total radioactivity to 14CO2 ranged between 18.7% and 24.4% after 120 days of incubation. Degree of 14C-labeled lignin mineralization in standing water and sediments was clearly lower, especially in submerged sediments, and was correlated with oxygen supply. After 60 days of incubation 3.3% to 7.9% of the 14C-labeled lignin was recovered in water samples as dissolved organic carbon originating from microbial metabolism. In water extracts from sediment the percentage of dissolved organic 14C was only 0.4% to 1.3% of the applied activity. In the humic fraction extracted from sediments it did not exceed 4.4% which was much lower than in soils. No significant difference appeared between river and pond conditions for humic substances formation.  相似文献   

12.
An experimental approach of the phosphate exchange across the water–sediment interface in fish ponds of the Deroua farm (Béni-Mellal, Morocco) is needed to understand the phosphate dynamics in these ponds in relation to their water quality. During this study, we conducted experiments to determine the P-fractions of the different pond sediments and to estimate the release from these sediments of phosphate available for algal uptake. We also determined the amount of phosphate needed to saturate the sediments of two different fish ponds under anoxic and oxic conditions. Phosphate release from sediments comes mainly from Fe(OOH)P and is more important in ponds lined with sheets. The accumulation of organic matter in sediments favours the installation of anoxic conditions and enhances the phosphate release from CaCO3P, labile in these pond sediments. Under experimental conditions, org-P plays a minor role in the P-release. Oxic conditions, to the contrary, have an inhibitory effect on the P-release from sediments. About 80–98% of the P-adsorbed onto different pond sediments was recovered in the inorg-P-fractions. Aeration induces the oxidation of FeS to Fe(OOH) which can adsorb phosphate from solution. Besides, the presence of bacteria in pond sediments was essential to promote phosphate release under anoxic conditions by controlling the oxidation state of iron and the mineralization of the organic matter. Sheet-lined ponds, when insufficiently dried, accumulate a large quantity of organic matter in their sediments. After a decrease in pH, P is released from CaCO3P and enhances the phytoplankton productivity responsible for renewed accumulation of organic matter. Org-C concentrations in sediments over 20 mg g–1 d.w. favour the formation of toxic factors (Fe2+, Mn2+, NO2 and H2S) harmful for carp growth. An extended period of drying efficiently enhances the mineralization of organic matter.  相似文献   

13.
Since the middle of 1990s the trend of Lake Balaton towards an increasingly trophic status has been reversed, but N2-fixing cyanobacteria are occasionally dominant, endangering water quality in summer. The sources of nitrogen and its uptake by growing phytoplankton were therefore studied. Experiments were carried out on samples collected from the middle of the Eastern (Siófok) and Western (Keszthely) basins between February and October 2001. Ammonium, urea and nitrate uptake and ammonium regeneration were measured in the upper 5-cm layer of sediment using the 15N-technique. Ammonium was determined by an improved microdiffusion assay. N2 fixation rates were measured by the acetylene-reduction method. Ammonium regeneration rates in the sediment were similar in the two basins. They were relatively low in winter (0.13 and 0.16 μg N cm?3 day?1 in the Eastern and Western basin, respectively), increased slowly in the spring (0.38 and 0.45 μg N cm?3 day?1) and peaked in late summer (0.82 and 1.29 μg N cm?3 day?1, respectively). Ammonium uptake was predominant in spring in the Eastern basin and in summer in the Western basin, coincident with the cyanobacterial bloom. The amount of N2 fixed was less than one third of the internal load during summer when external N loading was insignificant. Potentially, the phytoplankton N demand could be supported entirely by the internal N load via ammonium regeneration in the water column and sediment. However, the quantity of N from ammonium regeneration in the upper layer of sediment combined with that from the water column would limit the standing phytoplankton crop in spring in both basins and in late summer in the Western basin, especially when the algal biomass increases suddenly.  相似文献   

14.
An understanding of the mechanisms controlling nutrient availability and retention in and across ecosystems allows for a greater understanding of the role of nutrients in maintaining ecosystem structure and function. To examine the underlying mechanisms of phosphorus (P) cycling in northern peatlands, we compared the retention and movement of P across a natural hydrologic/pH gradient in nine peatlands by applying as a light rain an in situ tracer amount of 32PO4 –3 to track changes in P pools (vegetation, soil, microbial) over 30 days. The 31P concentrations of available P, microbial P, and the root P at 10–20 cm did not differ across the gradient, although total soil P and aboveground vegetation P content (g m–2) increased from bog to rich fen. Total retention of 32P in the first 24 hours of application was greatest in the bogs and intermediate fens (90–100%) and was very low (20–50%) in the rich fens. Retention of P in the different pools was dependent on the type of peatland and changed with time. In the first 24 hours in the bogs and intermediate fens, the microbial pool contained the largest amount of 32P, but by the seventh day, the aboveground vegetation contained the largest amount. In the rich fen, the recovered 32P was almost equally divided between the aboveground vegetation and the litter layer with very little in other pools. Therefore, although bogs and intermediate fens have a small total P pool, they have similar P availability to rich fens because of rapid cycling and efficient retention of P.  相似文献   

15.
Sequential fractionation of sediment phosphate   总被引:24,自引:15,他引:9  
By means of sequential extractions with Ca-NTA and EDTA, a separation was performed between Fe(OOH) P and CaC03P in a few sediments; the remaining fraction, considered to be organic phosphate, was quantified as well. We found that with the commonly used method of extraction with NaOH and H2S04, less Fe(OOH) P and much more CaC03 P was found than with the chelating extractants. The organic phosphate pool in live and dead algal material and in some mud samples was partly hydrolysed and therefore recovered as inorganic phosphates with classical extractions. The difference between chelating extractants and the classical ones is discussed.Abbreviations o-P: ortho phosphate (or its concentration) - org-P: organic phosphate - extr-P: extractable sediment bound phosphate - extr-Fe: extractable sediment bound iron - Fe(OOH) P: iron bound, sediment phosphate - CaCO3 P: calcium bound, sediment phosphate - org-C: organic sediment bound carbon  相似文献   

16.
The influence of natural populations of the sub-surface deposit-feeding amphipod Victoriopisa australiensis on sediment biogeochemistry was assessed by randomly collecting 21 sediment cores in a zone of Coombabah Lake, southern Moreton Bay, Australia, where the benthic infauna was dominated by this species. Cores were incubated sequentially to determine sediment–water column fluxes of oxygen, dissolved inorganic carbon and inorganic N species, followed by incubations to determine rates of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) using the isotope pairing technique. Finally, each core was sieved in order to determine the population and biomass of amphipods present. Whilst all measures of overall benthic metabolism (sediment oxygen demand, and effluxes of inorganic carbon and nitrogen) showed increased with amphipod density, with rates being stimulated 70–220% at the highest categorised density range of 2,500–3,500 ind m−2, only the correlation with dissolved inorganic carbon was statistically significant. In contrast, there were no discernable trends between amphipod densities and any of the N-cycle processes with the slopes of all correlations being very close to zero. These results highlight the differences in mesocosm simulations of fauna effects, which primarily relate to shifts in rates of organic matter turnover, compared to natural sediments where fauna effects relate more to induced changes in rates of organic matter deposition. Therefore, while mesocosms represent a powerful tool to investigate the mechanisms by which fauna influences microbial metabolism in the sediment, only studies of natural sediments can determine to what extent these mechanisms function in situ. Handling editor: Pierluigi Viaroli  相似文献   

17.
Replenishment of soil solution organic and inorganic P in a sterile and nonsterile grassland soil amended with 0 and 235 kg P ha–1 for 13 consecutive years was investigated in a recirculating column system. In sterilized treatments, P liberated from soil biomass, initially increased solution organic and inorganic P concentrations to about 0.3 and 0.6 g P cm–3 in the 0 and 235 kg P treatment, respectively. Sterilization effects were larger than the residual fertilizer effect. Subsequently, in sterilized treatments were microbial activity was lacking, removal of solution P over the duration of the experiment reduced organic P concentration to the detection limit (0.001 g P cm–3). Organic P concentrations in the nonsterile treatment were maintained at about 0.015 g P cm–3 which was higher than inorganic P concentration. Inorganic P concentrations were about 0.002 and 0.008 g P cm–3 in the nonfertilized and the fertilized treatment, respectively. Inorganic P buffer power was greater in the nonsterile treatments, but abiotic buffering alone could not account for the measured inorganic P concentrations found during desorption. It was concluded that biomass P is a major factor controlling organic and inorganic P solution concentrations in this systems.  相似文献   

18.
The rates of microbial processes and phylogenetic diversity of the microorganisms responsible for organic matter production and decomposition in the benthic communities and bottom sediments of the rivers Solyanka, Lantsug, Khara, Chernavka, and Bol’shaya Smorogda (Lake Elton area, Volgograd oblast, Russia) were studied. The biomass and primary production of cyano–bacterial communities varied significantly within the ranges of 20–903 mg Chl a/m2 and 0.2–21 mg C/(m2 h), respectively. Depending on the season, the share of anoxygenic CO2 fixation varied from 20% to the values comparable to the rate of oxygenic photosynthesis. The total heterotrophic activity of microbial communities determined as the rate of dark CO2 assimilation varied from 31 to 750 μmol/(dm3 day) in the mats and from 3 to 137 μmol/(dm3 day) in the sediments. The rates of sulfate reduction and hydrogenotrophic methanogenesis varied from 10 to 2621 μmol S/dm3 day) and from 1.5 to 323 nmol CH4/(dm3 day), respectively. High-throughput sequencing of the 16S rRNA genes in cyano–bacterial mats revealed microorganisms belonging to 20 phyla, with the sequences of Cyanobacteria, Proteobacteria, and Bacteroidetes being the most numerous.  相似文献   

19.
Freshwater isoetids exchanges a high proportion of the photosynthetically produced oxygen over the extensive root system and, therefore, they influence the redox potential (Eh) and phosphorus (P) availability in their sediments. Because isoetids rely on the sediment for P uptake, P may be a key element in controlling the distribution of isoetids. We investigated biomass and P availability to isoetids (Littorella uniflora and Isoetes lacustris) in a transect of five stations across the littoral zone in oligotrophic Lake Kalgaard, Denmark. At the two shallowest stations (0.6 and 1.0 m depth) the redox potential in the low organic rhizosphere sediment was high (>300 mV) and low concentrations of reduced exchangeable iron (Fe) and manganese (Mn) compounds in the sediment and of precipitated Fe and Mn oxides on isoetid roots (plaques) were found. The concentration of sediment P pools was low and so was isoetid P content and isoetid biomass. At intermediate water depth (1.8 m) sediment Eh was high (300 mV) and isoetids showed low root plaque concentrations. However, higher concentration of P pools in the rhizosphere was found at 1.8 m and isoetids showed the highest P content and biomass. At deeper stations (2.8 and 4.6 m depth) Eh was low (<100 mV) in the high organic rhizosphere and high concentrations of plaques were found. The P content in the sediment was high, however, isoetids showed low biomass and low P content. We suggest that the low P content in isoetids growing on P rich organic sediments is partly due to inhibition of the P uptake because of adsorption of P to the oxidized Fe and Mn plaques. However, ratios between oxidized Fe and Fe-bound P, 150 for plaques and 40 for sediment, suggest the isoetids are able to access some of the P that is bound in the plaques. The pools of dissolved P in the porewater were 25–1100 times lower than the estimated annual P requirement for net growth of isoetids while solid fraction P pools were 20–260 times higher than the estimated annual P requirement. Clearly, the oxygen release from isoetid roots decreases the availability of P either by keeping the entire rhizosphere oxidized (low organic sediments) or by the formation of root plaques (high organic sediments).  相似文献   

20.
The chemical compositions of ground water and organic matter in sediments were investigated at a sandy shore of Tokyo Bay, Japan to determine the fate of ground water NO3 . On the basis of Cl distribution in ground water, the beach was classified into freshwater (FR)-, transition (TR)-, and seawater (SW)-zones from the land toward the shoreline. The NO3 and N2O did not behave conservatively with respect to Cl during subsurface mixing of freshwater and seawater, suggesting NO3 consumption and N2O production in the TR-zone. Absence of beach vegetation indicated that NO3 assimilation by higher plants was not as important as NO3 sink. Low NH4 + concentrations in ground water revealed little reduction of NO3 to NH4 +. These facts implied that microbial denitrification and assimilation were the likely sinks for ground water NO3 . The potential activity and number of denitrifiers in water-saturated sediment were highest in the low-chlorinity part of the TR-zone. The location of the highest potential denitrification activity (DN-zone) overlapped with that of the highest NO3 concentration. The C/N ratio and carbon isotope ratio (13C) of organic matter in sediment (< 100 -m) varied from 12.0 to 22.5 and from –22.5 to –25.5, respectively. The 13C value was inversely related to the C/N ratio (r 2 = 0.968, n = 11), which was explained by the mixing of organic matters of terrestrial and marine origins. In the DN-zone, the fine sediments were rich in organic matters with high C/N ratios and low 13C values, implying that dissolved organic matters of terrestrial origin might have been immobilized under slightly saline conditions. A concurrent supply of NO3 and organic matter to the TR-zone by ground water discharge probably generates favorable conditions for denitrifiers. Ground water NO3 discharged to the beach is thus partially denitrified and fixed as microbial biomass before it enters the sea. Further studies are necessary to determine the relative contribution of these processes for NO3 removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号