首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The microprojectile bombardment method was used to transfer DNA into embryogenic callus of asparagus (Asparagus officcinalis L.) and to produce stably transformed asparagus plants. Embryogenic callus, derived from UC 157 and UC72 asparagus cultivars, was bombarded with tungsten particles coated with plasmid DNA that contained genes encoding hygromycin phosphotransferase, phosphinothricin acetyl transferase and -glucuronidase. Putatively transformed calli were identified from the bombarded tissue after 4 months selection on 25 mg/L hygromycin B plus 4 mg/L phosphinothricin (PPT). By selecting embryogenic callus on hygromycin plus PPT the overall transformation and selection efficiencies were substantially improved over selection with hygromycin or PPT alone, where no transgenic clones were recovered. The transgenic nature of the selected material was demonstrated by GUS histochemical assays and Southern blot hybridization analysis. Transgenic asparagus plants were found to withstand the prescribed levels of the PPT-based herbicide BASTATM for weed control.Abbreviations GUS -glucuronidase - HPT hygromycin phosphotransferase - bar phosphinothricin acetyl transferase gene - PPT phosphophinothricin - NAA naphthalene acetic acid - 2iP 2-isopentenyl adenine  相似文献   

2.
We compared the transient activity of three cereal gene-derived promoter-gus fusions and the efficiency of selection mediated by three different selectable genes in a polyethylene glycol transformation system with haploid cell suspension protoplasts of rice. The maize ubiquitin promoter was found to be the most active in transformed protoplasts, and selection on ammonium glufosinate mediated by the bar gene was the most efficient for producing resistant calluses. Cotransformation of protoplasts with two separate plasmids carrying the gus and the bar genes, at either a 21 or 11 ratio, led to 0.8 × 10–5 and 1.6 × 10–5 resistant callus recovery frequencies and 59.7 and 37.9 cotransformation efficiencies respectively. No escapes were detected in dot blot analyses of 100 resistant calluses with a probe consisting of the bar coding region. Cotransformation efficiency, based on resistance to basta and -glucuronidase staining of the leaf tissue of 115 regenerated plants, was 47%. Resistance tests and Southern analysis of seed progenies of three diploid transgenic plants demonstrated homozygous integration of multiple copies of the transgene at one locus at least in the first plant, heterozygous integration at one locus in the second plant and heterozygous integration at two loci in the third plant.Abbreviations PEG polyethylene glycol - T0 regenerated transgenic plant - GUS -glucuronidase - CaMV cauliflower mosaic virus - ARE anaerobic responsive element - OCS octopine synthase - T1 first generation progeny of transgenic plants  相似文献   

3.
Colonial bentgrass (Agrostis tenuis Sibth. Fl. Oxen.) is a cool-season turfgrass used on fairways in golf courses. The object of this study was to develop a more efficient, reliable and repeatable approach in transforming the grass using Agrobacterium (strain LBA4404), in which -glucuronidase (gus) gene was used as a reporter and hygromycin phosphotransferase (hpt) gene as a selectable marker. This vector was effective in transforming 7-week-old calluses derived from mature seeds cultured on MS medium supplemented with 2,4-D. A two-step solid medium selection with increasing hygromycin concentration (from 50 to 70 mg l–1) was used to obtain resistant calluses. Hundreds of transgenic plants have been produced from several independent transformed calluses. The presence of functional -glucuronidase (GUS) was detected in hygromycin-resistant calluses, young leaves and roots of transgenic plants. The transgenic plants collected from greenhouse showed strong resistance to 50 mg l–1 hygromycin solution. Four putative transgenic plants and one control plant were randomly chosen and analyzed by Southern blot analysis. Bands corresponding to the hpt gene were clearly shown in transgenic plants.  相似文献   

4.
The 5-upstream region of the pea plastocyanin gene (petE) directed 5–10-fold higher levels of -glucuronidase (GUS) activity than the cauliflower mosaic virus 35S promoter in transgenic tobacco plants, although the levels of GUS mRNA were similar. The sequence (AAAAAUGG) around the translation initiation codon of petE enhanced translation of the GUS mRNA 10-fold compared to translation from the GUS translation initiation codon in transgenic tobacco plants and transfected protoplasts.  相似文献   

5.
Transformation of cotton (Gossypium hirsutum L.) via particle bombardment   总被引:1,自引:0,他引:1  
Embryogenic suspension cultures of cotton (Gossypium hirsutum L.) were subjected to particle bombardment, where high density particles carrying plasmid DNA were accelerated towards the embryogenic plant cells. The plasmid DNA coating the particles encoded hygromycin resistance. One to two weeks following bombardment, embryogenic cotton cells were placed in proliferation medium containing 100 g/ml hygromycin. Clumps of tissue which grew in the presence of hygromycin were subcultured at low density into fresh hygromycin-containing proliferation medium. Following sequential transfer of embryogenic tissue to development and then germination media, plants were recovered from transgenic embryogenic tissue. Southern hybridization confirmed the presence of the hygromycin resistance gene in embryogenic suspension culture tissue and regenerated plants.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - GUS -glucuronidase - Aph IV aminoglycoside phosphotransferase type IV Salaries and research support were provided by State and Federal funds appropriated to OSU/OARDC and USDA-ARS. Mention of trademark or proprietary products does not constitute a guarantee or warranty of the product by OSU/OARDC or USDA, and also does not imply approval to the exclusion of other products that may also be suitable. Journal Article No. 354-89  相似文献   

6.
Summary In order to establish a model system for introduction of foreign genes into papaya (Carica papaya L.) plants by Agrobacterium-mediated transformation, petioles from multishoots were used as explant source and bacterial neomycin phosphotransferase II (NPT II) gene and -glucuronidase (GUS) gene were used as a selection marker and a reporter, respectively. Cross sections of papaya petioles obtained from multishoots micropropagated in vitro were infected with A. tumefaciens LBA4404 containing NPTII and GUS genes and co-cultured for 2 d. The putative transformed calluses were identified by growth on the selective medium containing kanamycin and carbenicillin, and consequently regenerated to plants via somatic embryogenesis. Thirteen putative transgenic lines were obtained from a total of 415 petiole fragments treated. Strong GUS activity was detected in the selected putative transgenic calli or plants by fluorogenic assay. Western blot analysis using GUS antiserum confirmed that the GUS protein was expressed in putative transformed papaya cells and transgenic plants. The presence of the GUS gene in the papaya tissues was detected by PCR amplification coupled with Southern blot.  相似文献   

7.
Transgenic creeping bentgrass (Agrostis palustris Huds., cv. Pencross; Poaceae) plants have been obtained by microprojectile bombardment of and regeneration from embryogenic calli with a vector designed to deliver the -glucuronidase (GUS) gene under the control of rice actin 1 5' regulatory sequences. Southern analysis of polymerase chain reaction (PCR)-amplified and restriction-digested genomic DNA of four transgenic plants regenerated from these cultures showed the unscrambled integration of the gus fragment. Northern blot analysis confirmed the expression of gus mRNA in one of the transgenic plants. Western blot analysis revealed a high level of accumulation of gus protein. Histochemical assays showed enzymatic activity of -glucuronidase in all parts of the transgenic turfgrass plant. The order of gus expression level in different tissues of the transgenic plant is as follows: stem node > first young leaf > root tip > second / third / fourth young leaf > stem internode > root hair-zone.Abbreviation GUS -glucuronidase - MS Murashige and Skoog(1962) medium - BA 6-benzyladenine - dicamba 3, 6 -dichloro-o-anisic acid - PCR polymerase chain reaction  相似文献   

8.
The GUS gene of E. coli, encoding -glucuronidase, has been widely used as a reporter gene in plant transformation. However, -glucuronidase activity in transgenic wheat leaf or root tissue is rarely observed or reported. To address this question, we investigated three wheat lines transformed with the GUS reporter gene. We found all three lines expressed GUS mRNA as well as -glucuronidase protein in their leaf and root tissues as detected by RNA gel blot, ELISA, and immunoblot analyses. However, -glucuronidase enzyme activity was only detected in pollen grains from the transgenic plants. Fluorometric and histochemical assays performed in the presence of wheat tissue extracts indicated that wheat leaf and root tissues contain inhibitor(s) of -glucuronidase activity, but pollen grains contain much lower concentrations. Further characterizations indicated that the inhibitor(s) is of low molecular weight (<10 kDa) and is non-proteinaceous.  相似文献   

9.
Russian wildrye (Psathyrostachys juncea (Fisch.) Nevski) is a cool-season forage species well adapted to semi-arid climates. We are interested in developing biotechnological methods to improve this monocot forage species. Single genotype-derived embryogenic suspension cultures were established from the Russian wildrye cultivar Bozoisky-Select, and were used as target cells for biolistic transformation. A chimeric hygromycin phosphotransferase gene (hph) was used as the selectable marker, and a chimeric -glucuronidase (gusA) gene was co-transformed with hph. Resistant calli were obtained from 29% of the bombarded dishes after selection with 200 mg/l hygromycin. Plants were regenerated from 45% of the hygromycin resistant calli. Thirty-six transgenic Russian wildrye plants were recovered after microprojectile bombardment of suspension cells and subsequent hygromycin selection. The transgenic nature of the regenerated plants was demonstrated by Southern hybridization analysis using undigested and digested genomic DNA samples. When a second gene (gusA) was co-transformed with hph, a reasonably high co-transformation frequency of 78% was observed. Transgenic expression of gusA was confirmed by GUS staining of shoot and leaf tissues. Fertile transgenic plants were obtained after two winters of vernalization under field conditions. This is the first report on the generation of transgenic plants in Russian wildrye.  相似文献   

10.
Internode explants ofin vitro plants ofForsythia x intermedia Spring Glory were transformed with thegus andnpt II genes after inoculation with theA. tumefaciens strain EHA 101 harbouring the plasmid pFAJ3000. Shoot organogenesis took place from callused edges of explants. The first transformed buds were detected 4 to 6 weeks after transfer on regeneration medium, containing 25 mg/l kanamycin as selective agent. An average of 1% of explants regenerated transgenic shoots.-glucuronidase assays and culture on kanamycin-containing medium provided the first indication of integration and expression of introduced genes in transformants. Southern blot and polymerase chain reaction amplification analyses gave molecular confirmation of genetic transformation. Transgenic plants were acclimatized in the greenhouse. Enzymatic assays on several organs of mature plants still showed -glucuronidase activity, thus confirming stable integration of T-DNA in the plant genome.Abbreviations BAP 6-benzyl-aminopurine - CaMV Cauliflower Mosaic Virus - GUS andgus -glucuronidase - IAA indole-3-acetic acid - IBA indole-3-butyric acid - MS Murashige and Skoog - NOS nopaline synthase - NPT II andnpt II neomycin phosphotransferase II - PCR polymerase chain reaction - SDS sodium dodecyl sulphate - SSC sodium chloride-sodium citrate - X-Gluc 5-bromo-4-cbloro-3-indolyl glucuronide  相似文献   

11.
Transgenic forage-type Italian ryegrass (Lolium multiflorum Lam.) plants have been obtained by microprojectile bombardment of embryogenic suspension cells using a chimeric hygromycin phosphotransferase (hph) gene construct driven by riceActl 5 regulatory sequences. Parameters for the bombardment of embryogenic suspension cultures with the particle inflow gun were partially optimized using transient expression assays of a chimeric-glucuronidase (gusA) gene driven by the maizeUbi1 promoter. Stably transformed clones were recovered with a selection scheme using hygromycin in liquid medium followed by a plate selection. Plants were regenerated from 33% of the hygromycin-resistant calli. The transgenic nature of the regenerated plants was demonstrated by Southern hybridization analysis. Expression of the transgene in transformed adult Italian ryegrass plants was confirmed by northern analysis and a hygromycin phosphotransferase enzyme assay.Abbreviations 2,4-D 2,4 Dichlorophenoxyacetic acid - GUS Glucuronidase - Hm Hygromycin - HPH Hygromycin phosphotransferase - MS medium Murashige and Skoog medium - PCR Polymerase chain reaction - X-Gluc 5-Bromo-4-chloro--indolyl--D-glucuronic acid  相似文献   

12.
Forty-six independent transformed plants were regenerated under hygromycin selection from cell-suspension derived protoplasts of Festuca arundinacea (Schreb.) after PEG-mediated transformation. Protoplasts were co-transformed with varying molar gene ratios (0.7:1–6:1) of a marker -glucuronidase (uidA) gene and a selective hygromycin (hpt) resistance gene. Logistic regression analysis indicated that, as expected, the proportion of co-transformed plants tended to increase as the proportion of the marker gene was increased. However, although the proportion of plants co-expressing both genes tended to increase up to a molar ratio of 4:1, it appeared to fall at a molar ratio of 6:1. No statistically significant differences were found in the average copy number of the integrated uidA or hpt transgenes, either in GUS expressing, or in non-GUS expressing plants at the different molar ratios. When using naked-DNA gene transformation methods most authors use a molar ratio of 1:1; our data suggest that adding non-selected and selected transgenes at a higher Molar Gene Ratio would probably improve the proportion of plants regenerated which express both transgenes.  相似文献   

13.
Summary Tall fescue (Festuca arundinacea Schreb.) is the most important forage species worldwide of the Festuca genus. Single genotype-derived embryogenic suspension cultures were established from tall fescue cultivar Kentucky-31, and were used as target cells for biolistic transformation. A chimeric hygromycin phosphotransferase gene (hph) was used as the selectable marker, and a chimeric β-glucuronidase (gusA) gene was co-transformed with hph. Transgenic plants were recovered after microprojectile bombardment of suspension cells and subsequent selection in the presence of a high concentration of hygromycin. Fertile transgenic plants were obtained after vernalization under field conditions. T1 and T2 progenies were obtained after reciprocal crosses between transgenic and untransformed control plants. PCR and Southern hybridization analyses revealed a 1∶1 segregation ratio for both transgenes in the T1 and T2 generations. Southern hybridization patterns were identical for T0, T1, and T2 plants. The results demonstrated for the first time the stable meiotic transmission of transgenes following Mendelian rules in transgenic tall fescue.  相似文献   

14.
Information regarding gene flow in wind-pollinated, outcrossing forage grasses is essential for any future releases of value-added transgenic cultivars. Experiments on pollen dispersal was carried out by growing transgenic tall fescue (Festuca arundinacea) in a central plot, surrounded by exclosures containing recipient plants up to a distance of 200 m from the central source plants in eight directions. The central transgenic tall fescue plants carried a chimeric hygromycin phosphotransferase gene (hph) and a chimeric -glucuronidase gene (gusA). Seeds were collected from the recipient plants and germinated seedlings were used for high throughput DNA isolation and polymerase chain reaction (PCR) analysis. More than 21,000 seedlings were PCR analyzed for the experiments conducted in three years. Transgenes were detected in recipient plants at up to 150 m from the central transgenic plot. The highest transgene frequencies, 5% at 50 m, 4.12% at 100 m and 0.96% at 150 m, were observed north of the central plot, the prevailing wind direction. Lower transgene frequencies were detected in other directions, particularly at 100 m and 150 m distances. No transgene was detected at 200 m distance in any direction. Transgene flow was less effective or ineffective when recipient plants were further away from the central donor plants. Southern blot hybridization analysis confirmed the transgenic nature of the PCR positive plants. A supplementary experiment demonstrated that transgene flow can be controlled by placing transgenic plantings downwind and long distances from non-transgenic seed increases, thus allowing tall fescue breeding and transgene development programs to be conducted concurrently at the same research station.  相似文献   

15.
Summary By screening cell colonies derived from protoplasts of tall fescue (Festuca arundinacea), transformed with a rice actin-1-promoter-ß-glucuronidase gene construct, several ß-glucuronidase positive callus clones were obtained. Two callus clones with different GUS expression were derived from these. One was light blue after X-gluc staining, and expression of the ß-glucuronidase gene was stable over repeated subculture, while another stained intensely blue, and expression of the ß-glucuronidase gene was unstable. Southern blot analysis showed that only one copy of the ß-glucuronidase gene was integrated into the genome, and that these two clones appeared to have the same integration pattern. Treatment with 5-azacytidine maintained GUS expression in the unstable line but had no effect on reactivating expression of the GUS gene after expression had been lost. Following the screening procedure the callus clones would only regenerate albino plants.Abbreviations X-gluc 5-bromo-4-chloro-3-indolylglucuronide - GUS ß-glucuronidase - CaMV cauliflower mosaic virus - PEG polyethylene glycol - AZC 5-azacytidine - SDS sodium dodecyl sulphate - UV ultraviolet - EDTA ethylenediaminetetra-acetic acid disodium salt - SSPE salt-sodium-phosphate-EDTA - SSC standard saline citrate - hpt hygromycin phosphotransferase  相似文献   

16.
A transformation procedure for phalaenopsis orchid established by using immature protocorms for Agrobacterium infection was aimed at the introduction of target genes into individuals with divergent genetic backgrounds. Protocorms obtained after 21 days of culture on liquid New Dogashima medium were inoculated with Agrobacterium strain EHA101(pIG121Hm) harboring both -glucuronidase (GUS) and hygromycin resistance genes. Subculture of the protocorms on acetosyringone-containing medium 2 days before Agrobacterium inoculation gave the highest transformation efficiencies (1.3–1.9%) based on the frequency of hygromycin-resistant plants produced. Surviving protocorms obtained 2 months after Agrobacterium infection on selection medium containing 20 mg l–1 hygromycin were cut transversely into two pieces before transferring to recovery medium without hygromycin. Protocorm-like bodies (PLBs) proliferated from pieces of protocorms during a 1-month culture on recovery medium followed by transfer to selection medium. Hygromycin-resistant phalaenopsis plants that regenerated after the re-selection culture of PLBs showed histochemical blue staining due to GUS. Transgene integration of the hygromycin-resistant plants was confirmed by Southern blot analysis. A total of 88 transgenic plants, each derived from an independent protocorm, was obtained from ca. 12,500 mature seeds 6 months after infection with Agrobacterium. Due to the convenient protocol for Agrobacterium infection and rapid production of transgenic plants, the present procedure could be utilized to assess expression of transgenes under different genetic backgrounds, and for the molecular breeding of phalaenopsis.  相似文献   

17.
The timing of excision of maize transposable element Ac was studied using visual histochemical assay based on Ac excision restoring activity of -glucuronidase (GUS). The Solanum tuberosum L. cv. Bintje was used for Agrobacterium-mediated transformation with pTT230 plasmid harbouring Ac-interrupted gus A gene and npt II gene as a selectable marker gene. Twenty-eight out of 72 kanamycin resistant calli did not express any GUS activity, 31 calli showed partial GUS expression and 13 out of assayed calli revealed strong expression of gus A gene. Plants were regenerated from calli without and/or with partial expression of gus A gene. The regenerated transformants which did not express GUS during the callus phase often contained many small GUS expressing spots on leaves. A phenotypic selection assay for excision of Ac has been also used. This non-detectable excision of Ac in callus tissue could be followed by a "late" timing excision during leaf development. After transformation with pTT224 plasmid harbouring Ac-interrupted hpt II gene and npt II gene transgenic calli containing Ac within the hygromycin resistance gene were derived and hygromycin sensitive plants were regenerated from them. Protoplasts isolated from leaves of transgenic regenerated plants were selected on hygromycin. Hygromycin resistant minicalli showed to harbour multiple copies of Ac and mark out low uniqueness of integration sites.  相似文献   

18.
To facilitate molecular studies of symbiotic nitrogen fixation a procedure for rapid production of transgenic root nodules was established on the legumeLotus corniculatus (Bird'sfoot trefoil). Regeneration of transgenic plants is not required as transgenic nodules are formed onAgrobacterium rhizogenes incited roots inoculated withRhizobium. Easy identification of transformed roots is possible using a set ofA. rhizogenes acceptor strains carrying assayable marker genes such as chloramphenicol acetyltransferase (CAT), -glucuronidase (GUS), or luciferase (LUC) under control of the cauliflower mosaic virus (CaMV) 35S promoter. Counterselection ofA. rhizogenes after infection of plants was improved using an auxotrophy marker.Abbreviations CAT chloramphenicol acetyltransferase - GUS -glucuronidase - LUC luciferase - Ri root inducing - TL left T-DNA - CaMV Cauliflower Mosaic Virus  相似文献   

19.
Summary The regulation in tobacco of the rolB and rolC promoters of Agrobacterium rhizogenes pRi 1855 TL-DNA was studied by using the -glucuronidase (GUS) reporter system in transgenic plants. A 20- to 100-fold increase of GUS activity was selectively induced by auxin in rolB-GUS transformed mesophyll protoplasts, whereas this auxin-dependent increase was only 5-fold in rolC-GUS protoplasts. Moreover, both gene fusions exhibited similar tissue-specific expression in aerial parts but different patterns in roots. The spatial pattern of rolBGUS expression could be strongly modified by the addition of exogenous auxin, further suggesting that auxin plays a central role in the regulation of the rolB promoter in tobacco. The tissue-specific and auxin-dependent regulation of the rolB promoter is discussed in relation to the effects of the rolB gene on rhizogenesis and on cellular responses to auxin.Abbreviations BA benzoic acid - 6-BAP benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - GUS -glucuronidase - 2,4,5-T 2,4,5,-trichlorophenoxyacetic acid - 2,4,6-T 2,4,6-trichlorophenoxyacetic acid - IAA indoleacetic acid - NAA naphthaleneacetic acid - MU 4-methyl umbelliferone - 35S CaMV cauliflower mosaic virus 35S (promoter) - TCA trichloroacetic acid - X-Glu 5-bromo-4chloro-3-indolyl -d-glucuronic acid  相似文献   

20.
Transgenic plant production mediated by Agrobacterium in Indica rice   总被引:3,自引:0,他引:3  
Summary A reproducible system has been developed for the production of transgenic plants in indica rice using Agrobacterium-mediated gene transfer. Three-week-old scutella calli served as an excellent starting material. These were infected with an Agrobacterium tumefaciens strain EHA101 carrying a plasmid pIG121Hm containing genes for -glucuronidase (GUS) and hygromycin resistnace (HygR). Hygromycin (50 mg/l) was used as a selectable agent. Inclusion of acetosyringone (50M) in the Agrobacterium suspension and co-culture media proved to be indispensable for successful transformation. Transformation efficiency of Basmati 370 was 22% which was as high as reported in japonica rice and dicots. A large number of morphologically normal, fertile transgenic plants were obtained. Integration of foreign genes into the genome of transgenic plants was confirmed by Southern blot analysis. GUS and HygR genes were inherited and expressed in R1 progeny. Mendelian segregation was observed in some R1 progeny.Abbreviations GUS ß-glucuronidase - HygR hygromycin-resistance - AS acetosyringone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号