首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Astaxanthin, a carotenoid without vitamin A activity, has shown anti-oxidant and anti-inflammatory activities; however, its molecular action and mechanism have not been elucidated. We examined in vitro and in vivo regulatory function of astaxanthin on production of nitric oxide (NO) and prostaglandin E2 (PGE2) as well as expression of inducible NO synthase (iNOS), cyclooxygenase-2, tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta). Astaxanthin inhibited the expression or formation production of these proinflammatory mediators and cytokines in both lipopolysaccharide (LPS)-stimulated RAW264.7 cells and primary macrophages. Astaxanthin also suppressed the serum levels of NO, PGE2, TNF-alpha, and IL-1beta in LPS-administrated mice, and inhibited NF-kappaB activation as well as iNOS promoter activity in RAW264.7 cells stimulated with LPS. This compound directly inhibited the intracellular accumulation of reactive oxygen species in LPS-stimulated RAW264.7 cells as well as H2O2-induced NF-kappaB activation and iNOS expression. Moreover, astaxanthin blocked nuclear translocation of NF-kappaB p65 subunit and I(kappa)B(alpha) degradation, which correlated with its inhibitory effect on I(kappa)B kinase (IKK) activity. These results suggest that astaxanthin, probably due to its antioxidant activity, inhibits the production of inflammatory mediators by blocking NF-kappaB activation and as a consequent suppression of IKK activity and I(kappa)B-alpha degradation.  相似文献   

5.
We previously showed that 1-[3-(3-pyridyl)-acryloyl]-2-pyrrolidinone hydrochloride (N2733) inhibits lipopolysaccharide (LPS)-induced tumour necrosis factor (TNF)-alpha secretion and improves the survival of endotoxemic mice. Since overproduction of nitric oxide (NO) by inducible NO synthase (iNOS) in vascular smooth muscle cells (VSMCs) is largely responsible for the development of endotoxemic shock, and iNOS gene expression is mainly regulated by LPS and inflammatory cytokines, we studied whether or not N2733 affects interleukin (IL)-1beta-induced iNOS gene expression, NF-kappaB activation, and NF-kappaB inhibitor (IkappaB)-alpha degradation in cultured rat VSMCs. N2733 dose-dependently (10-100 microM) inhibited IL-1beta-stimulated NO production, and decreased IL-1beta-induced iNOS mRNA and protein expression, as found on Northern and Western blot analyses, respectively. Gel shift assay and an immunocytochemical study showed that N2733 inhibited IL-1beta-induced NF-kappaB activation and its nuclear translocation. Western blot analyses involving anti-IkappaB-alpha and anti-phospho IkappaB-alpha antibodies showed that IL-1beta induced transient degradation of IkappaB-alpha preceded by the rapid appearance of phosphorylated IkappaB-alpha, both of which were markedly blocked by N2733. N2733 blocked IL-1beta-induced phosphorylated IkappaB-alpha even in the presence of a proteasome inhibitor (MG115). Immunoblot analysis involving anti-IkappaB kinase (IKK)-alpha and anti-phosphoserine antibodies revealed that N2733 inhibited IL-1beta-induced IKK-alpha phosphorylation, whereas N2733 had no inhibitory effect on IL-1beta-stimulated p42/p44 MAP kinase or p38 MAP kinase activity. Our results suggest that the inhibitory action of N2733 toward IL-1beta-induced NF-kappaB activation and iNOS expression is due to its blockade of the upstream signal(s) leading to IKK-alpha activation, and subsequent phosphorylation and degradation of IkappaB-alpha in rat VSMCs.  相似文献   

6.
Kwon KB  Kim JH  Lee YR  Lee HY  Jeong YJ  Rho HW  Ryu DG  Park JW  Park BH 《Life sciences》2003,73(2):181-191
We previously showed that Amomum xanthoides extract prevented alloxan-induced diabetes through the suppression of NF-kappaB activation. In this study, the preventive effects of A. xanthoides extract on cytokine-induced beta-cell destruction were examined. Cytokines produced by immune cells infiltrating pancreatic islets are important mediators of beta-cell destruction in insulin-dependent diabetes mellitus. A. xanthoides extract completely protected interleukin-1beta (IL-1beta) and interferon-gamma (IFN-gamma)-mediated cytotoxicity in rat insulinoma cell line (RINm5F). Incubation with A. xanthoides extract resulted in a significant reduction in IL-1beta and IFN-gamma-induced nitric oxide (NO) production, a finding that correlated well with reduced levels of the inducible form of NO synthase (iNOS) mRNA and protein. The molecular mechanism by which A. xanthoides extract inhibited iNOS gene expression appeared to involve the inhibition of NF-kappaB activation. Our results revealed the possible therapeutic value of A. xanthoides extract for the prevention of diabetes mellitus progression.  相似文献   

7.
8.
Interleukin (IL)-1 and tumor necrotic factor alpha (TNFalpha) are pivotal in the pathogenesis of endotoxemia. In spite of the in vitro finding that IL-1beta, but not TNFalpha, can induce iNOS mRNA and NO production as a single stimulus in hepatocytes in primary culture, the involvement of IL-1 in iNOS induction in the liver has been less clear in vivo. To address this, we challenged IL-1alpha/beta double-knockout (IL-1alpha/beta(-/-)) and TNFalpha(-/-) mice with lipopolysaccharide (LPS). As compared with wild-type mice, the increases in the plasma NO level measured as nitrite and nitrate and hepatic iNOS were significantly reduced in IL-1alpha/beta(-/-) and TNFalpha(-/-) mice 8 and 12h after the LPS challenge. In the wild-type mice, iNOS protein was first detected in Kupffer cells around the portal vein 2h after LPS challenge; and then it spread to hepatocytes throughout the intralobular region of the liver by 8h. Although the expression of iNOS protein was detected in Kupffer cells of both IL-1alpha/beta(-/-) and TNFalpha(-/-) mice, its level was moderate in hepatocytes of IL-1alpha/beta(-/-) mice, but negligible in those of TNFalpha(-/-) mice, 8h after LPS challenge. Concomitant with the expression of iNOS protein in the liver, Toll-like receptor 4, the signaling receptor for LPS, was expressed in hepatocytes of wild-type and IL-1alpha/beta(-/-) mice, but not of TNFalpha(-/-) mice. These results demonstrate that the expression of Toll-like receptor 4 is well correlated with that of iNOS protein in hepatocytes in vivo after LPS challenge and that IL-1 is not essential for the induction of iNOS in hepatocytes in vivo.  相似文献   

9.
10.
11.
K W Kang  Y M Pak  N D Kim 《Nitric oxide》1999,3(3):265-271
Diethylmaleate (DEM) and buthionine sulfoximine (BSO), glutathione (GSH)-depleting agents, reduced the metabolic activity and the protein level of iNOS in both macrophages and hepatocytes activated by lipopolysaccharide (LPS). In this study, we examined the effects of DEM and BSO on iNOS expression in LPS-treated mice under the assumption that the level of GSH may alter the expression of nitric oxide synthase. Serum levels of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) were also determined. DEM markedly decreased the levels of hepatic GSH in response to LPS. Treatment of mice with DEM significantly reduced serum nitrite/nitrate levels and hepatic iNOS protein and mRNA induction by LPS. Although BSO inhibited the level of hepatic GSH in LPS-treated mice, the agent did not alter serum nitrite/nitrate levels and hepatic iNOS expression. DEM completely inhibited an increase of serum IL-1beta level by LPS, whereas BSO failed to inhibit it. Neither DEM nor BSO significantly affected the induction of serum TNF-alpha level by LPS. These results showed that DEM and BSO differentially affect the expression of iNOS in endotoxemic mice, suggesting the possibility that suppression of iNOS expression by DEM may be associated with the inhibition of IL-1beta but not of TNF-alpha.  相似文献   

12.
Hydrogen sulfide (H(2)S) and nitric oxide (NO) are endogenously synthesized from l-cysteine and l-arginine, respectively. They might constitute a cooperative network to regulate their effects. In this study, we investigated whether H(2)S could affect NO production in rat vascular smooth muscle cells (VSMCs) stimulated with interleukin-1beta (IL-1beta). Although H(2)S by itself showed no effect on NO production, it augmented IL-beta-induced NO production and this effect was associated with increased expression of inducible NO synthase (iNOS) and activation of nuclear factor (NF)-kappaB. IL-1Beta activated the extracellular signal-regulated kinase 1/2 (ERK1/2), and this activation was also enhanced by H(2)S. Inhibition of ERK1/2 activation by the selective inhibitor U0126 inhibited IL-1beta-induced NF-kappaB activation, iNOS expression, and NO production either in the absence or presence of H(2)S. Our findings suggest that H(2)S enhances NO production and iNOS expression by potentiating IL-1beta-induced NF-kappaB activation through a mechanism involving ERK1/2 signaling cascade in rat VSMCs.  相似文献   

13.
Angiotensin II is implicated in pathophysiological processes associated with vascular injury and repair, which include regulating the expression of numerous NF-kappaB-dependent genes. The present study examined the effect of angiotensin II on interleukin-1beta-induced NF-kappaB activation and the subsequent expression of inducible NO synthase (iNOS) and vascular cell adhesion molecule-1 (VCAM-1) in cultured rat vascular smooth muscle cells. Neither NF-kappaB activation nor iNOS or VCAM-1 expression was induced in cells treated with angiotensin II alone. However, when added together with interleukin-1beta, angiotensin II, through activation of the AT(1) receptor, inhibited iNOS expression and enhanced VCAM-1 expression induced by the cytokine. The inhibitory effect of angiotensin II on iNOS expression was associated with a down-regulation of the sustained activation of extracellular signal-regulated kinase (ERK) and NF-kappaB by interleukin-1beta, whereas the effect on VCAM-1 was independent of ERK activation. The effect of angiotensin II on iNOS was abolished by inhibition of p38 mitogen-activated protein kinase (MAPK) with SB203580, but not by inhibition of PI3 kinase with wortmannin or stress-activated protein kinase/c-Jun NH(2)-terminal kinase (JNK) with JNK inhibitor II. Thus, angiotensin II, by a mechanism that requires the participation of p38 MAPK, differentially regulates the expression of NF-kappaB-dependent genes in response to interleukin-1beta stimulation by controlling the duration of activation of ERK and NF-kappaB.  相似文献   

14.
Astrocyte activation has been implicated in the pathogenesis of many neurological diseases. These reactive astrocytes are capable of producing a variety of proinflammatory mediators and potentially neurotoxic compounds, such as nitric oxide (NO), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and interleukin-1beta (IL-1beta). In this study, we examined the suppressive effects of Tetrandrine (TET) on astrocyte activation induced by lipopolysaccharide (LPS) in vitro. We found that TET decreased the release of NO, TNF-alpha, IL-6 and IL-1beta in LPS-activated astrocytes. Also mRNA expression levels of inducible nitric oxide synthase (iNOS), macrophage inflammatory protein-1alpha (MIP-1alpha) and vascular cell adhesion molecule-1 (VCAM-1) were inhibited in TET pretreated astrocytes. Such suppressive effects might be resulted from the inhibition of nuclear factor kappa B (NF-kappaB) activation through downregulating IkappaB kinases (IKKs) phosphoration, which decreased inhibitor of nuclear factor-kappaB-alpha (IkappaBalpha) phosphoration and degradation. Our results suggest that TET acted to regulate astrocyte activation through inhibiting IKKs-IkappaBalpha-NF-kappaB signaling pathway.  相似文献   

15.
16.
Oxidative stress and inflammation are fundamental for the onset of aging and appear to be causatively linked. Previously, we reported that hepatocytes from aged rats, compared with young rats, are hyperresponsive to interleukin-1beta (IL-1beta) stimulation and exhibit more potent c-Jun N-terminal kinase (JNK) activation and attenuated interleukin-1 receptor-associated kinase-1 (IRAK-1) degradation. An age-related increase in the activity of neutral sphingomyelinase-2 (NSMase-2), a plasma membrane enzyme, was found to be responsible for the IL-1beta hyperresponsiveness. The results reported here show that increased NSMase activity during aging is caused by a 60-70% decrease in hepatocyte GSH levels. GSH, at concentrations typically found in hepatocytes from young animals, inhibits NSMase activity in a biphasic dose-dependent manner. Inhibition of GSH synthesis in young hepatocytes activates NSMase, causing increased JNK activation and IRAK-1 stabilization in response to IL-1beta, mimicking the hyperresponsiveness typical for aged hepatocytes. Vice versa, increased GSH content in hepatocytes from aged animals by treatment with N-acetylcysteine inhibits NSMase activity and restores normal IL-1beta response. Importantly, the GSH decline, NSMase activation, and IL-1beta hyperresponsiveness are not observed in aged, calorie-restricted rats. In summary, this report demonstrates that depletion of cellular GSH during aging plays an important role in regulating the hepatic response to IL-1beta by inducing NSMase-2 activity.  相似文献   

17.
Epidermal growth factor (EGF) is one of the trophic factors for intestinal adaptation after small bowel transplantation (SBT). A recent report indicates that nitric oxide (NO) has cytoprotective effects on bacterial translocation (BT) after SBT. We hypothesized that EGF stimulates the expression of the inducible NO synthase (iNOS) gene in the graft after SBT, followed by increased production of NO, resulting in the decrease of BT. Intestinal epithelial cells (IEC)-6 were treated with EGF and/or IL-1beta in the presence and absence of phosphatidylinositol 3-kinase (PI3-kinase) and EGF receptor kinase inhibitors (LY-294002 and tyrphostin A25). The induction of NO production and iNOS and its signal molecules, including the inhibitory protein of NF-kappaB (IkappaB), NF-kappaB, and Akt, were analyzed. IL-1beta stimulated the degradation of IkappaB and the activation of NF-kappaB but had no effect on iNOS induction. EGF, which had no effect on the NF-kappaB activation and iNOS induction, stimulated the upregulation of type 1 IL-1 receptor (IL-1R1) through PI3-kinase/Akt. Simultaneous addition of EGF and IL-1beta stimulated synergistically the induction of iNOS, leading to the increased production of NO. Our results indicate that EGF and IL-1beta stimulate two essential signals for iNOS induction in IEC-6 cells: the upregulation of IL-1R1 through PI3-kinase/Akt and the activation of NF-kappaB through IkappaB kinase, respectively. Simultaneous addition of EGF and IL-1beta can enhance the production of NO, which may contribute to the cytoprotective effect of EGF against intestinal injury.  相似文献   

18.
AIMS: In this work, we studied the mechanisms by which diphenyleneiodonium chloride (DPI) inhibits nitric oxide (NO) synthesis induced by the proinflammatory cytokine interleukin-1beta (IL-1) in bovine articular chondrocytes. To achieve this, we evaluated the ability of DPI to inhibit the expression and activity of the inducible isoform of the NO synthase (iNOS) induced by IL-1. We also studied the ability of DPI to prevent IL-1-induced NF-kappaB activation and reactive oxygen species (ROS) production. RESULTS: Northern and Western blot analysis, respectively, showed that DPI dose-dependently inhibited IL-1-induced iNOS mRNA and protein synthesis in primary cultures of bovine articular chondrocytes. DPI effectively inhibited NO production (IC50=0.03+/-0.004 microM), as evaluated by the method of Griess. Nuclear factor-kappa B (NF-kappaB) activation, as evaluated by electrophoretic mobility shift assay, was inhibited by DPI (1-10 microM) in a dose-dependent manner. IL-1-induced ROS production, as evaluated by measurement of dichlorofluorescein fluorescence, was inhibited by DPI at concentrations that also prevented NF-kappaB activation and iNOS expression. CONCLUSIONS: DPI inhibits IL-1-induced NO production in chondrocytes by two distinct mechanisms: (i) by inhibiting NOS activity, and (ii) by preventing iNOS expression through the blockade of NF-kappaB activation. These results also support the involvement of reactive oxygen species in IL-1-induced NF-kappaB activation and expression of NF-kappaB-dependent genes, such as iNOS.  相似文献   

19.
Nitric oxide (NO), produced by the inducible isoform of the NO synthase (iNOS), plays an important role in the pathophysiology of arthritic diseases. This work aimed at elucidating the role of the mitogen-activated protein kinases (MAPK), p38MAPK and p42/44MAPK, and of protein tyrosine kinases (PTK) on interleukin-1beta (IL-1)-induced iNOS expression in bovine articular chondrocytes. The specific inhibitor of the p38MAPK, SB 203580, effectively inhibited IL-1-induced iNOS mRNA and protein synthesis, as well as NO production, while the specific inhibitor of the p42/44MAPK, PD 98059, had no effect. These responses to IL-1 were also inhibited by treatment of the cells with the tyrosine kinase inhibitors, genistein and tyrphostin B42, which also prevented IL-1-induced NF-kappaB activation. The p38MAPK inhibitor, SB 203580, had no effect on IL-1-induced NF-kappaB activation. Finally, the p42/44MAPK inhibitor, PD 98059, prevented IL-1-induced AP-1 activation in a concentration that did not inhibit iNOS expression. In conclusion, this study shows that (1) PTK are part of the signaling pathway that leads to IL-1-induced NF-kappaB activation and iNOS expression; (2) the p38MAPK cascade is required for IL-1-induced iNOS expression; (3) the p42/44MAPK and AP-1 are not involved in IL-1-induced iNOS expression; and (4) NF-kappaB and the p38MAPK lie on two distinct pathways that seem to be independently required for IL-1-induced iNOS expression. Hence, inhibition of any of these two signaling cascades is sufficient to prevent iNOS expression and the subsequent production of NO in articular chondrocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号