首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The hepatic leukemia factor (HLF) gene codes for a basic region-leucine zipper (bZIP) protein that is disrupted by chromosomal translocations in a subset of pediatric acute lymphoblastic leukemias. HLF undergoes fusions with the E2A gene, resulting in chimeric E2a-Hlf proteins containing the E2a transactivation domains and the Hlf bZIP DNA binding and dimerization motifs. To investigate the in vivo role of this chimeric bZIP protein in oncogenic transformation, its expression was directed to the lymphoid compartments of transgenic mice. Within the thymus, E2a-Hlf induced profound hypoplasia, premature involution, and progressive accumulation of a T-lineage precursor population arrested at an early stage of maturation. In the spleen, mature T cells were present but in reduced numbers, and they lacked expression of the transgene, suggesting further that E2a-Hlf expression was incompatible with T-cell differentiation. In contrast, mature splenic B cells expressed E2a-Hlf but at lower levels and without apparent adverse or beneficial effects on their survival. Approximately 60% of E2A-HLF mice developed lymphoid malignancies with a mean latency of 10 months. Tumors were monoclonal, consistent with a requirement for secondary genetic events, and displayed phenotypes of either mid-thymocytes or, rarely, B-cell progenitors. We conclude that E2a-Hlf disrupts the differentiation of T-lymphoid progenitors in vivo, leading to profound postnatal thymic depletion and rendering B- and T-cell progenitors susceptible to malignant transformation.  相似文献   

4.
5.
6.
vav, a novel human oncogene, was originally generated in vitro by replacement of its normal 5' coding sequences with sequences from pSV2neo DNA, cotransfected as a selectable marker (S. Katzav, D. Martin-Zanca, and M. Barbacid, EMBO J. 8:2283-2290, 1989). The vav proto-oncogene is normally expressed in cells of hematopoietic origin. To determine whether the 5' rearrangement of vav or its ectopic expression in NIH 3T3 cells contributes to its transforming potential, we isolated murine and human proto-vav cDNA clones as well as human genomic clones corresponding to the 5' end of the gene. Normal proto-vav was poorly transforming in NIH 3T3 cells, whereas truncation of its 5' end greatly enhanced its transforming activity. The relative failure of full-length proto-vav cDNA clones to transform NIH 3T3 cells indicates that the transforming activity of vav is not simply due to ectopic expression. Analysis of the predicted amino terminus of the vav proto-oncogene shows that it contains a helix-loop-helix domain and a leucine zipper motif similar to that of myc family proteins, though it lacks a basic region that is usually found adjacent to helix-loop-helix domains. Loss of the helix-loop-helix domain of proto-vav, either by truncation or by rearrangement with pSV2neo sequences, activates its oncogenic potential.  相似文献   

7.
Pix, a p21-activated kinase-interacting exchange factor, is known to be involved in the regulation of Cdc42/Rac GTPases. The 85-kDa betaPix-a protein contains an Src homology 3 domain, the tandem Dbl homology and Pleckstrin homology domains, a proline-rich region, and a GIT1-binding domain. In addition to those domains, betaPix-a also contains a putative leucine zipper domain at the C-terminal end. In this study, we demonstrate that the previously identified putative leucine zipper domain mediates the formation of betaPix-a homodimers. Using in vitro and in vivo methodologies, we show that deletion of the leucine zipper domain is sufficient to abolish betaPix-a homodimerization. In NIH3T3 fibroblast cells, expression of wild type betaPix-a induces the formation of membrane ruffles. However, cells expressing the leucine zipper domain deletion mutant could not form membrane ruffle structures. Moreover, platelet-derived growth factor-mediated cytoskeletal changes were completely blocked by the leucine zipper domain deletion mutant. The results suggest that the leucine zipper domain enables betaPix-a to homodimerize, and homodimerization is essential for betaPix-a signaling functions leading to the cytoskeletal reorganization.  相似文献   

8.
Nitric oxide (NO) and nitrovasodilators induce vascular smooth muscle cell relaxation in part by cGMP-dependent protein kinase (cGK)-mediated activation of myosin phosphatase, which dephosphorylates myosin light chains. We recently found that cGMP-dependent protein kinase 1alpha binds directly to the myosin-binding subunit (MBS) of myosin phosphatase via the leucine/isoleucine zipper of cGK. We have now studied the role of the leucine zipper domain of MBS in dimerization with cGK and the leucine/isoleucine zipper and leucine zipper domains of both proteins in homodimerization. Mutagenesis of the MBS leucine zipper domain disrupts cGKIalpha-MBS dimerization. Mutagenesis of the MBS leucine zipper eliminates MBS homodimerization, while similar disruption of the cGKIalpha leucine/isoleucine zipper does not prevent formation of cGK dimers. The MBS leucine zipper domain is phosphorylated by cGK, but this does not have any apparent effect on heterodimer formation between the two proteins. MBS LZ mutants that are unable to bind cGK were poor substrates for cGK. These data support the theory that the MBS leucine zipper domain is necessary and sufficient to mediate both MBS homodimerization and binding of the protein to cGK. In contrast, the leucine/isoleucine zipper of cGK is required for binding to MBS, but not for cGK homodimerization. These data support that the MBS and cGK leucine zipper domains mediate the interaction between these two proteins. The contribution of these domains to both homodimerization and their specific interaction with each other suggest that additional regulatory mechanisms involving these domains may exist.  相似文献   

9.
10.
11.
12.
13.
14.
The Ces-2/E2A-HLF binding element (CBE) is recognized by Caenorhabditis elegans death specification gene product Ces-2 and human acute lymphocytic leukemia oncoprotein E2A-HLF. In an attempt to identify a cellular CBE-binding protein(s) that may be involved in apoptosis regulation in mammals, multiple nuclear binding complexes of CBE were identified in various mammalian cell lines and tissues by electrophoretic mobility shift assay. Cyclic AMP (cAMP)-responsive element (CRE)-binding protein (CREB) was present in one major CBE complex of Ba/F3 and TF-1 cells, and both in vitro-translated and Escherichia coli-synthesized CREB bound to CBE. Activation of CREB by cAMP-elevating chemicals or the catalytic subunit of protein kinase A (PKAc) resulted in induction of the CBE-driven reporter gene. Stimulation of Ba/F3 cells with interleukin-3 (IL-3) promptly induced phosphorylation of CREB at serine(133) partially via a PKA-dependent pathway. Consistently, Ba/F3 cell survival in the absence of IL-3 was prolonged by activation of PKA. Conversely, treatment of cells with a PKA inhibitor or expression of the dominant negative forms of the regulatory subunit type I of PKA and CREB overrode the survival activity of IL-3. Last, the bcl-2 gene was demonstrated to be one candidate cellular target of the CREB-containing CBE complex, as mutations in the CRE and CBE sites significantly reduced the IL-3 inducibility of the bcl-2 promoter. Together, our results suggest that CREB is one cellular counterpart of Ces-2/E2A-HLF and is part of IL-3 dependent apoptosis regulation in hematopoietic cells.  相似文献   

15.
Accumulating evidence suggests that mitogen-activated protein kinase signaling pathways form modular signaling complexes. Because the mixed lineage kinase dual leucine zipper-bearing kinase (DLK) is a large modular protein, structure-function analysis was undertaken to examine the role of DLK domains in macromolecular complex formation. DLK mutants were used to demonstrate that a DLK leucine zipper-leucine zipper interaction is necessary for DLK dimerization and to show that DLK dimerization mediated by the leucine zipper domain is prerequisite for DLK activity and subsequent activation of stress-activated protein kinase (SAPK). Heterologous mixed lineage kinase family members can be co-immunoprecipitated. However, the DLK leucine zipper domain interacted specifically only with the DLK leucine zipper domain; in contrast, DLK NH(2)-terminal region was sufficient to co-immunoprecipitate leucine zipper kinase and DLK. DLK has been shown to associate with the putative scaffold protein JIP1. This association occurred through the DLK NH(2)-terminal region and occurred independently of DLK catalytic activity. Although the DLK NH(2)-terminal region associated directly with JIP-1, this region did not interact directly with either DLK or leucine zipper kinase. Therefore, DLK may interact with heterologous mixed lineage kinase proteins via intermediary proteins. The NH(2)-terminal region of overexpressed DLK was required for activation of SAPK. These results provide evidence that protein complex formation is required for signal transduction from DLK to SAPK.  相似文献   

16.
Retroviral genomes encoding a portion of the Moloney murine leukemia virus Gag protein fused to portions of the murine axl cDNA were constructed so as to mimic naturally occurring transforming viruses. Virus MA1 retained 5 amino acids of the extracellular domain and the complete transmembrane and intracellular domains of Axl; virus MA2 retained only the intracellular Axl sequences beginning 33 amino acids downstream of the transmembrane region. Although both viruses could transform NIH 3T3 cells, they induced different morphological changes. MA1 transformants became elongated and assumed a cross-hatched pattern, while MA2 transformants were round and very refractile and grew to high density. Gag-Axl and Glyco-Gag-Axl proteins were detected in both types of transformed cells and were predominantly localized to the cytoplasmic compartment. When cell-free v-axl virus supernatants were introduced into wild-type BALB/c neonates, Rag-2-deficient mice, or c-myc transgenic mice, they did not cause tumors in a 3-month period. However, MA2-transformed NIH 3T3 cells, but not MA1 or control cells, could establish sarcomas by subcutaneous or intraperitoneal injection into BALB/c neonates. These results show that the transforming potential of the axl gene can be activated by truncation of the extracellular domain of the receptor and fusion of the remaining sequence to the gag gene.  相似文献   

17.
18.
A replication-defective murine retroviral construct, termed pME26, was generated by inserting avian gag-myb-ets sequences derived from the cloned avian acute leukemia virus E26 into an Abelson murine leukemia virus-derived retroviral vector. ME26 virus can be rescued efficiently from transfected NIH 3T3 cells by replicating murine leukemia viruses. Either pME26-transfected nonproducers or ME26 virus-infected NIH 3T3 cells expressed a 135-kilodalton fusion protein (p135) which was detectable by immunoprecipitation with antiserum directed against avian leukemia virus p27gag, myb or ets oncogene protein, or murine leukemia virus p15gag and was principally localized in the nucleus. NIH 3T3 cells infected with ME26 exhibited morphological alterations and increased proliferation in reduced serum and formed small colonies in agar suspension. Discrete foci could be readily recognized in cells maintained in a defined medium containing 0.03 to 0.1% calf serum. In newborn NFS/N mice, ME26 induced a significantly higher mortality and incidence of erythroid and myeloid leukemias. Analysis of a series of mutants affecting the expression of various portions of p135 indicated that the v-ets gene acts to mitogenically stimulate the proliferation of NIH 3T3 fibroblasts and reduces or abolishes their serum dependence. These properties provide an assay system to study functions of the ets gene family.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号