首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
我们用从菠菜提纯的RuDP 羧化酶制备兔抗RuDP 羧化酶抗体,用荧光免疫直接法在典型的C_3和C_4植物叶片横截面的冰冻切片内定位RuDP 羧化酶。抗RuDP 羧化酶抗体是用异硫氰荧光素(FITC)标记的。观察结果说明在C_4植物(玉米)叶切片中,特异荧光绝大部分集聚于维管束鞘细胞的叶绿体内。在C_3植物(小麦、大麦)叶切片中,特异荧光呈现在叶片叶肉细胞的叶绿体部位。两种植物中特异荧光分布的不同显示了它们的RuDP 羧化酶分布的不同。  相似文献   

2.
3.
本文根据RuDP(1,5-二磷酸核酮糖)羧化酶的动力学特性测定了大豆光合作用和光呼吸的相对速率。在该羧化酶上,CO_2和O2对RuDP进行着争夺。高浓度的CO_2和低浓度的O_2,有利于RuDP羧化为三磷酸甘油酸,因而促进光合作用。低浓度的CO_2和高浓度的O_2则有利于RuDP的加氧反应而成为P-乙醇酸,因而促进光呼吸。在玉米上,PEP(磷酸烯醇式丙酮酸)羧化酶-苹果酸酶偶起了增加维管束鞘细胞中CO_2浓度的作用。四碳植物的维管束鞘细胞是RuDP羧化酶存在的场所。玉米的RuDP羧化酶对O_2也敏感,所以在维管束鞘内提高CO_2的浓度就能促进光合而减弱光呼吸。由于在800ppmCO_2和21%O_2的标准大气条件下,光呼吸及其相伴随的氧对光合的抑制作用,会明显地抑制大豆的净光合,同时由于迄未证明光呼吸有何重要的生理功能,因而正在试图设法减少或消除大豆和其他三碳植物的光呼吸。  相似文献   

4.
叶绿体的"内共生"与"基因转移"现象   总被引:1,自引:0,他引:1  
叶绿体是绿色植物的重要细胞器,被认为由“古老的”蓝细菌与“古老的真核细胞”经过内共生进化而来。对叶绿体进化过程中出现的二次内共生、退化隐缩、基因转移等现象进行了介绍,同时讨论了叶绿体保留部分基因组的意义.  相似文献   

5.
叶绿体是植物细胞和真核藻类执行光合作用的重要细胞器,在叶绿体中表达外源基因比在细胞核中表达具有一些独特优势。叶绿体基因工程涉及叶绿体的基因组特征、转化系统的优点、转化过程及方法等方面,叶绿体基因工程在提高植物光合效率、改良植物特性、生产生物药物及改善植物代谢途径等方面已得到应用。尽管叶绿体基因工程还存在同质化难度高、标记基因转化效率较低、宿主种类偏少等问题,但作为外源基因在高等植物中表达的良好平台其仍然具有广阔的发展和应用前景。  相似文献   

6.
植物叶绿体DNA是存在核基因外的细胞质基因组,它是一种双链DNA分子、在细胞内,与核基因协调编码与光合作用有关的蛋白质,叶绿体基因组中基因的结构与表达调控与原核生物相似,但也有一些区别,深入开展叶绿体基因组的基因,对探讨光合作用机理与细胞器的起源等问题具有重要意义。  相似文献   

7.
李冠一  林栖凤  黎荣松 《遗传》1986,8(6):10-12
叶绿体是植物进行光合作用的极为重要的 细胞器。本世纪初,Correns等根据植物叶子 的花斑现象具有母性遗传的特征,推测叶绿体 中可能存在着某些特殊的遗传因子,但是在其 后的近半个世纪里,叶绿体基因存在与否始终 未能得到肯定,直到六十年代初,随着核酸检测 技术和电镜技术的发展,叶绿体基因的存在才 最后得到证实。1962年Ristb,等用电镜观察到 衣藻叶绿体中存在着纤维状DNA, 1963年 Sager和石田政弘〔21应用超离心技术,从衣藻叶 绿体中首次成功地分离提取了DNA。由于在 高等植物中叶绿体基因组比较简单,而且它的 非孟德尔遗传方式对叶绿体基因组的结构及其 遗传分析带来极大方便。此外叶绿体作为真核 细胞的细胞器,其DNA及基因表达系统却又 与原核细胞的极为类似,因此叶绿体也是研究 真核基因和原核基因之间相互关系的好材料。 叶绿休基因组的研究无论在理论上还是在实际 上均有着重要意义。 我之居脚座矛材群,参考Kolodner 151和杉 浦昌弘〔33的方法,并加以改进,分离制得叶绿体 DNA (Chloroplast DNA· 简称ctDNA),  相似文献   

8.
叶绿体是植物细胞中最重要的光能转化细胞器,叶绿体在细胞中具有一定分布区域,当植物受外界环境刺激时叶绿体会发生位移,包括回避反应、聚集反应等运动方式.近年来,以模式植物拟南芥为材料,利用正向遗传学和反向遗传学等方法,发现一些重要基因编码的蛋白控制叶绿体移动行为,其中向光素蓝光受体PHOT1和PHOT2以及肌动蛋白结合蛋白CHIP1(chloroplast unusual positioning 1)与叶绿体移动有密切关系.简要介绍目前对叶绿体移动机制的研究进展.  相似文献   

9.
七十年代以来由于重组DNA技术的建立,使真核生物特定基因的分离有了可能。随着基因结构分析技术的飞速发展,分子生物学的研究出现了崭新的局面,同时绿色植物基因结构和基因工程的研究也有了很大的发展。近年来对植物核基因——贮藏蛋白基因、细胞器——叶绿体,线粒体基因,以及有希望成为植物系统载体的Ti质粒DNA和花椰菜花叶病毒DNA的研究,都取得了显著的进展。  相似文献   

10.
对植物叶绿体基因组的特征,叶绿体编码基因,叶绿体基因表达调控以及叶绿体基因转化等内容进行了介绍和评述。  相似文献   

11.
乙酰辅酶A羧化酶是一个生物素羧化酶,它所催化的反应是脂肪酸生物合成中的第一个植物叶绿体中的乙酰辅酶A羧化酶是两类禾本科除草剂的靶蛋白.从抗除草剂拿捕净和感拿捕净的谷子(SetariaitalicaBeauv.)中克隆了两个乙酰辅酶A羧化酶的全长cDNA,分别命名为foxACC-R和foxACC-S,它们推导的蛋白质均编码2 321个氨基酸,然而在第1 780个氨基酸处,foxACC-R编码亮氨酸,而foxACC-S编码异亮氨酸.采用生物信息学方法,我们推断这个cDNA编码的是叶绿体中的乙酰辅酶A羧化酶,并预测了它的功能域和保守区.通过这两个cDNA编码的氨基酸序列与其他乙酰辅酶A羧化酶的序列比较得出结论,亮氨酸/异亮氨酸位点可能是APPs和CHDs两类除草剂作用的关键位点.Southern杂交分析的结果显示,该基因在谷子基因组中只有一个拷贝.  相似文献   

12.
小麦3个被白粉菌诱导基因表达的分析   总被引:5,自引:0,他引:5  
含有抗白粉病基因Pm2 1的小麦 簇毛麦 6VS/6AL易位系在接种白粉菌后 ,叶片无任何病症。应用mRNA差异显示技术从小麦 簇毛麦 6VS/ 6AL易位系分离到 3个叶绿体蛋白基因片段 ,它们是TaD5、TaD2 3和TaD33,3个基因片段分别与小麦叶绿体基因rbcL ,拟斯卑尔脱山羊草叶绿体RNA聚合酶α亚基基因rpoA和大麦 1,5 二磷酸核酮糖羧化酶活化酶基因(Rubiscoactivase ,RcaA2 )同源性达 97%、98%和 88%。据此推测TaD5、TaD2 3和TaD33分别是 6VS/ 6AL易位系中的rbcL、rpoA和 1,5 二磷酸核酮糖羧化酶活化酶基因的片断。Northern分析表明这 3个叶绿体基因的表达在白粉菌诱导下得到增强。叶绿体基因组含有胸腺嘧啶重复区是在mRNA差异显示中克隆到叶绿体基因组基因的原因  相似文献   

13.
叶绿体是植物细胞内执行光合作用的半自主性细胞器,叶绿体转基因是研究叶绿体基因表达调控机制的重要技术。通常在细胞和组织水平进行转化时需要叶绿体同质化,因此实验周期较长。该文以无菌培养的黄瓜绿色子叶为材料,通过差速离心分离叶绿体,以0.33 mol/L山梨醇为叶绿体洗涤和悬液,在13 k V/cm电击电压条件下进行转化。经PCR、RT-PCR鉴定和荧光显微镜观察,证明外源基因能导入离体叶绿体并可进行表达。该方法有望为包括鉴定叶绿体表达载体功能等基础性研究工作提供快捷途径。  相似文献   

14.
随着植物转基因研究的不断深入,核基因组转化的转基因沉默现象严重影响了基因工程的应用效果。植物叶绿体遗传转化以叶绿体基因组为平台对植物进行遗传操作,外源基因定点整合及母性遗传特性能较好地解决"顺式失活"和"位置效应"等类的基因沉默问题和转基因逃逸等安全问题,成为植物基因工程发展的新方向,在工业、农业及医药生物领域发挥了重要作用,也为生产廉价、安全的植物疫苗提供了新思路。本文在简要介绍叶绿体转化的原理、转化方法与优势的基础上,重点综述了近年来通过该技术表达的一些重要的病毒抗原和细菌抗原。最后,对叶绿体转化技术在表达外源基因方面存在的问题进行分析。未来随着叶绿体基因表达、调控机制研究的逐渐深入及相关技术体系的日臻完善,叶绿体转化有望成为疫苗生产的生力军。  相似文献   

15.
高等植物叶绿体基因组转化的应用   总被引:5,自引:1,他引:4  
王永飞  马三梅  王莹 《遗传》2004,26(6):977-19
叶绿体基因组转化技术由于其独特的优越性,现已成为植物基因工程的研究热点。本文简单介绍了叶绿体基因组转化技术的原理和方法;并重点综述了该技术在基础研究和实践中的应用。这些应用主要包括利用叶绿体基因组转化技术进行Rubisco的组装,叶绿体基因结构、转录、翻译和RNA编辑等研究;利用叶绿体作为生物反应器生产人生长激素、霍乱毒素抗体、聚羟基丁酸脂和生物弹性蛋白等;获得抗虫、抗病、抗除草剂和耐旱的转基因植物;以及降低转基因植物的外源基因扩散等。  相似文献   

16.
几种新型细胞器植物生物反应器的研究   总被引:1,自引:0,他引:1  
细胞器植物生物反应器因有效提高外源蛋白的表达量及降低蛋白提取和加工等下游技术的成本,在现在商业及产业化进程中更具竞争力而成为植物生物反应器研究领域中新的热点.对叶绿体、油体、淀粉体细胞器植物生物反应器的特点及研究进展进行阐述.  相似文献   

17.
叶绿体是绿色植物特有的细胞器,其基因组信息被广泛应用于植物系统发育和比较基因组学研究。目前,越来越多的物种有了叶绿体全基因组序列,人们对叶绿体基因组的结构及其变异规律有了更深入的了解。该文对近年来国内外有关被子植物叶绿体基因组插入/缺失、短片段倒位与重复、基因组结构重排以及基因丢失等结构变异式样的研究进展进行综述,并分析了叶绿体基因组结构研究中仍存在的问题以及该领域未来的发展趋势。  相似文献   

18.
采用CTAB法提取了人参(Panax ginseng)根基因组DNA,根据植物叶绿体16S rDNA和线粒体18SrDNA与细菌16S rDNA序列具有高度同源性,用扩增细菌16S rDNA的一对通用引物(8f,1492r)扩增了人参细胞器核糖体小亚单位DNA.对扩增产物进行了克隆与测序,经多序列比对,扩增片段分别与已知植物叶绿体16S rDNA和线粒体18S rDNA具高度同源性,表明该对引物可以用来扩增绝大多数植物细胞器核糖体小亚单位DNA,可以作为鉴定植物叶绿体16S rDNA和线粒体18S rDNA的一种基本实验技术.  相似文献   

19.
二磷酸核酮糖羧化酶与细胞质雄性不育性的研究   总被引:5,自引:2,他引:3  
小白菜和几种禾本科作物的二磷酸核酮糖羧化酶(RuBP羧化酶)已用葡聚糖凝胶过滤的方法分离纯化。制备的样品经电泳鉴定,表现为1条酶带。小样品的植物材料用电泳方法制备。小白菜、玉米、高梁等作物的RuBP羧化酶在等电点聚焦电泳上,均可分离为5个条带,3个大亚基条带和2个小亚基条带。细胞质雄性不育系及其保持系的RuBP羧化酶的等电点聚焦电泳图谱上,由于有相同的核背景,所以其小亚基相同;但是由叶绿体基因组控制的大亚基则有差异。实验中还测定了RuBp羧化酶的活性,发现玉米、高粱、水稻、小麦和烟草等作物的细胞质雄性不育系的RuBp羧化酶活性均高于其相应的保持系,说明RuBp羧化酶与植物细胞质雄性不育性之间存在着一定关系。并推论,细胞质雄性不育的形成可以与叶绿体遗传系统有关。  相似文献   

20.
叶绿体虽然是植物细胞内一种极其重要的细胞器,但其分裂的分子机制尚不很清楚。已经证明FtsZ蛋白作为真核细胞分裂装置的一个关键成分,参与叶绿体的分裂过程。烟草的FtsZ基因属于2个不同的家族,在对NtFtsZ1家族成员研究的基础上,用正义和反义表达技术研究了NtFtsZ2家族成员NtFtsZ2-1基因在转基因烟草中的功能。显微分析结果表明NtFtsZ2-1基因的表达水平异常增强或减弱都会严重干扰叶绿体的正常分裂过程,导致叶绿体在形态和数目上的异常(体积明显增大,数目显著减少),而单个叶肉细胞中叶绿体的总表面积在正反义转基因烟草和野生型烟草之间保持了相对稳定,没有发生明显的变化。同时还证明NtFtsZ2-1基因表达的变化对叶绿素含量和叶绿体的光合作用能力没有直接的影响。据此我们认为NtFtsZ2-1基因参与叶绿体的分裂和体积的扩大,其表达水平的波动会改变植物中叶绿体的数目和大小,而且在叶绿体的数目与体积之间可能存在一种补偿机制,保证叶绿体能最大限度地吸收光能,从而使光合作用得以正常进行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号