首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
C. Luo  L. Sun  J. Ma  J. Wang  H. Qu  D. Shu 《Animal genetics》2015,46(3):265-271
MicroRNAs are an abundant class of small non‐coding RNAs that regulate gene expression. Genetic variations in microRNA sequences may be associated with phenotype differences by influencing the expression of microRNAs and/or their targets. This study identified two single nucleotide polymorphisms (SNPs) in the genomic region of the microRNA miR‐1596 locus of chicken. Of the two SNPs, one was 95 bp upstream of miR‐1596 (g.5678784A>T) and the other was in the middle of the sequence producing the mature microRNA gga‐miR‐1596‐3p (g.5678944A>G). Genotypic distribution of the two SNPs had large differences among 12 chicken breeds (lines), especially between the fast‐growing commercial lines and the slow‐growing Chinese indigenous breeds for the g.5678784A>T SNP. Only the g.5678784A>T SNP was significantly associated with residual feed intake (RFI) in the F2 population derived from a fast‐growing and a slow‐growing broiler as well as in the pure Huiyang bearded chicken. The birds with the AA genotype of the g.5678784A>T SNP had lower RFI and higher expression of the mature gga‐miR‐1596‐3p microRNA of miR‐1596 than did those with the other genotypes of the same SNP. We also found that the expression of the mature gga‐miR‐1596‐3p microRNA of miR‐1596 was significantly associated with RFI. These findings suggest that miR‐1596 can become a candidate gene related to RFI, and its genetic variation may contribute to changes in RFI by altering expression levels of the mature gga‐miR‐1596‐3p microRNA in chicken.  相似文献   

3.
4.
Micro‐RNAs regulate gene expression by directly binding to the target mRNAs. The goal of the study was to examine the expression profiling of miRNAs in human failing hearts and identify the key miRNAs that regulate molecular signalling networks and thus contribute to this pathological process. The levels of miRNAs and expressed genes were analysed in myocardial biopsy samples from patients with end‐stage heart failure (n = 14) and those from normal heart samples (n = 8). Four networks were built including the Gene regulatory network, Signal‐Network, miRNA‐GO‐Network and miRNA‐Gene‐Network. According to the fold change in the network and probability values in the microarray cohort, RT‐PCR was performed to measure the expression of five of the 72 differentially regulated miRNAs. miR‐340 achieved statistically significant. miR‐340 was identified for the first time in cardiac pathophysiological condition. We overexpressed miR‐340 in cultured neonatal rat cardiomyocytes to identify whether miR‐340 plays a determining role in the progression of heart failure. ANP, BNP and caspase‐3 were significantly elevated in the miR‐340 transfected cells compared with controls (P < 0.05). The cross‐sectional area of overexpressing miR‐340 cardiomyocytes (1952.22 ± 106.59) was greater (P < 0.0001) than controls (1059.99 ± 45.59) documented by Laser Confocal Microscopy. The changes of cellular structure and the volume were statistical significance. Our study provided a comprehensive miRNA expression profiling in the end‐stage heart failure and identified miR‐340 as a key miRNA contributing to the occurrence and progression of heart failure. Our discoveries provide novel therapeutic targets for patients with heart failure.  相似文献   

5.
Elucidation of the pig microRNAome is essential for interpreting functional elements of the genome and understanding the genetic architecture of complex traits. Here, we extracted small RNAs from skeletal muscle and adipose tissue, and we compared their expression levels between one Western breed (Yorkshire) and seven indigenous Chinese breeds. We detected the expression of 172 known porcine microRNAs (miRNAs) and 181 novel miRNAs. Differential expression analysis found 92 and 12 differentially expressed miRNAs in adipose and muscle tissue respectively. We found that different Chinese breeds shared common directional miRNA expression changes compared to Yorkshire pigs. Some miRNAs differentially expressed across multiple Chinese breeds, including ssc‐miR‐129‐5p, ssc‐miR‐30 and ssc‐miR‐150, are involved in adipose tissue function. Functional enrichment analysis revealed that the target genes of the differentially expressed miRNAs are associated mainly with signaling pathways rather than metabolic and biosynthetic processes. The miRNA–target gene and miRNA–phenotypic traits networks identified many hub miRNAs that regulate a large number of target genes or phenotypic traits. Specifically, we found that intramuscular fat content is regulated by the greatest number of miRNAs in muscle tissue. This study provides valuable new candidate miRNAs that will aid in the improvement of meat quality and production.  相似文献   

6.
Since the prognosis of hypopharyngeal squamous cell carcinoma (HSCC) remains poor, identification of miRNA as a potential prognostic biomarker for HSCC may help improve personalized therapy. In the 2 cohorts with a total of 511 patients with HSCC (discovery: N = 372 and validation: N = 139) after post‐operative radiotherapy, we used miRNA microarray and qRT‐PCR to screen out the significant miRNAs which might predict survival. Associations of miRNAs and the signature score of these miRNAs with survival were performed by Kaplan‐Meier survival analysis and multivariate Cox hazard model. Among 9 candidate, miRNAs, miR‐200a‐3p, miR‐30b‐5p, miR‐3161, miR‐3605‐5p, miR‐378b and miR‐4451 were up‐regulated, while miR‐200c‐3p, miR‐429 and miR‐4701 were down‐regulated after validation. Moreover, the patients with high expression of miR‐200a‐3p, miR‐30b‐5p and miR‐4451 had significantly worse overall survival (OS) and disease‐specific survival (DSS) than did those with low expression (log‐rank P < .05). Patients with a high‐risk score had significant worse OS and DSS than those with low‐risk score. Finally, after adjusting for other important prognostic confounders, patients with high expression of miR‐200a‐3p, miR‐30b‐5p and miR‐4451 had significantly high risk of overall death and death owing to HSCC and patients with a high‐risk score has approximately 2‐fold increased risk in overall death and death owing to HSCC compared with those with a low‐risk score. These findings indicated that the 3‐miRNA‐based signature may be a novel independent prognostic biomarker for patients given surgery and post‐operative radiotherapy, supporting that these miRNAs may jointly predict survival of HSCC.  相似文献   

7.
Spleen tyrosine kinase (SYK) gene has been identified as novel susceptibility locus for ischaemic stroke (IS) previously. However, regulation of SYK gene remains unknown in IS. In this study, we aimed to identify miRNAs that might be involved in the development of IS by targeting SYK gene. miRNAs were firstly screened by bioinformatics predicting tool. The expression levels of SYK gene were detected by qRT‐PCR and western blotting, respectively, after miRNA transfection. Luciferase reporter assay was applied to investigate the direct binding between miRNAs and target gene. miRNA levels were detected by miRNA TaqMan assays in the blood cells of 270 IS patients and 270 control volunteers. Results suggest that SYK gene might be a direct target of miR‐129‐2‐3p. The blood level of miR‐129‐2‐3p was significantly lower in IS patients (P < 0.05), and negatively associated with the risk of IS (adjusted OR: 0.88; 95% CI: 0.80‐0.98; P = 0.021) by multivariable logistic regression analysis. The blood levels of SYK gene were significantly higher in IS patients, and miR‐129‐2‐3p expression was negatively correlated with mean platelet volume. In summary, our study suggests that miR‐129‐2‐3p might be involved in the pathogenesis of IS through interrupting SYK expression and the platelet function, and further investigation is needed to explore the underlying mechanism.  相似文献   

8.
9.
Objective: MicroRNAs (miRNAs) are negative regulators of gene expression that play important roles in cell processes such as proliferation, development and differentiation. Recently, it has been reported that miRNAs are related to development of carcinogenesis. The aim of this study was to identify miRNAs associated with terminal immortalization of Epstein–Barr virus (EBV)‐transformed lymphoblastoid cell line (LCL) and associated clinical traits. Material and Methods: Hence, we performed miRNA microarray approach with early‐ (p6) and late‐passage (p161) LCLs. Results and Conclusion: Microarray data showed that nine miRNAs (miR‐20b*, miR‐28‐5p, miR‐99a, miR‐125b, miR‐151‐3p, miR‐151:9.1, miR‐216a, miR‐223* and miR‐1296) were differentially expressed in most LCLs during long‐term culture. In particular, miR‐125b was up‐regulated in all the tested late‐passage LCLs. miR‐99a, miR‐125b, miR‐216a and miR‐1296 were putative negative regulators of RASGRP3, GPR160, PRKCH and XAF1, respectively, which were found to be differentially expressed in LCLs during long‐term culture in a previous study. Linear regression analysis showed that miR‐200a and miR‐296‐3p correlated with triglyceride and HbA1C levels, respectively, suggesting that miRNA signatures of LCLs could provide information on the donor’s health. In conclusion, our study suggests that expression changes of specific miRNAs may be required for terminal immortalization of LCLs. Thus, differentially expressed miRNAs would be a potential marker for completion of cell immortalization during EBV‐mediated tumorigenesis.  相似文献   

10.
11.
Septic shock is a common medical condition with a mortality approaching 50% where early diagnosis and treatment are of particular importance for patient survival. Novel biomarkers that serve as prompt indicators of sepsis are urgently needed. High‐throughput technologies assessing circulating microRNAs represent an important tool for biomarker identification, but the blood‐compartment specificity of these miRNAs has not yet been investigated. We characterized miRNA profiles from serum exosomes, total serum and blood cells (leukocytes, erythrocytes, platelets) of sepsis patients by next‐generation sequencing and RT‐qPCR (n = 3 × 22) and established differences in miRNA expression between blood compartments. In silico analysis was used to identify compartment‐specific signalling functions of differentially regulated miRNAs in sepsis‐relevant pathways. In septic shock, a total of 77 and 103 miRNAs were down‐ and up‐regulated, respectively. A majority of these regulated miRNAs (14 in serum, 32 in exosomes and 73 in blood cells) had not been previously associated with sepsis. We found a distinctly compartment‐specific regulation of miRNAs between sepsis patients and healthy volunteers. Blood cellular miR‐199b‐5p was identified as a potential early indicator for sepsis and septic shock. miR‐125b‐5p and miR‐26b‐5p were uniquely regulated in exosomes and serum, respectively, while one miRNA (miR‐27b‐3p) was present in all three compartments. The expression of sepsis‐associated miRNAs is compartment‐specific. Exosome‐derived miRNAs contribute significant information regarding sepsis diagnosis and survival prediction and could serve as newly identified targets for the development of novel sepsis biomarkers.  相似文献   

12.
13.
14.
Brain‐derived neurotrophic factor (BDNF) is a neurotrophin that can promote the development and proliferation of neurons. BDNF has been found to be involved in male reproduction. Leydig cells in testicular interstitial tissues can secrete testosterone in a luteinizing hormone‐dependent manner. We showed that BDNF and its receptor TrkB were expressed in mice TM3 Leydig cells in the present study. Furthermore, BDNF can promote proliferation of mouse TM3 Leydig cells in vitro. Results of microRNA (miRNA) deep sequencing showed that BDNF can alter the expression profile of miRNAs in TM3 Leydig cells. Eighty‐three miRNAs were significantly different in the BDNF‐treated and control groups (fold change of >2.0 or <0.5, P < 0.05) wherein 40 were upregulated and 43 were downregulated. The expression levels of miR‐125a‐5p, miR‐22‐5p, miR‐342‐59, miR‐451a, miR‐148a‐5p, miR‐29b‐3p, miR‐199b‐5p, and miR‐145a‐5p were further confirmed by quantitative real‐time polymerase chain reaction. Bioinformatic analysis revealed that miRNAs regulated a large number of genes with different functions. Pathway analysis indicated that miRNAs participate in the pathways involved in signal transduction, cancer, metabolism, endocrine system, immune system, and nerve system. This study indicated that miRNAs might be involved in the BDNF‐regulated cellular functions of Leydig cells.  相似文献   

15.
MicroRNAs (miRNAs) play important roles in global gene regulation. Researchers in recombinant protein production have proposed miRNAs as biomarkers and cell engineering targets. However, miRNA expression remains understudied in Chinese Hamster Ovary cells, one of the most commonly used host cell systems for therapeutic protein production. To profile highly conserved miRNA expression, we used the miRCURY? miRNA array for screening miRNAs in CHO cells. The selection criteria for further miRNA profiling included positive hybridization signals and experimentally validated predicted regulatory targets. On the basis of screening, we selected 16 miRNAs for quantitative RT‐PCR profiling. We profiled miR expression in parental CHO DG44 and CHO K1 cell lines as well as four recombinant DG44‐derived CHO lines producing a recombinant human IgG. We observed that miR‐221 and miR‐222 were significantly downregulated in all IgG‐producing cell lines when compared with parental DG44, whereas miR‐125b was significantly downregulated in one IgG‐producing line. In another IgG‐producing line, miR‐19a was significantly upregulated. miRNA expression was also profiled in two of these lines that were amplified by stepwise increase of methotrexate. In both amplified cell lines, let‐7b and miR‐221 were significantly downregulated. In parental CHO K1, let‐7b, miR‐15b, and miR‐17 were significantly downregulated when compared with DG44. The results reported here are the first steps toward profiling highly conserved miRNAs and studying the clonal difference in miRNA expression in CHO cells and may shed light on using miRNAs in cell engineering. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

16.
Identification of microRNAs (miRNAs), target genes and regulatory networks associated with innate immune and inflammatory responses and tissue damage is essential to elucidate the molecular and genetic mechanisms for resistance to mastitis. In this study, a combination of Solexa sequencing and custom miRNA chip approaches was used to profile the expression of miRNAs in bovine mammary gland at the late stage of natural infection with Staphylococcus aureus, a widespread mastitis pathogen. We found 383 loci corresponding to 277 known and 49 putative novel miRNAs, two potential mitrons and 266 differentially expressed miRNAs in the healthy and mastitic cows’ mammary glands. Several interaction networks and regulators involved in mastitis susceptibility, such as ALCAM, COL1A1, APOP4, ITIH4, CRP and fibrinogen alpha (FGA), were highlighted. Significant down‐regulation and location of bta‐miR‐26a, which targets FGA in the mastitic mammary glands, were validated using quantitative real‐time PCR, in situ hybridization and dual‐luciferase reporter assays. We propose that the observed miRNA variations in mammary glands of mastitic cows are related to the maintenance of immune and defense responses, cell proliferation and apoptosis, and tissue injury and healing during the late stage of infection. Furthermore, the effect of bta‐miR‐26a in mastitis, mediated at least in part by enhancing FGA expression, involves host defense, inflammation and tissue damage.  相似文献   

17.
Urinary microRNAs (miRNAs) are emerging as clinically useful tool for early and non‐invasive detection of various types of cancer including bladder cancer (BCA). In this study, 205 patients with BCA and 99 healthy controls were prospectively enrolled. Expression profiles of urinary miRNAs were obtained using Affymetrix miRNA microarrays (2578 miRNAs) and candidate miRNAs further validated in independent cohorts using qRT‐PCR. Whole‐genome profiling identified 76 miRNAs with significantly different concentrations in urine of BCA compared to controls (P < 0.01). In the training and independent validation phase of the study, miR‐31‐5p, miR‐93‐5p and miR‐191‐5p were confirmed to have significantly higher levels in urine of patients with BCA in comparison with controls (P < 0.01). We further established 2‐miRNA‐based urinary DxScore (miR‐93‐5p, miR‐31‐5p) enabling sensitive BCA detection with AUC being 0.84 and 0.81 in the training and validation phase, respectively. Moreover, DxScore significantly differed in the various histopathological subgroups of BCA and decreased post‐operatively. In conclusion, we identified and independently validated cell‐free urinary miRNAs as promising biomarkers enabling non‐invasive detection of BCA.  相似文献   

18.
MicroRNAs (miRNAs) regulate gene expression; many of them act in the retinal pigment epithelium (RPE), and RPE degeneration is known to be a critical factor in age‐related macular degeneration (AMD). Repeated injections with anti‐VEGFA (vascular endothelial growth factor A) are the only effective therapy in wet AMD. We investigated the correlation between the expression of 18 miRNAs involved in the regulation of the VEGFA gene in serum of 76 wet AMD patients and 70 controls. Efficacy of anti‐VEGFA treatment was evaluated by counting the number of injections delivered up to 12 years. In addition, we compared the relative numbers of deaths in patient with AMD and control groups. We observed a decreased expression of miR‐34‐5p, miR‐126‐3p, miR‐145‐5p and miR‐205‐5p in wet AMD patients as compared with controls. These miRNAs are involved in the regulation of angiogenesis, cytoprotection and protein clearance. No miRNA was significantly correlated with the treatment outcome. Wet AMD patients had greater mortality than controls, and their survival was inversely associated with the number of anti‐VEGFA injections per year. No association was observed between miRNA expression and mortality. Our study emphasizes the need to clarify the role of miRNA regulation in AMD pathogenesis.  相似文献   

19.
20.
MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression associated with many complex biological processes. By comparing miRNA expression between long‐lived cohorts of Drosophila melanogaster that were fed a low‐nutrient diet with normal‐lived control animals fed a high‐nutrient diet, we identified miR‐184, let‐7, miR‐125, and miR‐100 as candidate miRNAs involved in modulating aging. We found that ubiquitous, adult‐specific overexpression of these individual miRNAs led to significant changes in fat metabolism and/or lifespan. Most impressively, adult‐specific overexpression of let‐7 in female nervous tissue increased median fly lifespan by ~22%. We provide evidence that this lifespan extension is not due to alterations in nutrient intake or to decreased insulin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号