首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ricin is a potent cytotoxic protein derived from the higher plant Ricinus communis that inactivates eukaryotic ribosomes. In this paper we have studied the mechanism of action of ricin A-chain on rat liver ribosomes in vitro. Our findings indicate that the toxin inactivates the ribosomes by modifying both or either of two nucleoside residues, G4323 and A4324, in 28 S rRNA. These nucleotides are located close to the alpha-sarcin cleavage site and become resistant to all ribonucleases tested. The examination of the lability of phosphodiester bonds of these nucleotides to both mild alkaline digestion and aniline treatment at acidic pH suggests that the base of A4324 is removed by the toxin. This unique activity of ricin A-chain was also observed when naked 28 S rRNA is used as a substrate, indicating that the toxin directly acts on the RNA. Similar activity on 28 S rRNA is also exhibited by abrin and modeccin, ricin-related toxins, suggesting a general mechanistic pathway for ribosome inactivation by lectin toxins.  相似文献   

2.
The modification reaction of 28 S rRNA in eukaryotic ribosomes by ricin A-chain was characterized. To examine whether ricin A-chain release any bases from 28 S rRNA, rat liver ribosomes were incubated with a catalytic amount of the toxin, and a fraction containing free bases and nucleosides was prepared from the postribosomal fraction of the reaction mixture by means of ion-exchange column chromatography. Thin-layer chromatographic analysis of this fraction revealed a release of 1 mol of adenine from 1 mol of ribosome. When the ribosomes or naked total RNAs were treated with ricin A-chain in the presence of [32P] phosphate, little incorporation of the radioactivity into 28 S rRNA was observed, indicating that the release is not mediated by phosphorolysis. Thus, considering together with the previous result (Endo, Y., Mitsui, K., Motizuki, M., and Tsurugi, K. (1987) J. Biol. Chem. 262, 5908-5912), the results in the present experiments demonstrated that ricin A-chain inactivates the ribosomes by cleaving the N-glycosidic bond of A4324 of 28 S rRNA in a hydrolytic fashion.  相似文献   

3.
Y Endo  T Oka  K Tsurugi  H Franz 《FEBS letters》1989,248(1-2):115-118
A toxic lectin from Phoradendron californicum (PCL) was found to inactivate catalytically 60 S ribosomal subunits of rabbit reticulocytes, resulting in the inhibition of protein synthesis. To study the mechanism of action of PCL, rat liver ribosomes were treated with the toxin and the extracted rRNA was treated with aniline. A fragment containing about 450 nucleotides was released from the 28 S rRNA. Analysis of the nucleotide sequence of the fragment revealed that the aniline-sensitive phosphodiester bond was between A4324 and G4325 of the 28 S rRNA. These results indicate that PCL inactivates the ribosomes by cleaving an N-glycosidic bond at A4324 of 28 S rRNA in the ribosomes as does ricin A-chain.  相似文献   

4.
The RNA N-glycosidase activity of ricin A-chain has been characterized. When rat liver ribosomes were used as substrates, the A-chain cleaved the N-glycosidic bond at A-4324 in 28S rRNA. An apparent Michaelis constant (Km) for the reaction was determined to be 2.6 microM and the turnover number (Kcat) was 1777 min-1. When naked rRNA was the substrate, the A-chain cleaved the same bond in 28S rRNA but at a greatly reduced rate. The Km value was 5.8 microM. The results suggest that the A-chain has a similar affinity for 28S rRNA in both ribosomes and the naked states. When the deproteinized Escherichia coli rRNA was the substrates, ricin A-chain cleaved a N-glycosidic bond at A-2600 in 23S rRNA which corresponds to the ricin-site in 28S rRNA of rat liver ribosomes, while the A-chain has little activity on 23S rRNA in the ribosomes. The results suggest that ricin A-chain acts directly on RNA by recognizing a certain structure in the molecules. Using the secondary structure models for each species of rRNA, we have deduced a loop and stem structure having GAGA in the loop to be a minimum requirement for the substrate of ricin A-chain.  相似文献   

5.
The site of action of six different ribosome-inactivating proteins from plants on eukaryotic ribosomes was studied. Treatment of ribosomes with any one of these proteins caused the 28S rRNA extracted from the inactivated ribosomes to become sensitive to treatment with aniline. A fragment containing about 450 nucleotides was released from the 28S rRNA. Further analysis of the nucleotide sequences of the 450-nucleotide fragments revealed that the aniline-sensitive phosphodiester bond was between A-4324 and G-4325 of the 28S rRNA. These results indicate that all six ribosome-inactivating proteins damage eukaryotic ribosomes by cleaving the N-glycosidic bond at A-4324 of the 28S rRNA of the ribosomes, as does ricin A-chain.  相似文献   

6.
Ricin is a cytotoxic protein that inactivates ribosomes by hydrolyzing the N-glycosidic bond between the base and the ribose of the adenosine at position 4324 in eukaryotic 28 S rRNA. Ricin A-chain will also catalyze depurination in naked prokaryotic 16 S rRNA; the adenosine is at position 1014 in a GAGA tetraloop. The rRNA identity elements for recognition by ricin A-chain and for the catalysis of cleavage were examined using synthetic GAGA tetraloop oligoribonucleotides. The RNA designated wild-type, an oligoribonucleotide (19-mer) that approximates the structure of the ricin-sensitive site in 16 S rRNA, and a number of mutants were transcribed in vitro from synthetic DNA templates with phage T7 RNA polymerase. With the wild-type tetraloop oligoribonucleotide the ricin A-chain-catalyzed reaction has a Km of 5.7 microM and a Kcat of 0.01 min-1. The toxin alpha-sarcin, which cleaves the phosphodiester bond on the 3' side of G4325 in 28 S rRNA, does not recognize the tetraloop RNA, although alpha-sarcin does affect a larger synthetic oligoribonucleotide that has a 17-nucleotide loop with a GAGA sequence; thus, there is a clear divergence in the identity elements for the two toxins. Mutants were constructed with all of the possible transitions and transversions of each nucleotide in the GAGA tetraloop; none was recognized by ricin A-chain. Thus, there is an absolute requirement for the integrity of the GAGA sequence in the tetraloop. The helical stem of the tetraloop oligoribonucleotide can be reduced to three base-pairs, indeed, to two base-pairs if the temperature is decreased, without affecting recognition; the nature of these base-pairs does not influence recognition or catalysis by ricin A-chain. If the tetraloop is opened so as to form a GAGA-containing hexaloop, recognition by ricin A-chain is lost. This suggests that during the elongation cycle, a GAGA tetraloop either exists or is formed in the putative 17-member single-stranded region of the ricin domain in 28 S rRNA and this bears on the mechanism of protein synthesis.  相似文献   

7.
The rRNA depurination activities of five ribosome-inactivating proteins (RIPs) were compared in vitro using yeast and tobacco leaf ribosomes as substrates. All of the RIPs (pokeweed antiviral protein (PAP), dianthin 32, tritin, barley RIP and ricin A-chain) were active on yeast ribosomes. PAP and dianthin 32 were highly active and ricin A-chain weakly active on tobacco ribosomes, whereas tritin and barley RIP were inactive. PAP and dianthin 32 were highly effective in inhibiting the formation of local lesions caused by tobacco mosaic virus (TMV) on tobacco leaves, whereas tritin, barley RIP and ricin A-chain were ineffective. The apparent anomaly between the in vitro rRNA depurination activity, but lack of antiviral activity of ricin A-chain was further investigated by assaying for rRNA depurination in situ following the topical application of the RIP to leaves. No activity was detected, a finding consistent with the apparent lack of antiviral activity of this RIP. Thus, it is concluded that there is a positive correlation between RIP-catalysed depurination of tobacco ribosomes and antiviral activity which gives strong support to the hypothesis that the antiviral activity of RIPs works through ribosome inactivation.  相似文献   

8.
Y Endo  K Tsurugi  H Franz 《FEBS letters》1988,231(2):378-380
The site of action of the A-chain of mistletoe lectin (ML-A) from Viscum album on eukaryotic ribosomes was studied. Treatment of rat liver ribosomes with ML-A, followed by treatment of the isolated rRNA with aniline, caused the release of a fragment with about 450 nucleotides from 28 S rRNA. Further analysis of nucleotide sequences of this fragment revealed that the aniline-sensitive site of phosphodiester bond was between positions A-4324 and G-4325 in 28 S rRNA. These results indicate that ML-A inactivates the ribosomes by cleaving a N-glycosidic bond at A-4324 of 28 S rRNA in the ribosomes as ricin A-chain does.  相似文献   

9.
Ribosomal RNA identity elements for ricin A-chain recognition and catalysis   总被引:7,自引:0,他引:7  
Ricin is a cytotoxic protein that inactivates ribosomes by hydrolyzing the N-glycosidic bond between the base and the ribose at position A4324 in eukaryotic 28 S rRNA. The requirements for the recognition by ricin A-chain of this nucleotide and for the catalysis of cleavage were examined using a synthetic oligoribonucleotide that reproduces the sequence and the secondary structure of the RNA domain (a helical stem, a bulged nucleotide, and a 17-member single-stranded loop). The wild-type RNA (35mer) and a number of mutants were transcribed in vitro from synthetic DNA templates with phage T7 RNA polymerase. With the wild-type oligoribonucleotide the ricin A-chain catalyzed reaction has a Km of 13.55 microM and a Kcat of 0.023 min-1. Recognition and catalysis by ricin A-chain has an absolute requirement for A at the position that corresponds to 4324. The helical stem is also essential; however, the number of base-pairs can be reduced from the seven found in 28 S rRNA to three without loss of identity. The nature of these base-pairs can affect catalysis. A change of the second set from one canonical (G.C) to another (U.A) reduces sensitivity to ricin A-chain; whereas, a change of the third pair (U.A----G.C) produces supersensitivity. The bulged nucleotide does not contribute to identification. Hydrolysis is affected by altering the nucleotides in the universal sequence surrounding A4324 or by changing the position in the loop of the tetranucleotide GA(ricin)GA: all of these mutants have a null phenotype. If ribosomes are treated first with alpha-sarcin to cleave the phosphodiester bond at G4325 ricin can still catalyze depurination at A4324. This implies that cleavage by alpha-sarcin at the center of what has been presumed to be a 17 nucleotide single-stranded loop in 28 S rRNA produces ends that are constrained in some way. On the other hand, hydrolysis by alpha-sarcin of the corresponding position in the synthetic oligoribonucleotide prevents recognition by ricin A-chain. The results suggest that the loop has a complex structure, affected by ribosomal proteins, and this bears on the function in protein synthesis of the alpha-sarcin/ricin rRNA domain.  相似文献   

10.
Ricin, Shiga toxin, and Shiga-like toxin II (SLT-II, Vero toxin 2) exhibit an RNA N-glycosidase activity which specifically removes a single base near the 3' end of 28 S rRNA in isolated rat liver ribosomes and deproteinized 28 S rRNA (Endo Y., Mitsui, K., Motizuki, M., & Tsurugi, K. (1987) J. Biol. Chem. 262, 5908-5912; Endo Y. & Tsurugi, K. (1987) J. Biol. Chem. 262, 8128-8130, Endo, Y., Tsurugi, K., Yutsudo, T., Takeda, Y., Ogasawara, K. & Igarashi, K. (1988) Eur. J. Biochem. 171, 45-50). These workers identified the single base removed, A-4324, by examining a 28 S rRNA degradation product which was generated by contaminating ribonucleases associated with the ribosomes. To determine whether this N-glycosidase activity applies in living cells, we microinjected ricin into Xenopus oocytes. We also microinjected Shiga toxin and a variant of Shiga-like toxin II (SLT-IIv). All three toxins specifically removed A-3732, located 378 nucleotides from the 3' end of 28 S rRNA. This base is analogous to the site observed in rat 28 S rRNA for ricin, Shiga toxin, and SLT-II. Purified, glycosylated, ricin A chain contains this RNA N-glycosidase activity in oocytes. We also demonstrated that the nonglycosylated A subunit of recombinant ricin exhibits this RNA N-glycosidase activity when injected into Xenopus oocytes. Ricin, Shiga toxin, and SLT-IIv also caused a rapid decline in oocyte protein synthesis for nonsecretory proteins.  相似文献   

11.
alpha-Sarcin is a ribonuclease that cleaves the phosphodiester bond on the 3' side of G4325 in 28S rRNA; ricin A-chain is a RNA N-glycosidase that depurinates the 5' adjacent A4324. These single covalent modifications inactivate the ribosome. An oligoribonucleotide that reproduces the structure of the sarcin/ricin domain in 28S rRNA was synthesized and mutations were constructed in the 5' C and the 3' G that surround a GAGA tetrad that has the sites of toxin action. Covalent modification of the RNA by ricin, but not by alpha-sarcin, requires a Watson-Crick pair to shut off a putative GAGA tetraloop. Either the recognition elements for the two toxins are different despite their catalyzing covalent modification of adjacent nucleotides in 28S rRNA or there are transitions in the conformation of the alpha-sarcin/ricin domain in 28S rRNA and one conformer is recognized by alpha-sarcin and the other by ricin A-chain.  相似文献   

12.
We have studied on the mechanism of ricin action on rat liver ribosomes and present evidence which shows that the toxin inactivates ribosomes by modifying two bases at positions G-4323 and A-4324 of 28S rRNA adjacent to alpha-sarcin cleavage site. Further results showing that those phosphodiester bonds are very labile against alkaline digestion and aniline-treatment strongly suggest that these purine bases are removed by N-glycosidase activity of the toxin. In parallel, we also present evidence showing that abrin and modeccin have the same activity on eukaryotic ribosomes as ricin does.  相似文献   

13.
A sensitive test system for toxin-treated ribosomes was worked out by treating rabbit reticulocyte ribosomes with abrin A-chain, ricin A-chain or ricinus agglutinin A-chain, adding neutralizing amounts of specific antitoxins and testing for polyphenylalanine-synthesizing activity in a system where the concentration of elongation factors and ribosomes were varied. The strongest inhibition was obtained in the presence of low concentrations of elongation factor (EF-2). The activity of the ribosomes decreased with time of incubation with the toxin A-chains. Addition of anti-toxins stopped further inactivation. In systems containing untreated and toxin-treated ribosomes the ability to polymerize phenylalanine was proportional to the concentration of untreated ribosomes. There was a linear relationship between toxin A-chain concentration and the number of ribosomes inactivated per minute. The inactivation rate increased with temperature, and the estimated activation energy was 10.6 kcal (44.3 kJ). Linewaver-Burk plots of the data obtained by incubating various ribosome concentrations with toxins indicated a molecular activity of about 1500 ribosomes/minute for abrin and ricin A-chains and 100 ribosomes/minute for ricinus agglutinin A-chain. The apparent Michaelis constant was 0.1-0.2 muM for all three A-chains. The activity of the A-chains in the intact cell is discussed.  相似文献   

14.
Cibacron blue F3GA, a sulfonated polyaromatic blue dye, inhibited the ability of ricin A-chain to inactivate ribosomes. Difference-spectroscopic study revealed that the dye bound to the A-chain (Kd = 0.72 microM), producing a difference spectrum with a single maximum at 688 nm and two minima at 585 and 628 nm. Such a significant difference spectrum was not observed in the presence of ricin B-chain or intact ricin, neither of which can inactivate ribosomes. Modification of arginine residues in the A-chain with phenylglyoxal showed a correlation between the loss of inhibitory activity on protein synthesis and the loss of difference absorbance produced by the dye-A-chain interaction. Both losses occurred significantly at an early stage of the modification. Furthermore, the dye protected the A-chain against a loss of its inhibitory activity resulting from the modification of arginine residues. These results suggest that the same arginine residues participate both in the interaction with the dye and in the inactivation of ribosomes. Based on these data, the dye appears to interact with the active site of the A-chain. Addition of several polynucleotides, namely rRNA, tRNA, poly(U) and DNA, to the dye-A-chain complex resulted in a marked displacement of the dye, whereas mono- and dinucleotides had little or no effect on the dye-A-chain interaction. These findings indicate the possible existence of a polynucleotide binding site in the active site of the A-chain. A combination of these and other results suggests that the A-chain recognizes and acts on some part of RNA of the 60 S ribosomal subunit.  相似文献   

15.
Inhibition of protein synthesis per se does not potentiate the stress-activated protein kinases (SAPKs; also known as cJun NH2-terminal kinases [JNKs]). The protein synthesis inhibitor anisomycin, however, is a potent activator of SAPKs/JNKs. The mechanism of this activation is unknown. We provide evidence that in order to activate SAPK/JNK1, anisomycin requires ribosomes that are translationally active at the time of contact with the drug, suggesting a ribosomal origin of the anisomycin-induced signaling to SAPK/JNK1. In support of this notion, we have found that aminohexose pyrimidine nucleoside antibiotics, which bind to the same region in the 28S rRNA that is the target site for anisomycin, are also potent activators of SAPK/JNK1. Binding of an antibiotic to the 28S rRNA interferes with the functioning of the molecule by altering the structural interactions of critical regions. We hypothesized, therefore, that such alterations in the 28S rRNA may act as recognition signals to activate SAPK/JNK1. To test this hypothesis, we made use of two ribotoxic enzymes, ricin A chain and alpha-sarcin, both of which catalyze sequence-specific RNA damage in the 28S rRNA. Consistent with our hypothesis, ricin A chain and alpha-sarcin were strong agonists of SAPK/JNK1 and of its activator SEK1/MKK4 and induced the expression of the immediate-early genes c-fos and c-jun. As in the case of anisomycin, ribosomes that were active at the time of exposure to ricin A chain or alpha-sarcin were able to initiate signal transduction from the damaged 28S rRNA to SAPK/JNK1 while inactive ribosomes were not.  相似文献   

16.
Ricin acts by translocating to the cytosol the enzymatically active toxin A-chain, which inactivates ribosomes. Retrograde intracellular transport and translocation of ricin was studied under conditions that alter the sensitivity of cells to the toxin. For this purpose tyrosine sulfation of mutant A-chain in the Golgi apparatus, glycosylation in the endoplasmic reticulum (ER) and appearance of A-chain in the cytosolic fraction was monitored. Introduction of an ER retrieval signal, a C-terminal KDEL sequence, into the A-chain increased the toxicity and resulted in more efficient glycosylation, indicating enhanced transport from Golgi to ER. Calcium depletion inhibited neither sulfation nor glycosylation but inhibited translocation and toxicity, suggesting that the toxin is translocated to the cytosol by the pathway used by misfolded proteins that are targeted to the proteasomes for degradation. Slightly acidified medium had a similar effect. The proteasome inhibitor, lactacystin, sensitized cells to ricin and increased the amount of ricin A-chain in the cytosol. Anti-Sec61alpha precipitated sulfated and glycosylated ricin A-chain, suggesting that retrograde toxin translocation involves Sec61p. The data indicate that retrograde translocation across the ER membrane is required for intoxication.  相似文献   

17.
Ribosome-mediated folding of partially unfolded ricin A-chain   总被引:6,自引:0,他引:6  
After endocytic uptake by mammalian cells, the cytotoxic protein ricin is transported to the endoplasmic reticulum, whereupon the A-chain must cross the lumenal membrane to reach its ribosomal substrates. It is assumed that membrane traversal is preceded by unfolding of ricin A-chain, followed by refolding in the cytosol to generate the native, biologically active toxin. Here we describe biochemical and biophysical analyses of the unfolding of ricin A-chain and its refolding in vitro. We show that native ricin A-chain is surprisingly unstable at pH 7.0, unfolding non-cooperatively above 37 degrees C to generate a partially unfolded state. This species has conformational properties typical of a molten globule, and cannot be refolded to the native state by manipulation of the buffer conditions or by the addition of a stem-loop dodecaribonucleotide or deproteinized Escherichia coli ribosomal RNA, both of which are substrates for ricin A-chain. By contrast, in the presence of salt-washed ribosomes, partially unfolded ricin A-chain regains full catalytic activity. The data suggest that the conformational stability of ricin A-chain is ideally poised for translocation from the endoplasmic reticulum. Within the cytosol, ricin A-chain molecules may then refold in the presence of ribosomes, resulting in ribosome depurination and cell death.  相似文献   

18.
Ricin A chain caused inhibition of protein synthesis by reticulocyte lysate with concomitant depurination of 28S rRNA. The partial reaction(s) of protein synthesis inhibited was investigated by following the appearance of [35S]methionine from initiator [35S]Met-tRNA into 40S ribosomal subunits, 80S monosomes and polysomes. Ricin A chain caused an accumulation of [35S]Met in monosomes which did not enter polysomes. In these respects the effects of the ricin A chain resembled those of diphtheria toxin, an inhibitor of elongation-factor-2-catalyzed translocation. This is consistent with the previously proposed site of action of ricin as an inhibitor of elongation. However, the inhibitory effects of the ricin A chain and diphtheria toxin are not equivalent because we observed that the rate of formation of the 80S initiation complex was reduced approximately sixfold with the ricin A chain relative to diphtheria toxin. Analysis of methionine-containing peptides bound to 80S monosomes in ricin-A-chain-inhibited and diphtheria-toxin-inhibited lysates, programmed with globin mRNA, revealed a predominance of Met-Val, suggesting that the elongation cycle is inhibited at the translocation step. Translocation was also implicated as the step blocked in both the ricin-A-chain-inhibited and diphtheria-toxin-inhibited lysates, by the finding that nascent peptide chains were unreactive towards puromycin. It is concluded that ricin-A-chain-modified ribosomes are deficient in two protein synthesis partial reactions: the formation of the 80S initiation complex during initiation and the translocation step of the elongation cycle.  相似文献   

19.
The molecular action of ricin A chain involves cleavage of the N-glycosidic bond between ribose and the adenine 4324 nucleotides from the 5' end of mammalian 28 S rRNA (Endo, Y., and Tsurugi, K. (1987) J. Biol. Chem. 262, 8128-8130). In this paper, four ricin- and abrin-resistant Chinese hamster ovary cell mutants that possess ribosomes resistant to this N-glycosidase action are described. Three of the mutant phenotypes, Lec26, Lec27, and Lec28, were recessive in somatic cell hybrids and define at least two new lectin-resistant complementation groups. The most extensively characterized mutant type, LEC17, was dominant in such hybrids. None of the mutants were cross-resistant to modeccin. Post-mitochondrial supernatants from each of the four mutants were resistant to inhibition of cell-free protein synthesis by ricin, ricin A chain, and abrin. In addition, polysomes isolated from mutant cells were resistant to cleavage of the adenine-ribose N-glycosidic bond by ricin A chain or abrin, as assayed by the release of an approximately 470-nucleotide fragment following aniline treatment of ribosomal RNA extracted from toxin-treated polysomes. The unique lectin-resistance properties of the different mutants suggests that the accessibility of adenine 4324 to each toxin differs. It seems likely that the recessive Chinese hamster ovary ribosomal mutants reflect structural changes in different ribosomal proteins while the dominant phenotype may be due to the modification of protein(s) or rRNA involved in toxin-ribosome interaction. Further analysis of these cell lines should provide new insights into the structure/function relationships of eukaryotic ribosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号