首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Nadelhoffer  K. J.  Johnson  L.  Laundre  J.  Giblin  A. E.  Shaver  G.R. 《Plant and Soil》2002,242(1):107-113
We used ingrowth cores to estimate fine root production in organic soils of wet sedge and moist tundra ecosystems near Toolik Lake on Alaska's North Slope. Root-free soil cores contained in nylon mesh tubes (5 cm diameter, 20–30 cm long) were placed in control and chronically fertilized (N plus P) plots in mid-August 1994 and were retrieved 1 year later. Estimated fine root production in control plots was 75 g m–2 year–1 in wet sedge and 56 g m–2 year–1 in moist tussock tundra. Fine root production in fertilized plots was 85 g m–2 year–1 in wet sedge and 67 g m–2 year–1 in moist tussock tundra. Although our estimates of fine root production were higher on fertilized than control plots, differences were not statistically significant within either tundra type. Comparisons between our estimates of fine root production and other estimates of aboveground (plus rhizome) production on the same (wet sedge tundra) or similar (moist tussock tundra) plots suggest that fine root production was about one-third of total net primary production (NPP) under non-fertilized conditions and about one-fifth of total NPP under chronic fertilization. Fine root N and P concentrations increased with fertilization in both tundra types, but P concentrations increased more than N concentrations in wet sedge tundra, whereas relative increases in N and P concentrations in moist tundra roots were similar. These data are consistent with other studies suggesting that NPP in wet sedge tundra is often P limited and that co-limitation by N and P is more important in moist tussock tundra.  相似文献   

2.
Fine root length production, biomass production, and turnover in forest floor and mineral soil (0–30 cm) layers were studied in relation to irrigated (I) and irrigated-fertilized (IL) treatments in a Norway spruce stand in northern Sweden over a 2-year period. Fine roots (<1 mm) of both spruce and understory vegetation were studied. Minirhizotrons were used to estimate fine root length production and turnover, and soil cores were used to estimate standing biomass. Turnover was estimated as both the inverse of root longevity (RTL) and the ratio of annual root length production to observed root length (RTR). RTR values of spruce roots in the forest floor in I and IL plots were 0.6 and 0.5 y−1, respectively, whereas the corresponding values for RTL were 0.8 and 0.9 y−1. In mineral soil, corresponding values for I, IL, and control (C) plots were 1.2, 1.2, and 0.9 y−1 (RTR) and 0.9, 1.1, and 1 y−1 (RTL). RTR and RTL values of understory vegetation roots were 1 and 1.1 y−1, respectively. Spruce root length production in both the forest floor and the mineral soil in I plots was higher than in IL plots. The IL-treated plots gave the highest estimates of spruce fine root biomass production in the forest floor, but, for the mineral soil, the estimates obtained for the I plots were the highest. The understory vegetation fine root production in the I and IL plots was similar for both the forest floor and the mineral soil and higher (for both layers) than in C plots. Nitrogen (N) turnover in the forest floor and mineral soil layers (summed) via spruce roots in IL, I, and C plots amounted to 2.4, 2.1, and 1.3 g N m−2 y−1, and the corresponding values for field vegetation roots were 0.6, 0.5, and 0.3 g N m−2 y−1. It was concluded that fertilization increases standing root biomass, root production, and N turnover of spruce roots in both the forest floor and mineral soil. Data on understory vegetation roots are required for estimating carbon budgets in model studies.  相似文献   

3.
The minirhizotron technique (MR) for in situ measurement of fine root dynamics offers the opportunity to obtain accurate and unbiased estimates of root production in perennial vegetation only if MR tubes do not affect the longevity of fine roots. Assuming fine root biomass is near steady-state, fine root production (g m–2 yr–1) can be estimated as the ratio of fine root biomass (g m–2) to median fine root longevity (yr). This study evaluates the critical question of whether MR access tubes affect the longevity of fine roots, by comparing fine root survivorship obtained using MR with those from a non-intrusive in situ screen method in the forest floor horizons of a northern hardwood forest in New Hampshire, USA. Fine root survivorship was measured in 380 root screens during 1993–1997 and in six horizontal minirhizotron tubes during 1996–1997. No statistically significant difference was found between estimates of survivorship of fine roots (<1 mm dia.) at this site from MR versus from in situ screens, suggesting that MR tubes do not substantially affect fine root longevity in the forest floor of this northern hardwood forest and providing greater confidence in measurements of fine root production using the MR technique. Furthermore, the methodology for estimating fine root production from MR longevity data was evaluated by comparison of fine root longevity and production estimates made using single vs. multiple root cohorts, and using root-number, root-length, and root-mass weighted methods. Our results indicate that fine root-length longevity estimates based on multiple root cohorts throughout the year can be used to approximate fine root biomass production. Using this method, we estimated fine root longevity and production in the forest floor at this site to be 314 days (or 0.86 yr) and 303 g m–2 yr–1, respectively. Fine root production in this northern hardwood forest is approximately equivalent to standing biomass and was previously underestimated by root in-growth cores. We conclude that the use of MR to estimate fine root longevity and production as outlined here may result in improved estimates of fine root production in perennial vegetation.  相似文献   

4.
Estimating changes in belowground biomass and production is essential for understanding fundamental patterns and processes during ecosystem development. We examined patterns of fine root production, aboveground litterfall, and forest floor accumulation during forest primary succession at the Mt. Shasta Mudflows ecosystem chronosequence. Fine root production was measured using the root ingrowth cores method over 1 year, and aboveground litterfall was collected over 2 years. Fine root production increased significantly with ecosystem age, but only the youngest ecosystem was significantly different from all of the older ecosystems. Root production was 44.5 ± 13.3, 168.3 ± 20.6, 190.5 ± 33.8, and 236.3 ± 65.4 g m−2 y−1 in the 77, 255, 616, and >850-year-old ecosystems, respectively. Generally, aboveground litterfall and forest floor accumulation did not follow the same pattern as root production. The relative contribution of fine root production to total fine detrital production increased significantly with ecosystem age, from 14 to 49%, but only the youngest ecosystem was significantly different from all of the older ecosystems. Fine root production was significantly correlated with some measures of soil fertility but was not correlated with leaf or total litterfall, or forest floor accumulation. It was best predicted by soil N concentration alone, but this relationship may not be causal, as soil N concentration was also correlated with ecosystem age. For the oldest ecosystem, fine root production was also measured using the sequential intact cores/compartment-flow model method, and the difference between the two estimates was not significant. Our study suggests that the relative contribution of fine roots to fine detrital production, and hence to soil organic matter accumulation, may increase during forest primary succession.  相似文献   

5.
Losses of soil base cations due to acid rain have been implicated in declines of red spruce and sugar maple in the northeastern USA. We studied fine root and aboveground biomass and production in five northern hardwood and three conifer stands differing in soil Ca status at Sleepers River, VT; Hubbard Brook, NH; and Cone Pond, NH. Neither aboveground biomass and production nor belowground biomass were related to soil Ca or Ca:Al ratios across this gradient. Hardwood stands had 37% higher aboveground biomass (P = 0.03) and 44% higher leaf litter production (P < 0.01) than the conifer stands, on average. Fine root biomass (<2 mm in diameter) in the upper 35 cm of the soil, including the forest floor, was very similar in hardwoods and conifers (5.92 and 5.93 Mg ha−1). The turnover coefficient (TC) of fine roots smaller than 1 mm ranged from 0.62 to 1.86 y−1 and increased significantly with soil exchangeable Ca (P = 0.03). As a result, calculated fine root production was clearly higher in sites with higher soil Ca (P = 0.02). Fine root production (biomass times turnover) ranged from 1.2 to 3.7 Mg ha−1 y−1 for hardwood stands and from 0.9 to 2.3 Mg ha−1 y−1 for conifer stands. The relationship we observed between soil Ca availability and root production suggests that cation depletion might lead to reduced carbon allocation to roots in these ecosystems.  相似文献   

6.
Litterfall and fine root production were measured for three years as part of a carbon balance study of three forest stands in the Pacific Northwest of the United States. A young second-growth Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] stand, a second-growth Douglas-fir with red alder (Alnus rubra Bong.) stand, and an old-growth (∼550 years) Douglas-fir stand were monitored for inputs of carbon and nitrogen into the soil from litterfall and fine root production, as well as changes in soil C and N. Fine root production and soil nutrient changes were measured through the use of soil ingrowth bags containing homogenized soil from the respective stands. Litterfall biomass was greatest in the Douglas-fir-alder stand (527 g m−2 yr−1) that annually returned nearly three times the amount of N as the other stands. Mean residence time for forest floor material was also shortest at this site averaging 4.6 years and 5.5 years for C an N, respectively. Fine root production in the upper 20 cm ranged from 584 g m−2 in the N rich Douglas-fir-alder stand to 836 g m−2 in the old-growth stand. Fine root production (down to one meter) was always greater than litterfall with a below:above ratio ranging from 3.73 for the young Douglas-fir stand to 1.62 for the Douglas-fir-alder stand. The below:above N ratios for all three stands closely approximate those for biomass. Soil changes in both C and N differed by site, but the soil C changes in the old-growth stand mirrored those obtained in an ongoing CO2 flux study. Results from the soil ingrowth bags strongly suggest that this method provides a simple, but sufficient device for measuring potential fine root biomass production as well as soil chemical changes.  相似文献   

7.
The ecophysiological characteristics of fine roots of mature forest plants are poorly understood because of difficulties of measurement. We explored a root in-growth approach to measure respiration and nitrate uptake of woody plant roots in situ. Roots of seven species were grown into sand-filled chambers. Root-associated respiration was measured as CO 2 emission on four dates and nitrate uptake was quantified using 15N. All the roots were younger than 3 months at the time of measurement. Fine root respiration measured over the temperature range of 14.5–15.5 °C averaged 18.9–36.5 nmol gDM –1 s –1 across species. Nitrate uptake rates by these fine roots (1.3–6.8 nmol gDM –1 s –1) were comparable to other studies of forest trees. The root respiration rates were several times higher than measurements on detached roots of mature trees, concurring with literature observations that young roots respire much more rapidly than older roots. The root in-growth approach appears promising for providing information on the metabolic activity of fine roots of mature forest trees growing in soil.  相似文献   

8.
Carbon balance of a tropical savanna of northern Australia   总被引:7,自引:0,他引:7  
Chen X  Hutley LB  Eamus D 《Oecologia》2003,137(3):405-416
Through estimations of above- and below-ground standing biomass, annual biomass increment, fine root production and turnover, litterfall, canopy respiration and total soil CO2 efflux, a carbon balance on seasonal and yearly time-scales is developed for a Eucalypt open-forest savanna in northern Australia. This carbon balance is compared to estimates of carbon fluxes derived from eddy covariance measurements conducted at the same site. The total carbon (C) stock of the savanna was 204±53 ton C ha–1, with approximately 84% below-ground and 16% above-ground. Soil organic carbon content (0–1 m) was 151±33 ton C ha–1, accounting for about 74% of the total carbon content in the ecosystem. Vegetation biomass was 53±20 ton C ha–1, 39% of which was found in the root component and 61% in above-ground components (trees, shrubs, grasses). Annual gross primary production was 20.8 ton C ha–1, of which 27% occurred in above-ground components and 73% below-ground components. Net primary production was 11 ton C ha–1 year–1, of which 8.0 ton C ha–1 (73%) was contributed by below-ground net primary production and 3.0 ton C ha–1 (27%) by above-ground net primary production. Annual soil carbon efflux was 14.3 ton C ha–1 year–1. Approximately three-quarters of the carbon flux (above-ground, below-ground and total ecosystem) occur during the 5–6 months of the wet season. This savanna site is a carbon sink during the wet season, but becomes a weak source during the dry season. Annual net ecosystem production was 3.8 ton C ha–1 year–1.  相似文献   

9.
Keith  H.  Raison  R.J.  Jacobsen  K.L. 《Plant and Soil》1997,196(1):81-99
Pools and annual fluxes of carbon (C) were estimated for a mature Eucalyptus pauciflora (snowgum) forest with and without phosphorus (P) fertilizer addition to determine the effect of soil P availability on allocation of C in the stand. Aboveground biomass was estimated from allometric equations relating stem and branch diameters of individual trees to their biomass. Biomass production was calculated from annual increments in tree diameters and measurements of litterfall. Maintenance and construction respiration were calculated for each component using equations given by Ryan (1991a). Total belowground C flux was estimated from measurements of annual soil CO2 efflux less the C content of annual litterfall (assuming forest floor and soil C were at approximate steady state for the year that soil CO2 efflux was measured). The total C content of the standing biomass of the unfertilized stand was 138 t ha-1, with approximately 80% aboveground and 20% belowground. Forest floor C was 8.5 t ha-1. Soil C content (0–1 m) was 369 t ha-1 representing 70% of the total C pool in the ecosystem. Total gross annual C flux aboveground (biomass increment plus litterfall plus respiration) was 11.9 t ha-1 and gross flux belowground (coarse root increment plus fine root production plus root respiration) was 5.1 t ha-1. Total annual soil efflux was 7.1 t ha-1, of which 2.5 t ha-1 (35%) was contributed by litter decomposition.The short-term effect of changing the availability of P compared with C on allocation to aboveground versus belowground processes was estimated by comparing fertilized and unfertilized stands during the year after treatment. In the P-fertilized stand annual wood biomass increment increased by 30%, there was no evidence of change in canopy biomass, and belowground C allocation decreased by 19% relative to the unfertilized stand. Total annual C flux was 16.97 and 16.75 t ha-1 yr-1 and the ratio of below- to aboveground C allocation was 0.43 and 0.35 in the unfertilized and P-fertilized stands, respectively. Therefore, the major response of the forest stand to increased soil P availability appeared to be a shift in C allocation; with little change in total productivity. These results emphasise that both growth rate and allocation need to be estimated to predict changes in fluxes and storage of C in forests that may occur in response to disturbance or climate change.  相似文献   

10.
Wang C  Han S  Zhou Y  Yan C  Cheng X  Zheng X  Li MH 《PloS one》2012,7(3):e31042
Knowledge of the responses of soil nitrogen (N) availability, fine root mass, production and turnover rates to atmospheric N deposition is crucial for understanding fine root dynamics and functioning in forest ecosystems. Fine root biomass and necromass, production and turnover rates, and soil nitrate-N and ammonium-N in relation to N fertilization (50 kg N ha(-1) year(-1)) were investigated in a temperate forest over the growing season of 2010, using sequential soil cores and ingrowth cores methods. N fertilization increased soil nitrate-N by 16% (P<0.001) and ammonium-N by 6% (P<0.01) compared to control plots. Fine root biomass and necromass in 0-20 cm soil were 13% (4.61 vs. 5.23 Mg ha(-1), P<0.001) and 34% (1.39 vs. 1.86 Mg ha(-1), P<0.001) less in N fertilization plots than those in control plots. The fine root mass was significantly negatively correlated with soil N availability and nitrate-N contents, especially in 0-10 cm soil layer. Both fine root production and turnover rates increased with N fertilization, indicating a rapid underground carbon cycling in environment with high nitrogen levels. Although high N supply has been widely recognized to promote aboveground growth rates, the present study suggests that high levels of nitrogen supply may reduce the pool size of the underground carbon. Hence, we conclude that high levels of atmospheric N deposition will stimulate the belowground carbon cycling, leading to changes in the carbon balance between aboveground and underground storage. The implications of the present study suggest that carbon model and prediction need to take the effects of nitrogen deposition on underground system into account.  相似文献   

11.
Mineral nutrition and growth of tropical maize as affected by soil acidity   总被引:11,自引:0,他引:11  
Soil constraints linked to low pH reduce grain yield in about 10% of the maize growing area in tropical developing countries. The aim of this research was to elucidate the reasons for this maize yield reduction on an oxisol of Guadeloupe. The field experiment had two treatments: the native non-limed soil (NLI, pH 4.5, 2.1 cmol Al kg–1, corresponding to 20% Al saturation), and the same soil limed 6 years prior to the experiment (LI, pH 5.3, 0 cmol Al kg–1). The soils were fertilized with P and N. The above-ground biomass, root biomass at flowering, grain yield and yield components, leaf area index (LAI), light interception, radiation-use-efficiency (RUE), P and N uptake, soil water storage, and soil mineral N were measured during the maize cycle. The allometric relationships between shoot N concentration, LAI and above-ground biomass in LI were similar to those reported for maize cropped in temperate regions, indicating that these relationships are also useful to describe maize growth on tropical soils without Al toxicity. In NLI, soil acidity severely affected leaf appearance, leaf size and consequently the LAI, which was reduced by 60% at flowering, although the RUE was not affected. Therefore, the reduction in the above-ground biomass (30% at flowering) and grain yield (47%) were due to the lower LAI and light interception. At flowering, the root/shoot ratio was 0.25 in NLI and 0.17 in LI, and the root biomass in NLI was reduced by 64% compared to LI. Nitrogen uptake was also reduced in NLI in spite of high soil N availability. Nevertheless, shoot N concentration vs aboveground biomass showed a typical decline in both treatments. In NLI, the shoot P concentration vs above-ground biomass relationship showed an increase in the early stages, indicating that P uptake and root-shoot competition for the absorbed P in the early plant stages controlled the establishment and the development of the leaf area.  相似文献   

12.
Fine roots <2 mm in diameter play a key role in regulating the biogeochemical cycles of ecosystems and are important to our understanding of ecosystem responses to global climate changes. Given the sensitivity of fine roots, especially in boreal region, to climate changes, it is important to assess whether and to what extent fine roots in this region change with climates. Here, in this synthesis, a data set of 218 root studies were complied to examine fine root patterns in the boreal forest in relation to site and climatic factors. The mean fine root biomass in the boreal forest was 5.28 Mg ha?1, and the production of fine roots was 2.82 Mg ha?1 yr?1, accounting for 32% of annual net primary production of the boreal forest. Fine roots in the boreal forest on average turned over 1.07 times per year. Fine roots contained 50.9 kg ha?1 of nitrogen (N) and 3.63 kg ha?1 of phosphorous (P). In total, fine roots in the boreal forest ecosystems contain 6.1 × 107 Mg N and 4.4×106Mg P pools, respectively, about 10% of the global nutrients of fine roots. Fine root biomass, production, and turnover rate generally increased with increasing mean annual temperature and precipitation. Fine root biomass in the boreal forest decreased significantly with soil N and P availability. With increasing stand age, fine root biomass increased until about 100 years old for forest stands and then leveled off or decreased thereafter. These results of meta analysis suggest that environmental factors strongly influence fine root biomass, production, and turnover in boreal forest, and future studies should place a particular emphasis on the root-environment relationships.  相似文献   

13.

Aims

It has been increasingly recognized that only distal lower order roots turn over actively within the <2 mm fine root system of trees. This study aimed to estimate fine root production and turnover rate based on lower order fine roots and their relations to soil variables in mangroves.

Methods

We conducted sequential coring in five natural mangrove forests at Dongzhai Bay, China. Annual fine root production and turnover rate were calculated based on the seasonal variations of the biomass and necromass of lower order roots or the whole fine root system.

Results

Annual fine root production and turnover rate ranged between 571 and 2838 g m?2 and 1.46–5.96 yr?1, respectively, estimated with lower order roots, and they were increased by 0–30 % and reduced by 13–48 %, respectively, estimated with the whole fine root system. Annual fine root production was 1–3.5 times higher than aboveground litter production and was positively related to soil carbon, nitrogen and phosphorus concentrations. Fine root turnover rate was negatively related to soil salinity.

Conclusions

Mangrove fine root turnover plays a more important role than aboveground litter production in soil C accumulation. Sites with higher soil nutrients and lower salinity favor fine root production and turnover, and thus favor soil C accumulation.
  相似文献   

14.
多枝柽柳(Tamarix ramosissima)是塔里木河下游荒漠河岸林中的优势灌木, 对荒漠河岸植被群落的稳定起着重要作用。该文通过研究多枝柽柳幼苗根系形态对不同灌溉处理的响应, 分析人工水分干扰对多枝柽柳幼苗根系生长的影响。实验设计了侧渗分层和地表灌溉两种给水方式和高灌(50 L∙株 -1)、中灌(25 L∙株 -1)、低灌(12.5 L∙株 -1)三个给水水平, 并在整个生长季节监测每个植株的生物量及根系形态参数。结果显示: 与地表灌溉比较, 侧渗分层的灌溉方式显著提高了细根(0.5 mm < d < 2 mm)长、细根表面积和根系生物量, 并使根系生长至160 cm深度的土层, 大于地表灌溉深度(80-100 cm); 侧渗分层灌溉+高灌的组合促进根系生长的效果最显著(p < 0.05); 侧渗分层灌溉方式下总细根(d < 2 mm)的比根长随着给水量的增加显著增大, 而地表灌溉下比根长无显著变化; 侧渗分层灌溉方式下根冠比总体小于地表灌溉方式, 即侧渗分层灌溉使多枝柽柳地上部分发育较好。因此, 侧渗分层灌溉方式有显著促进多枝柽柳幼苗在生长早期快速发育的效果。  相似文献   

15.
Tropical dry forest is the most widely distributed land-cover type in the tropics. As the rate of land-use/land-cover change from forest to pasture or agriculture accelerates worldwide, it is becoming increasingly important to quantify the ecosystem biomass and carbon (C) and nitrogen (N) pools of both intact forests and converted sites. In the central coastal region of México, we sampled total aboveground biomass (TAGB), and the N and C pools of two floodplain forests, three upland dry forests, and four pastures converted from dry forest. We also sampled belowground biomass and soil C and N pools in two sites of each land-cover type. The TAGB of floodplain forests was as high as 416 Mg ha–1, whereas the TAGB of the dry forest ranged from 94 to 126 Mg ha–1. The TAGB of pastures derived from dry forest ranged from 20 to 34 Mg ha–1. Dead wood (standing and downed combined) comprised 27%–29% of the TABG of dry forest but only about 10% in floodplain forest. Root biomass averaged 32.0 Mg ha–1 in floodplain forest, 17.1 Mg ha–1 in dry forest, and 5.8 Mg ha–1 in pasture. Although total root biomass was similar between sites within land-cover types, root distribution varied by depth and by size class. The highest proportion of root biomass occurred in the top 20 cm of soil in all sites. Total aboveground and root C pools, respectively, were 12 and 2.2 Mg ha–1 in pasture and reached 180 and 12.9 Mg ha–1 in floodplain forest. Total aboveground and root pools, respectively, were 149 and 47 kg ha–1 in pasture and reached 2623 and 264 kg ha–1 in floodplain forest. Soil organic C pools were greater in pastures than in dry forest, but soil N pools were similar when calculated for the same soil depths. Total ecosystem C pools were 306. The Mg ha–1 in floodplain forest, 141 Mg ha–1 in dry forest, and 124 Mg ha–1 in pasture. Soil C comprised 37%–90% of the total ecosystem C, whereas soil N comprised 85%–98% of the total. The N pools lack of a consistent decrease in soil pools caused by land-use change suggests that C and N losses result from the burning of aboveground biomass. We estimate that in México, dry forest landscapes store approximately 2.3 Pg C, which is about equal to the C stored by the evergreen forests of that country (approximately 2.4 Pg C). Potential C emissions to the atmosphere from the burning of biomass in the dry tropical landscapes of México may amount to 708 Tg C, as compared with 569 Tg C from evergreen forests.  相似文献   

16.
Nitrogen fertilization often improves the yield of intensively managed, short‐rotation coppices. However, information of N nutrition form on the growth of common species and clones used for biomass production is limited. Thus, this study aims at evaluating N form effects on the growth of two Salicaceae clones. Cuttings of the poplar clone Max 4 (Populus maximovizcii × P. nigra) and the willow clone Inger (Salix triandra × S. viminialis) were fertilized in a pot experiment with four ratios of nitrate (NO3?) to ammonium (50%, 62.5%, 75% and 87.5% NO3? balanced with ammonium (NH4+) to constant total N) for one growing season and under stable soil pH. Plants were harvested for analysis of biomass and morphology of leaves, stem and roots. Respiration of fine and coarse roots (RR) was determined and related to biomass growth. Salix cv. Inger accumulated more total dry matter than Populus cv. Max 4. In both Salicaceae clones, the total biomass was significantly influenced by the nitrate ratio and greatest in plants fertilized with 50% NO3? of the total N supply. Both clones possess a different leaf and root morphology, but no significant influence of the NO3? ratio on the morphology was found. Fine RR rates differed significantly between clones, with significantly greater fine RR in Max 4; 87.5% NO3? fertilization increased the fine RR. Fine RR and total accumulated plant biomass were closely related. Our study is the first to show the tremendous influence of fine root respiration, especially including the carbon‐intensive reduction of NO3? to NH4+, on the aboveground growth of Salicaceae clones. Ways to improve yield in SRC are thus to lower the assimilate consumption by fine roots and to match fertilization regimes to the used clones or vice versa.  相似文献   

17.
The question of how tropical trees cope with infertile soils has been challenging to address, in part, because fine root dynamics must be studied in situ. We used annual fertilization with nitrogen (N as urea, 12.5 g N m?2 year?1), phosphorus (P as superphosphate, 5 g P m?2 year?1) and potassium (K as KCl, 5 g K m?2 year?1) within 38 ha of old‐growth lowland tropical moist forest in Panama and examined fine root dynamics with minirhizotron images. We expected that added P, above all, would (i) decrease fine root biomass but, (ii) have no impact on fine root turnover. Soil in the study area was moderately acidic (pH = 5.28), had moderate concentrations of exchangeable base cations (13.4 cmol kg?1), low concentrations of Bray‐extractable phosphate (PO4 = 2.2 mg kg?1), and modest concentrations of KCl‐extractable nitrate (NO3 = 5.0 mg kg?1) and KCl‐extractable ammonium (NH4 = 15.5 mg kg?1). Added N increased concentrations of KCl‐extractable NO3 and acidified the soil by one pH unit. Added P increased concentrations of Bray‐extractable PO4 and P in the labile fraction. Concentrations of exchangeable K were elevated in K addition plots but reduced by N additions. Fine root dynamics responded to added K rather than added P. After 2 years, added K decreased fine root biomass from 330 to 275 g m?2. The turnover coefficient of fine roots <1 mm diameter ranged from 2.6 to 4.4 per year, and the largest values occurred in plots with added K. This study supported the view that biomass and dynamics of fine roots respond to soil nutrient availability in species‐rich, lowland tropical moist forest. However, K rather than P elicited root responses. Fine roots smaller than 1 mm have a short lifetime (<140 days), and control of fine root production by nutrient availability in tropical forests deserves more study.  相似文献   

18.
Gao YZ  Chen Q  Lin S  Giese M  Brueck H 《Oecologia》2011,165(4):855-864
Productivity of semiarid grasslands is affected by soil water and nutrient availability, with water controlling net primary production under dry conditions and soil nutrients constraining biomass production under wet conditions. In order to investigate limitations on plants by the response of root–shoot biomass allocation to water and nitrogen (N) availability, a field experiment, on restoration plots with rainfed, unfertilized control plots, fertilized plots receiving N (25 kg urea-N ha−1) and water (irrigation simulating a wet season), was conducted at two sites with different grazing histories: moderate (MG) and heavy (HG) grazing. Irrigation and N addition had no effect on belowground biomass. Irrigation increased aboveground (ANPP) and belowground net primary production (BNPP) and rain-use efficiency based on ANPP (RUEANPP), whereas N addition on rainfed plots had no effect on any of the measured parameters. N fertilizer application on irrigated plots increased ANPP and RUEANPP and reduced the root fraction (RF: root dry matter/total dry matter), resulting in smaller N effects on total net primary production (NPP) and rain-use efficiency based on NPP. This suggests that BNPP should be included in evaluating ecosystem responses to resource availability from the whole-plant perspective. N effects on all measured parameters were similar on both sites. However, site HG responded to irrigation with higher ANPP and a lower RF when compared to site MG, indicating that species composition had a pronounced effect on carbon allocation pattern due to below- and aboveground niche complementarity.  相似文献   

19.
Eight forest sites representing a large range of climate, vegetation, and productivity were sampled in a transect across Oregon to study the relationships between aboveground stand characteristics and soil microbial properties. These sites had a range in leaf area index of 0.6 to 16 m2 m–2 and net primary productivity of 0.3 to 14 Mg ha–1 yr–1.Measurements of soil and forest floor inorganic N concentrations and in situ net N mineralization, nitrification, denitrification, and soil respiration were made monthly for one year. Microbial biomass C and anaerobic N mineralization, an index of N availability, were also measured. Annual mean concentrations of NH 4 + ranged from 37 to 96 mg N kg–1 in the forest floor and from 1.7 to 10.7 mg N kg–1 in the mineral soil. Concentrations of NO 3 were low ( < 1 mg N kg–1) at all sites. Net N mineralization and nitrification, as measured by the buried bag technique, were low on most sites and denitrification was not detected at any site. Available N varied from 17 to 101 mg N kg–1, microbial biomass C ranged from 190 to 1230 mg Ckg–1, and soil respiration rates varied from 1.3 to 49 mg C kg–1 day–1 across these sites. Seasonal peaks in NH 4 + concentrations and soil respiration rates were usually observed in the spring and fall.The soils data were positively correlated with several aboveground variables, including leaf area index and net primary productivity, and the near infrared-to-red reflectance ratio obtained from the airborne simulator of the Thematic Mapper satellite. The data suggest that close relationships between aboveground productivity and soil microbial processes exist in forests approaching semi-equilibrium conditions.Abbreviations IR infrared - LAI leaf area index - k c proportion of microbial biomass C mineralized to CO2 - NPP net primary productivity - TM Thematic Mapper  相似文献   

20.
To clarify the effects of long-term warming on ecosystem matter cycling, we conducted an in situ 7-year experimental warming (2009–2015) using infrared heaters in a cool temperate semi-natural grassland in Japan. We measured plant aboveground biomass, soil total C and N, soil inorganic N (NH4 +-N and NO3 ?-N), and soil microbial biomass for 7 years (2009–2015). We also measured heterotrophic respiration for 2 years (2013–2014) and assessed net N mineralization and nitrification in 2015. We found that warming immediately increased plant aboveground biomass, but this effect ceased in 2013. However, the soil microbial biomass was continuously depressed by warming. Soil inorganic N concentrations in warmed plots substantially increased in the later years of the experiment (2013–2015) and the potential net N mineralization rate was also higher than in the earlier years. In contrast, heterotrophic respiration decreased with warming in 2013–2014. Our observations indicate that long-term warming has a contrasting effect on plants and soil microbes. In addition, the warming could have different effects on subterranean C and N cycling. To enhance the accuracy of estimation of future climate change, it is essential to continuously observe the warming effects on ecosystems and to focus on the change in subterranean C and N cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号