首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 501 毫秒
1.
2.
Regulation of E2F1 activity by acetylation   总被引:26,自引:0,他引:26       下载免费PDF全文
  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
The pRb (retinoblastoma protein) tumour suppressor protein has a crucial role in regulating the G1- to S-phase transition, and its phosphorylation by cyclin-dependent kinases is an established and important mechanism in controlling pRb activity. In addition, the targeted acetylation of lysine (K) residues 873/874 in the carboxy-terminal region of pRb located within a cyclin-dependent kinase-docking site hinders pRb phosphorylation and thereby retains pRb in an active state of growth suppression. Here, we report that the acetylation of pRb K873/874 occurs in response to DNA damage and that acetylation regulates the interaction between the C-terminal E2F-1-specific domain of pRb and E2F-1. These results define a new role for pRb acetylation in the DNA damage signalling pathway, and suggest that the interaction between pRb and E2F-1 is controlled by DNA-damage-dependent acetylation of pRb.  相似文献   

12.
Tandem PHD and bromodomains are often found in chromatin-associated proteins and have been shown to cooperate in gene silencing. Each domain can bind specifically modified histones: the mechanisms of cooperation between these domains are unknown. We show that the PHD domain of the KAP1 corepressor functions as an intramolecular E3 ligase for sumoylation of the adjacent bromodomain. The RING finger-like structure of the PHD domain is required for both Ubc9 binding and sumoylation and directs modification to specific lysine residues in the bromodomain. Sumoylation is required for KAP1-mediated gene silencing and functions by directly recruiting the SETDB1 histone methyltransferase and the CHD3/Mi2 component of the NuRD complex via SUMO-interacting motifs. Sumoylated KAP1 stimulates the histone methyltransferase activity of SETDB1. These data provide a mechanistic explanation for the cooperation of PHD and bromodomains in gene regulation and describe a function of the PHD domain as an intramolecular E3 SUMO ligase.  相似文献   

13.
A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity   总被引:48,自引:0,他引:48  
  相似文献   

14.
15.
16.
17.
E2F activity is negatively regulated by retinoblastoma protein (pRb) through binding to the E2F-1 subunit. Within the E2F heterodimer, DP proteins are E2F partner subunits that allow proper cell cycle progression. In contrast to the other DP proteins, the newest member of the family, DP-4, downregulates E2F activity. In this study we report an unexpected role for DP-4 in regulating E2F-1 activity during the DNA damage response. Specifically, DP-4 is induced in DNA-damaged cells, upon which it binds to E2F-1 as a non-DNA-binding E2F-1/DP-4 complex. Consequently, depleting DP-4 in cells re-instates E2F-1 activity that coincides with increased levels of chromatin-bound E2F-1, E2F-1 target gene expression and associated apoptosis. Mutational analysis of DP-4 highlighted a C-terminal region, outside the DNA-binding domain, required for the negative control of E2F-1 activity. Our results define a new pathway, which acts independently of pRb and through a biochemically distinct mechanism, involved in negative regulation of E2F-1 activity.  相似文献   

18.
19.
Senescent cells in which pRb is inactivated undergo apoptosis on attempted reinitiation of DNA synthesis. To further explore the cell death resulting from loss of pRb function in senescent cells, we employed a temperature-sensitive pRb mutant protein (tspRb). We found that tspRb inactivation results in rapid E2F reactivation and subsequent S-phase reentry associated with the up-regulation of E2F target gene expression and cyclin E-dependent kinase activity. Total inhibition of cyclin-dependent kinase 2 activity results in a cell cycle arrest on pRb loss and a nearly complete suppression of apoptosis. Furthermore, blocking of E2F activity with a dominant-negative DP1 inhibits S-phase reentry and cell death following tspRb inactivation. Finally, inhibition of p73 activity abolishes apoptosis but not S-phase entry on pRb inactivation, suggesting that activation of E2F in senescent cells can result in the use of p73 as a cell death effector. Interestingly, senescent cells rescued from apoptosis maintain their altered shape and express senescence-associated beta-galactosidase despite loss of pRb function. Thus, maintenance of the terminal cell cycle arrest of senescent cells requires continuous pRb-mediated inactivation of E2F activity, the reappearance of which in these irrevocably altered cells triggers a cell death program instead of an inappropriate resumption of cell cycling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号